首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogenies are essential to studies investigating the effect of evolutionary history on assembly of species in ecological communities and geographical and ecological patterns of phylogenetic structure of species assemblages. Because phylogenies well resolved at the species level are lacking for many major groups of organisms such as vascular plants, researchers often generate a species-level phylogenies using a phylogeny well resolved at the genus level as a backbone and attaching species to their respective genera in the phylogeny as polytomies or by using a megaphylogeny well resolved at the genus level as a backbone and adding additional species to the megaphylogeny as polytomies of their respective genera. However, whether the result of a study using species-level phylogenies generated in these ways is robust, compared to that based on phylogenies fully resolved at the species level, has not been assessed. Here, we use 1093 angiosperm tree assemblages (each in a 110 × 110 km quadrat) in North America as a model system to address this question, by examining six commonly used metrics of phylogenetic structure (phylogenetic diversity and phylogenetic relatedness) and six climate variables commonly used in ecology. Our results showed that (1) the scores of phylogenetic metrics derived from species-level phylogenies resolved at the genus level with species being attached to their respective genera as polytomies are very strongly or perfectly correlated to those derived from a phylogeny fully resolved at the species level (the mean of correlation coefficients is 0.973), and (2) the relationships between the scores of phylogenetic metrics and climate variables are consistent between the two sets of analyses based on the two types of phylogeny. Our study suggests that using species-level phylogenies resolved at the genus level with species being attached to their genera as polytomies is appropriate in studies exploring patterns of phylogenetic structure of species in ecological communities across geographical and ecological gradients.  相似文献   

2.
The interactions between herbivores and plants are of general interest in ecology. Even though the extensive research carried out during the last decades has culminated in many theories, additional studies are necessary to validate these findings. In particular, the hypotheses dealing with the complex interrelations of plant defense mechanisms and herbivores continue to be debated.In this paper, we develop a new indicator value that quantifies the defense mechanisms of Central European woody plants against large mammalian herbivores. The indicator value is based on three plant-specific traits: chemical defense (toxic compounds, digestion inhibitors), mechanical defense and leaf size. Our validation of the newly established indicator shows that evergreen woody plants have a significantly higher indicator value than deciduous woody plants. Moreover, plant defense is correlated with growth height: woody plants growing in the browsing zone preferred by large mammalian herbivores have significantly higher levels of defense compared with woody plants capable of growth high above the reach of large herbivores.We conclude that the new plant defense indicator value is a valuable tool for the validation of existing hypotheses and habitat calibration on a statistical basis. The quantification of plant mechanisms of defense against large herbivores produces a significantly better understanding of the multifaceted nature of plant–animal interactions and should contribute positively to future studies.  相似文献   

3.
4.
Global change is predicted to cause non-random species loss in plant communities, with consequences for ecosystem functioning. However, beyond the simple effects of plant species richness, little is known about how plant diversity and its loss influence higher trophic levels, which are crucial to the functioning of many species-rich ecosystems. We analyzed to what extent woody plant phylogenetic diversity and species richness contribute to explaining the biomass and abundance of herbivorous and predatory arthropods in a species-rich forest in subtropical China. The biomass and abundance of leaf-chewing herbivores, and the biomass dispersion of herbivores within plots, increased with woody plant phylogenetic diversity. Woody plant species richness had much weaker effects on arthropods, but interacted with plant phylogenetic diversity to negatively affect the ratio of predator to herbivore biomass. Overall, our results point to a strong bottom–up control of functionally important herbivores mediated particularly by plant phylogenetic diversity, but do not support the general expectation that top–down predator effects increase with plant diversity. The observed effects appear to be driven primarily by increasing resource diversity rather than diversity-dependent primary productivity, as the latter did not affect arthropods. The strong effects of plant phylogenetic diversity and the overall weaker effects of plant species richness show that the diversity-dependence of ecosystem processes and interactions across trophic levels can depend fundamentally on non-random species associations. This has important implications for the regulation of ecosystem functions via trophic interaction pathways and for the way species loss may impact these pathways in species-rich forests.  相似文献   

5.
Estimates of minimum areas required for effective biodiversity conservation differ substantially. Scientific reserve design and placement procedures indicate that between 30 and 75% of any region may be required to sample biodiversity features. These estimates do not routinely incorporate measures for sampling viable populations of species or explore the area requirements of sampling viable populations of species assemblages. To determine the area requirements for sampling viable populations of a herbivore assemblage, spatially explicit abundance data from the Kruger National Park, South Africa, were analyzed. Area requirements were consistently above 50% and were unaffected by selected target population sizes. In addition, area requirements appeared to be insensitive to selection unit size (analytical grain), habitat quality, the coarseness of the land classification system used or the presence of low-density species. Thus, traditional conservation area targets of 10–15% appear inadequate for representing viable populations of a herbivore assemblage from African savanna regions. This suggests that conservation targets of at least 50% of land classification units may represent a more appropriate conservation rule of thumb, or alternatively, that the use of data independent conservation targets may need to be abandoned.  相似文献   

6.
Plant diversity and land-use intensity have been shown to affect invertebrate herbivory. Several hypotheses predict positive (e.g. associational susceptibility) or negative (e.g. associational resistance) relationships of herbivory with plant species richness. Also, the strength and direction of reported relationships vary greatly between studies leading to the conclusion that relationships either depend on the specific system studied or that other unconsidered factors are more important. Here, we hypothesized that plant phylogenetic diversity is a stronger predictor of invertebrate herbivory than plant species richness because it integrates additional information about the phenotypical and functional composition of communities. We assessed the community-wide invertebrate herbivory, plant species richness and phylogenetic diversity across a range of land-use intensities including a total of 145 managed grasslands in three regions in Germany. Increasing land-use intensity decreased plant species richness and phylogenetic diversity. Plant species richness did not predict invertebrate herbivory. By contrast herbivory moderately increased with increasing plant phylogenetic diversity even after accounting for the effects of region and land use. The strength of direct effects of land-use intensity and indirect effects via altered phylogenetic diversity on herbivory, however, varied among regions. Our results suggest that increasing phylogenetic diversity of plant communities increases invertebrate herbivory probably by providing higher resource diversity. Differences between regions underline the need to account for regional peculiarities when attempting to generalize land-use effects on invertebrate herbivory.  相似文献   

7.
3′, 5′-cyclic AMP has been highly purified by chromatography from sterile higher plant tissues and assayed by bioluminescence as well as by activation of protein kinase. Both methods give comparable results: the amount of cyclic AMP was found to vary between 30 and 200 pmoles per mg of protein nitrogen.  相似文献   

8.
9.
Phylogenetic analysis has become a common step in characterization of gene and protein sequences. However, despite the availability of numerous affordable and more-or-less intuitive software tools, construction of biologically relevant, informative phylogenetic trees remains a process involving several critical steps that are inherently non-algorithmic, i.e., dependent on decisions made by the user. These steps involve, but are not limited to, setting the aims of the phylogenetic study, choosing sequences to be analyzed, and selecting methods employed in sequence alignment construction, as well as algorithms and parameters used to construct the actual phylogenetic tree. This review aims towards providing guidance for these decisions, as well as illustrating common pitfalls and problems occurring during phylogenetic analysis of plant gene sequences.  相似文献   

10.
Environmental conditions can modify the intensity and sign of ecological interactions. The stress gradient hypothesis (SGH) predicts that facilitation becomes more important than competition under stressful conditions. To properly test this hypothesis, it is necessary to account for all (not a subset of) interactions occurring in the communities and consider that species do not interact at random but following a specific pattern. We aim to assess elevational changes in facilitation, in terms of species richness, frequency and intensity of the interaction as a function of the evolutionary relatedness between nurses and their associated species. We sampled nurse and their facilitated plant species in two 1000–2000 m. elevation gradients in Mediterranean Chile where low temperature imposes a mortality filter on seedlings. We first estimated the relative importance of facilitation as a mechanism adding new species to communities distributed along these gradients. We then tested whether the frequency and intensity of facilitation increases with elevation, taking into account the evolutionary relatedness of the nurse species and the facilitated species. We found that nurses increase the species richness of the community by up to 35%. Facilitative interactions are more frequent than competitive interactions (56% versus 44%) and facilitation intensity increased with elevation for interactions involving distantly related lineages. Our results highlight the importance of including an evolutionary dimension in the study of facilitation to have a clearer picture of the mechanisms enabling species to coexist and survive under stressful conditions. This knowledge is especially relevant to conserve vulnerable and threatened communities facing new climate scenarios, such as those located in Mediterranean-type ecosystems.  相似文献   

11.
The binding of membrane potential cationic probes was studied on phospholipidic liposomes by equilibrium dialysis and microelectrophoresis. Surface binding of lipophilic cations (benzyltributylammonium or tetraphenylphosphonium) appears to be the major accumulation mechanism in liposomes and simulates the existence of a negative transmembrane potential (Em), in absence of any transmembrane ionic gradient. Furthermore, this apparent negative potential has a classical response with regard to common Em effectors, namely a depolarization induced by KCl or FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone). The relevance of these results to the study of transtonoplast potential difference on isolated vacuoles was investigated. Tetraphenylphosphonium was shown to bind to the tonoplast, the essential features of binding and interaction with Em effectors being similar in vacuoles and liposomes. Therefore the assumption of negligible binding of cationic probe to vacuoles, classically admitted in determinations of vacuolar Em using lipophilic cations, is untenable.  相似文献   

12.
13.
作为生态系统工程师的植物通过对非生物条件和生物区系的影响而显著地改变环境,从而促进了原本在这些环境下无法存活的伴生物种的生长。然而,很多研究缺乏对互惠效应的了解,因为对植物-植物相互作用的研究通常只估计了对伴生物种的益处,而很少考虑一个营养水平如何直接和间接调节植物的反馈作用。我们对两个植物物种(Arenaria tetraquetra 和 Hormathophylla spinosa,他们或单独开花,或与伴生植物一起开花)进行了一项田间试验用以分解净效应并验证以下假设:授粉者介导的相互作用提供益处用来平衡植物产生促进作用的成本。我们发现,促进作用的净成本伴随授粉介导的益处而存在。尽管两种植物单株植物上的产花更少,但与单独开花相比,他们在与伴生植物一起开花时,每朵花上的授粉者多样性增强。尽管这两种植物单独开花时,单株种子产量较高,但坐果和结实的产量存在种间差异。四叶蕨属的植物(Arenaria tetraquetra),伴生植物对其坐果和结实有负面效应,而刺山蕨属的植物(Hormathophylla spinose),当其与伴生植物一起开花时,坐果更高,结实则不受影响。我们的研究表明,除了承受直接成本外,植物还可以从伴生物种的促进作用中受益,通过提高其对传粉者的可见性。因此,我们强调授粉的相互作用可以补偿物种促进作用的成本,这些促进作用依赖于作为生态系统工程师的植物。本研究阐明了植物-植物间直接相互作用的结果如何被包括第三方在内的间接相互作用来调节的  相似文献   

14.
Plant–pollinator–robber systems are considered, where the plants and pollinators are mutualists, the plants and nectar robbers are in a parasitic relation, and the pollinators and nectar robbers consume a common limiting resource without interfering competition. My aim is to show a mechanism by which pollination–mutualism could persist when there exist nectar robbers. Through the dynamics of a plant–pollinator–robber model, it is shown that (i) when the plants alone (i.e., without pollination–mutualism) cannot provide sufficient resources for the robbers’ survival but pollination–mutualism can persist in the plant–pollinator system, the pollination–mutualism may lead to invasion of the robbers, while the pollinators will not be driven into extinction by the robbers’ invasion. (ii) When the plants alone cannot support the robbers’ survival but persistence of pollination–mutualism in the plant–pollinator system is density-dependent, the pollinators and robbers could coexist if the robbers’ efficiency in translating the plant–robber interactions into fitness is intermediate and the initial densities of the three species are in an appropriate region. (iii) When the plants alone can support the robbers’ survival, the pollinators will not be driven into extinction by the robbers if their efficiency in translating the plant–pollinator interactions into fitness is relatively larger than that of the robbers. The analysis leads to an explanation for the persistence of pollination–mutualism in the presence of nectar robbers in real situations.  相似文献   

15.

Background

Plant protease inhibitors (PIs) constitute a diverse group of proteins capable of inhibiting proteases. Among PIs, serine PIs (SPIs) display stability and conformational restrictions of the reactive site loop by virtue of their compact size, and by the presence of disulfide bonds, hydrogen bonds, and other weak interactions.

Scope of review

The significance of various intramolecular interactions contributing to protein folding mechanism and their role in overall stability and activity of SPIs is discussed here. Furthermore, we have reviewed the effect of variation or manipulation of these interactions on the activity/stability of SPIs.

Major conclusions

The selective gain or loss of disulfide bond(s) in SPIs can be associated with their functional differentiation, which is likely to be compensated by non-covalent interactions (hydrogen bonding or electrostatic interactions). Thus, these intramolecular interactions are collectively responsible for the functional activity of SPIs, through the maintenance of scaffold framework, conformational rigidity and shape complementarities of reactive site loop.

General significance

Structural insight of these interactions will provide an in-depth understanding of kinetic and thermodynamic parameters involved in the folding and stability mechanisms of SPIs. These features can be explored for engineering canonical SPIs for optimizing their overall stability and functionality for various applications.  相似文献   

16.
A central goal in ecology is to develop theories that explain the diversity and distribution of species. The evolutionary history of species and their functional traits may provide mechanistic links between community assembly and the environment. Such links may be hierarchically structured such that the strength of environmental filtering decreases in a step‐wise manner from regional conditions through landscape heterogeneity to local habitat conditions. We sampled the wild bee species assemblages in power‐line strips transecting forests in south‐eastern Norway. We used altitude, landscape diversity surrounding sites and plant species composition, together with total plant cover as proxies for regional, landscape and local environmental filters, respectively. The species richness and abundance of wild bees decreased with altitude. The reduction in species richness and abundance was accompanied by a phylogenetic clustering of wild bee individuals. Furthermore, regional filters followed by local filters best explained the structure of the functional species composition. Sites at high altitudes and sites with Ericaceae‐dominated plant communities tended to have larger bees and a higher proportion of social and spring‐emerging bees. When Bombus species were excluded from the analysis, the proportion of pollen specialists increased with the dominance of Ericaceae. Furthermore, we also found that the taxonomic, phylogenetic and functional compositional turnover between sites was higher in the northern region than in the southern part of the study region. Altogether, these results suggest that regional filters drive the species richness and abundance in trait‐groups whereas local filters have more descrete sorting effects. We conclude that the model of multi‐level environmental filters provides a good conceptual model for community ecology. We suggest that future studies should focus on the relationship between the biogeographical history of species and their current distribution, and on the assumption that closely related species do indeed compete more intensely than distantly related species.  相似文献   

17.
Empathy can be widely defined as the capacity to understand the emotional, visual, or cognitive perspective of another individual and is perhaps reliant on the ability to attribute mental states. Behavioural events that may indicate empathy in chimpanzees,Pan troglodytes, are collated (1) using a questionnaire and (2) from the literature. These case studies are classified in a taxonomy of empathic acts in which empathy is categorized as visual empathy, emotional empathy, concordance and extended empathy. In addition, the circumstances surrounding the empathic acts are discussed: whether the recipient of the empathic act was a relative, an unfamiliar individual, or a heterospecific. The cost to the animal showing empathy, whether it displayed any levels of intentionality and if it communicated to a third party are also analyzed. Rescuing of an individual from a dangerous social or physical situation is the only category where the animal shows empathy under all the specified conditions. From this preliminary analysis it seems the chimpanzees may be capable of showing empathy across a wide range of circumstances.  相似文献   

18.
A number of research groups in various areas of plant biology as well as computer science and applied mathematics have addressed modelling the spatiotemporal dynamics of growth and development of plants. This has resulted in development of functional–structural plant models (FSPMs). In FSPMs, the plant structure is always explicitly represented in terms of a network of elementary units. In this respect, FSPMs are different from more abstract models in which a simplified representation of the plant structure is frequently used (e.g. spatial density of leaves, total biomass, etc.). This key feature makes it possible to build modular models and creates avenues for efficient exchange of model components and experimental data. They are being used to deal with the complex 3-D structure of plants and to simulate growth and development occurring at spatial scales from cells to forest areas, and temporal scales from seconds to decades and many plant generations. The plant types studied also cover a broad spectrum, from algae to trees. This special issue of Annals of Botany features selected papers on FSPM topics such as models of morphological development, models of physical and biological processes, integrated models predicting dynamics of plants and plant communities, modelling platforms, methods for acquiring the 3-D structures of plants using automated measurements, and practical applications for agronomic purposes.  相似文献   

19.
Interaction webs, or networks, define how the members of two or more trophic levels interact. However, the traits that mediate network structure have not been widely investigated. Generally, the mechanism that determines plant-pollinator partnerships is thought to involve the matching of a suite of species traits (such as abundance, phenology, morphology) between trophic levels. These traits are often unknown or hard to measure, but may reflect phylogenetic history. We asked whether morphological traits or phylogenetic history were more important in mediating network structure in mutualistic plant-pollinator interaction networks from Western Canada. At the plant species level, sexual system, growth form, and flower symmetry were the most important traits. For example species with radially symmetrical flowers had more connections within their modules (a subset of species that interact more among one another than outside of the module) than species with bilaterally symmetrical flowers. At the pollinator species level, social species had more connections within and among modules. In addition, larger pollinators tended to be more specialized. As traits mediate interactions and have a phylogenetic signal, we found that phylogenetically close species tend to interact with a similar set of species. At the network level, patterns were weak, but we found increasing functional trait and phylogenetic diversity of plants associated with increased weighted nestedness. These results provide evidence that both specific traits and phylogenetic history can contribute to the nature of mutualistic interactions within networks, but they explain less variation between networks.  相似文献   

20.
Fifty-six nuclear protein coding genes from Taxonomically Broad EST Database and other databases were selected for phylogenomic-based examination of alternative phylogenetic hypotheses concerning intergroup relationship between multicellular animals (Metazoa) and other representatives of Opisthokonta. The results of this work support sister group relationship between Metazoa and Choanoflagellata. Both of these groups form the taxon Holozoa along with the monophyletic Ichthyosporea or Mesomycetozoea (a group that includes Amoebidium parasiticum, Sphaeroforma arctica, and Capsaspora owczarzaki). These phylogenetic hypotheses receive high statistical support both when utilizing whole alignment and when only 5000 randomly selected alignment positions are used. The presented results suggest subdivision of Fungi into Eumycota and lower fungi, Chytridiomycota. The latter form a monophyletic group that comprises Chytridiales+Spizellomycetales+Blastocladiales (Batrachochytrium, Spizellomyces, Allomyces, Blastocladiella), contrary to the earlier reports based on the analysis of 18S rRNA and a limited set of protein coding genes. The phylogenetic distribution of genes coding for a ubiquitin-fused ribosomal protein S30 implies at least three independent cases of gene fusion: in the ancestors of Holozoa, in heterotrophic Heterokonta (Oomycetes and Blastocystis) and in the ancestors of Cryptophyta and Glaucophyta. Ubiquitin-like sequences fused with ribosomal protein S30 outside of Holozoa are not FUBI orthologs. Two independent events of FUBI replacement by the ubiquitin sequence were detected in the lineage of C. owczarzaki and in the monophyletic group of nematode worms Tylenchomorpha+Cephalobidae. Bursaphelenchus xylophilus (Aphelenchoidoidea) retains a state typical of the rest of the Metazoa. The data emphasize the fact that the reliability of phylogenetic reconstructions depends on the number of analyzed genes to a lesser extent than on our ability to recognize reconstruction artifacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号