首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Well-balanced mitochondrial fission and fusion processes are essential for nervous system development. Loss of function of the main mitochondrial fission mediator, dynamin-related protein 1 (Drp1), is lethal early during embryonic development or around birth, but the role of mitochondrial fission in adult neurons remains unclear. Here we show that inducible Drp1 ablation in neurons of the adult mouse forebrain results in progressive, neuronal subtype-specific alterations of mitochondrial morphology in the hippocampus that are marginally responsive to antioxidant treatment. Furthermore, DRP1 loss affects synaptic transmission and memory function. Although these changes culminate in hippocampal atrophy, they are not sufficient to cause neuronal cell death within 10 weeks of genetic Drp1 ablation. Collectively, our in vivo observations clarify the role of mitochondrial fission in neurons, demonstrating that Drp1 ablation in adult forebrain neurons compromises critical neuronal functions without causing overt neurodegeneration.In addition to their crucial importance in energy conversion, mitochondria serve many other housekeeping functions, including calcium buffering, amino-acid and steroid biosynthesis as well as fatty acids beta-oxidation and regulation of cell death. During the past decade, it has become increasingly clear that processes regulating mitochondrial morphology and ultrastructure are influenced by specific cellular requirements upon which mitochondria, in a precisely regulated manner, undergo fusion and division events.1 Maintaining this balance is especially important for highly energy-consuming, polarized cells such as neurons, where single organellar units sprouting from the mitochondrial network are transported along the cytoskeleton into dendrites and spines to meet local energy requirements.2 In addition, elaborate quality-control mechanisms also rely on mitochondrial dynamics: whereas defective organelles are sequestered by fission, enabling their removal from the mitochondrial network,3, 4 fusion supports qualitative homogeneity of the syncytium through complementation.5Mitochondrial fusion and fission are mediated by large GTPases of the dynamin superfamily.6 The outer mitochondrial membrane mitofusins 1 (MFN1) and 2 (MFN2) tether mitochondrial membranes by homodimer or heterodimer formation,7 thereby initiating fusion of the organelles, a process that also involves the inner mitochondrial membrane-associated GTPase Optic Atrophy 1.8 In addition, MFN2 also mediates contacts between mitochondria and endoplasmic reticulum.9 The only known mammalian mitochondrial fission protein, Dynamin-Related Protein 1 (Drp1), translocates upon dephosphorylation by calcineurin10 to fission sites where it binds to mitochondrial fission factor.11 Drp1 translocation is preceded by ER membranes wrapping around mitochondria to constrict the organelles,12 thereby facilitating the formation of multimeric Drp1 complexes that, upon GTP hydrolysis, further tighten to complete the process of mitochondrial fission.13Genetic evidence in mice and humans indicates that mitochondrial dynamics are crucially important in neurons: in humans, a sporadic dominant-negative DRP1 mutation caused a lethal syndromic defect with abnormal brain development;14 similarly, constitutive Drp1 knockout in the mouse brain leads to lethal neurodevelopmental defects.15, 16 Although the crucial role of Drp1 during brain development is undisputed, studies on Drp1 function in postmitotic (adult) neurons are scarce; likewise, Drp1 ablation studies in primary cultures have so far failed to yield a conclusive picture. In vitro, Drp1 ablation is reported to lead to a super-elongated neuroprotective17, 18, 19, 20, 21, 22, 23, 24 or an aggregated mitochondrial phenotype associated with neurodegeneration.15, 16, 25, 26, 27 These discrepancies are probably due to different experimental conditions: neuronal health is indeed influenced by the onset and duration of Drp1 inhibition, which varies considerably among the cited reports,28 and different types of neuronal cultures studied display different sensitivity to Drp1 inhibition. In vivo, Drp1 ablation in Purkinje cells results in oxidative stress and neurodegeneration,29 demonstrating that Drp1 is essential for postmitotic neurons'' health. In contrast, transient pharmacological Drp1 inhibition is neuroprotective in several mouse ischemia models, indicating that temporarily blocking mitochondrial fission holds therapeutic potential.30, 31, 32To elucidate the consequences of blocked mitochondrial fission in the central nervous system in vivo, we bypassed the critical role of Drp1 during brain development by generating Drp1flx/flx mice15 expressing tamoxifen-inducible Cre recombinase under the control of the CaMKIIα promoter.33 Upon induced Drp1 deletion in postmitotic adult mouse forebrain neurons, mice develop progressive, neuronal subtype-specific alterations in mitochondrial shape and distribution in the absence of overt neurodegeneration. In addition, respiratory capacity, ATP content, synaptic reserve pool vesicle recruitment as well as spatial working memory are impaired, demonstrating that severely dysregulated mitochondrial dynamics can compromise critical neuronal functions in vivo without causing neuronal cell death.  相似文献   

2.
3.
Evidence indicates that nitrosative stress and mitochondrial dysfunction participate in the pathogenesis of Alzheimer''s disease (AD). Amyloid beta (Aβ) and peroxynitrite induce mitochondrial fragmentation and neuronal cell death by abnormal activation of dynamin-related protein 1 (DRP1), a large GTPase that regulates mitochondrial fission. The exact mechanisms of mitochondrial fragmentation and DRP1 overactivation in AD remain unknown; however, DRP1 serine 616 (S616) phosphorylation is likely involved. Although it is clear that nitrosative stress caused by peroxynitrite has a role in AD, effective antioxidant therapies are lacking. Cerium oxide nanoparticles, or nanoceria, switch between their Ce3+ and Ce4+ states and are able to scavenge superoxide anions, hydrogen peroxide and peroxynitrite. Therefore, nanoceria might protect against neurodegeneration. Here we report that nanoceria are internalized by neurons and accumulate at the mitochondrial outer membrane and plasma membrane. Furthermore, nanoceria reduce levels of reactive nitrogen species and protein tyrosine nitration in neurons exposed to peroxynitrite. Importantly, nanoceria reduce endogenous peroxynitrite and Aβ-induced mitochondrial fragmentation, DRP1 S616 hyperphosphorylation and neuronal cell death.Nitric oxide (NO) is a neurotransmitter and neuromodulator required for learning and memory.1 NO is generated by NO synthases, a group of enzymes that produce NO from L-arginine. In addition to its normal role in physiology, NO is implicated in pathophysiology. When overproduced, NO combines with superoxide anions (O2·), byproducts of aerobic metabolism and mitochondrial oxidative phosphorylation, to form peroxynitrite anions (ONOO) that are highly reactive and neurotoxic. Accumulation of these reactive oxygen species (ROS) and reactive nitrogen species (RNS), known as oxidative and nitrosative stress, respectively, is a common feature of aging, neurodegeneration and Alzheimer''s disease (AD).1Nitrosative stress caused by peroxynitrite has a critical role in the etiology and pathogenesis of AD.2, 3, 4, 5, 6, 7 Peroxynitrite is implicated in the formation of the two hallmarks of AD, Aβ aggregates and neurofibrillary tangles containing hyperphosphorylated Tau protein.1, 4, 7 In addition, peroxynitrite promotes the nitrotyrosination of presenilin 1, the catalytic subunit of the γ-secretase complex, which shifts production of Aβ to amyloid beta (Aβ)42 and increases the Aβ42/Aβ40 ratio, ultimately resulting in an increased propensity for aggregation and neurotoxicity.5 Furthermore, nitration of Aβ tyrosine 10 enhances its aggregation.6 Peroxynitrite can also modify enzymes, such as triosephosphate isomerase,4 and activate kinases, including Jun amino-terminal kinase and p38 mitogen-activated protein kinase, which enhance neuronal cell death.8, 9 Moreover, peroxynitrite can trigger the release of free metals such as Zn2+ from intracellular stores with consequent inhibition of mitochondrial function and enhancement of neuronal cell death.10, 11, 12 Finally, peroxynitrite can irreversibly inhibit complexes I and IV of the mitochondrial respiratory chain.11, 13Because mitochondria have a critical role in neurons as energy producers to fuel vital processes such as synaptic transmission and axonal transport,14 and mitochondrial dysfunction is a well-documented and early event in AD,15 it is important to consider how peroxynitrite and nitrosative stress affect mitochondria. Although the ultimate cause of mitochondrial dysfunction in AD remains unclear, an imbalance in mitochondrial fission and fusion is one possibility.1, 14, 16, 17, 18 Notably, peroxynitrite, N-methyl D-aspartate (NMDA) receptor activation and Aβ can induce mitochondrial fragmentation by activating mitochondrial fission and/or inhibiting fusion.16 Mitochondrial fission and fusion is regulated by large GTPases of the dynamin family, including dynamin-related protein 1 (DRP1) that is required for mitochondrial division,19 and inhibition of mitochondrial division by overexpression of the GTPase-defective DRP1K38A mutant provides protection against peroxynitrite-, NMDA- and Aβ-induced mitochondrial fragmentation and neuronal cell death.16The exact mechanism of peroxynitrite-induced mitochondrial fragmentation remains unclear. A recent report suggested that S-nitrosylation of DRP1 at cysteine 644 increases DRP1 activity and is the cause of peroxynitrite-induced mitochondrial fragmentation in AD;20 however, the work remains controversial, suggesting that alternative pathways might be involved.21 For example, peroxynitrite also causes rapid DRP1 S616 phosphorylation that promotes its translocation to mitochondria and organelle division.21, 22 In mitotic cells, DRP1 S616 phosphorylation is mediated by Cdk1/cyclinB1 and synchronizes mitochondrial division with cell division.23 Interestingly, DRP1 is S616 hyperphosphorylated in AD brains, suggesting that this event might contribute to mitochondrial fragmentation in the disease.21, 22 A recent report indicates that Cdk5/p35 is responsible for DRP1 S616 phosphorylation,24 and notably aberrant Cdk5/p35/p25 signaling is associated with AD pathogenesis.25 Thus, we explored here the possible role of DRP1 S616 hyperphosphorylation in Aβ- and peroxynitrite-mediated mitochondrial fragmentation.Under normal conditions, accumulated mitochondrial superoxide anions and hydrogen peroxide (H2O2) can be neutralized by superoxide dismutase (SOD) and catalase. Nitrosative stress in aging and AD might be explained by a loss of antioxidant enzymes. Previous studies suggest that expression of SOD subtypes is decreased in the human AD brain.26, 27 Furthermore, SOD1 deletion in a mouse model of AD increased the burden of amyloid plaques.26 By contrast, overexpression of SOD2 in a mouse model of AD decreased the Aβ42/Aβ40 ratio and alleviated memory deficits.28, 29 There is currently a lack of antioxidants that can effectively quench superoxide anions, H2O2 or peroxynitrite and provide lasting effects. Cerium is a rare earth element and cerium oxide (CeO2) nanoparticles, or nanoceria, shuttle between their 3+ or 4+ states. Oxidation of Ce4+ to Ce3+ causes oxygen vacancies and defects on the surface of the crystalline lattice structure of the nanoparticles, generating a cage for redox reactions to occur.30 Accordingly, nanoceria mimic the catalytic activities of antioxidant enzymes, such as SOD31, 32 and catalase,33 and are able to neutralize peroxynitrite.34 Because of these antioxidant properties, we hypothesized that nanoceria could detoxify peroxynitrite and protect against Aβ-induced DRP1 S616 hyperphosphorylation, mitochondrial fragmentation and neuronal cell death.  相似文献   

4.
5.
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been associated with Parkinson''s disease, and its inhibition opens potential new therapeutic options. Among the drug inhibitors of both wild-type and mutant LRRK2 forms is the 2-arylmethyloxy-5-subtitutent-N-arylbenzamide GSK257815A. Using the well-established dopaminergic cell culture model SH-SY5Y, we have investigated the effects of GSK2578215A on crucial neurodegenerative features such as mitochondrial dynamics and autophagy. GSK2578215A induces mitochondrial fragmentation of an early step preceding autophagy. This increase in autophagosome results from inhibition of fusion rather than increases in synthesis. The observed effects were shared with LRRK2-IN-1, a well-described, structurally distinct kinase inhibitor compound or when knocking down LRRK2 expression using siRNA. Studies using the drug mitochondrial division inhibitor 1 indicated that translocation of the dynamin-related protein-1 has a relevant role in this process. In addition, autophagic inhibitors revealed the participation of autophagy as a cytoprotective response by removing damaged mitochondria. GSK2578215A induced oxidative stress as evidenced by the accumulation of 4-hydroxy-2-nonenal in SH-SY5Y cells. The mitochondrial-targeted reactive oxygen species scavenger MitoQ positioned these species as second messengers between mitochondrial morphologic alterations and autophagy. Altogether, our results demonstrated the relevance of LRRK2 in mitochondrial-activated pathways mediating in autophagy and cell fate, crucial features in neurodegenerative diseases.Nowadays, Parkinson''s disease (PD) constitutes the main motor disorder and the second neurodegenerative disease after Alzheimer''s disease. Etiology of PD remains unknown, but both environmental and genetic factors have been implicated. Among the genes associated with PD is the leucine-rich repeat kinase 2 (LRRK2, PARK8, OMIM 607060) encoding gene encoded by PARK8. Indeed, LRRK2 mutations have been described in a substantial number of idiopathic late-onset PD patients without a known family history of the disease.1, 2, 3The physiologic function remains unknown. It localizes in the cytosol as well as in specific membrane subdomains, including mitochondria, autophagosomes and autolysosomes,4 and interacts with a whole array of proteins, including both α- and β-tubulin,5, 6 tau,7 α-synuclein8 and F-actin.9 LRRK2 gene mutations, including the most common G2019S,3 are associated with increases in toxic putative kinase activity.1, 10 LRRK2 overexpression is toxic to cultured cells,11, 12 and LRRK2 loss did not cause neurodegenerative changes (for a review see Tong and Shen13). However, LRRK2 transgenic mice lack obvious PD-like behavioral phenotypes.14 LRRK2-associated PD patients show degeneration of dopaminergic neurons in the substantia nigra.15 Data from our own group and others have associated mitochondrial apoptotical pathways with PD,16, 17, 18 and, in this context, LRRK2 mutant-mediated toxicity could be due to mitochondria-dependent apoptosis.19 There is considerable evidence for impaired mitochondrial function and morphology in both early-onset, autosomal recessive inherited PD and late-onset sporadic PD.Mitochondrial dynamics include several mechanisms, such as fission, fusion and mitophagy.20, 21 Altered fission/fusion dynamics might be a common pathogenic pathway of neurodegenerative diseases. It is well documented that mitochondrial dynamics constitute a relevant issue in some experimental neurodegenerative models.20, 22, 23, 24, 25 Mitochondrial dynamics is tightly regulated by cellular pathways including those participated by the dynamin-related protein-1 (Drp1). Drp1 mostly locates in the cytoplasm, but is stimulated after fission stimuli to migrate to the mitochondria. Once there, Drp1 forms ring-like structures, which wrap around the scission site to constrict the mitochondrial membrane resulting in mitochondrial fission.26, 27 Interestingly, a functional interaction between PD-associated LRRK2 and members of the dynamin GTPase superfamily has been described.28Macroautophagy (hereafter referred to as autophagy) is an active cellular response, which functions in the intracellular degradation system of cellular debris such as damaged organelles. Whether autophagy promotes cell death or enhances survival is still controversial.29, 30 It requires the formation of autophagosomes where cellular content is to be degraded by the action of lysosomal enzymatic content. Autophagosome formation is regulated by an orderly action of >30 autophagy-related (Atg) proteins. Among them is the microtubule-associated protein 1A/1B-light chain 3 (LC3), a homolog of Apg8p, which is essential for autophagy in yeast and is associated with autophagosome membranes.31 Interestingly, these vesicles are mostly highly mobile in the cytoplasm.32 Wild-type and mutant LRRK2 expression has been related to autophagy.4, 33, 34, 35, 36 Reactive oxygen species (ROS) function as relevant second messengers after several stimuli, including mitochondrial disruption. Exacerbated ROS increases might result in overactivation of antioxidant systems and yield harmful oxidative stress. Among oxidative stress hallmarks is the accumulation of α,β-unsaturated hydroxyalkenal 4-hydroxy-2-nonenal (4-HNE), whose accumulation has been reported in PD post-mortem patient brains,37, 38 thus giving a significant relevance to ROS in the pathogenesis of PD.All these results indicate LRRK2 as a promising pharmacologic target in PD treatment.39 Several LRRK2 inhibitor drugs have been synthetized, such as the potent and highly selective 2-arylmethyloxy-5-substitutent-N-arylbenzamide (GSK2578215A). GSK2578215A exhibits biochemical IC50s of 10.9 nM against wild-type LRRK2, and possesses a high ratio of brain to plasma distribution.40 This study provides key insights into the mechanisms downstream of LRRK2 inhibition, and spreads light onto an underexplored, yet potentially tractable therapeutic target for treating LRRK2-associated PD. We demonstrate how inhibition of this kinase results in the activation of cellular death pathways such as the mitochondrial fission machinery, and how cells reply by activating a protective autophagic response. Our results show the presence of oxidative stress hallmarks, thus pointing to a key function for ROS, placed downstream of mitochondrial fission.  相似文献   

6.
Caspases and the cytotoxic lymphocyte protease granzyme B (GB) induce reactive oxygen species (ROS) formation, loss of transmembrane potential and mitochondrial outer membrane permeabilization (MOMP). Whether ROS are required for GB-mediated apoptosis and how GB induces ROS is unclear. Here, we found that GB induces cell death in an ROS-dependent manner, independently of caspases and MOMP. GB triggers ROS increase in target cell by directly attacking the mitochondria to cleave NDUFV1, NDUFS1 and NDUFS2 subunits of the NADH: ubiquinone oxidoreductase complex I inside mitochondria. This leads to mitocentric ROS production, loss of complex I and III activity, disorganization of the respiratory chain, impaired mitochondrial respiration and loss of the mitochondrial cristae junctions. Furthermore, we have also found that GB-induced mitocentric ROS are necessary for optimal apoptogenic factor release, rapid DNA fragmentation and lysosomal rupture. Interestingly, scavenging the ROS delays and reduces many of the features of GB-induced death. Consequently, GB-induced ROS significantly promote apoptosis.To induce cell death, human granzyme B (GB) activates effector caspase-3 or acts directly on key caspase substrates, such as the proapoptotic BH3 only Bcl-2 family member Bid, inhibitor of caspase-activated DNase (ICAD), poly-(ADP-ribose) polymerase-1 (PARP-1), lamin B, nuclear mitotic apparatus protein 1 (NUMA1), catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) and tubulin.1, 2, 3 Consequently, caspase inhibitors have little effect on human GB-mediated cell death and DNA fragmentation.2 GB causes reactive oxygen species (ROS) production, dissipation of the mitochondrial transmembrane potential (ΔΨm) and MOMP, which leads to the release of apoptogenic factors such as cytochrome c (Cyt c), HtrA2/Omi, endonuclease G (Endo G), Smac/Diablo and apoptosis-inducing factor, from the mitochondrial intermembrane space to the cytosol.4, 5, 6, 7, 8, 9, 10, 11 Interestingly, cells deficient for Bid, Bax and Bak are still sensitive to human GB-induced cell death,5, 11, 12, 13 suggesting that human GB targets the mitochondria in another way that needs to be characterized. Altogether, much attention has been focused on the importance of MOMP in the execution of GB-mediated cell death, leaving unclear whether ROS production is a bystander effect or essential to the execution of GB-induced apoptosis. The mitochondrial NADH: ubiquinone oxidoreductase complex I is a key determinant in steady-state ROS production. This 1 MDa complex, composed of 44 subunits,14 couples the transfer of two electrons from NADH to ubiquinone with the translocation of four protons to generate the ΔΨm. The importance of ROS has been previously demonstrated for caspase-3 and granzyme A (GA) pathways through the cleavage of NDUFS1 and NDUFS3, respectively.15, 16, 17, 18 GA induces cell death in a Bcl-2-insensitive and caspase- and MOMP-independent manner that has all the morphological features of apoptosis.1, 16, 17, 18, 19, 20 As GA and GB cell death pathways are significantly different, whether ROS are also critical for GB still need to be tested. Here, we show that GB induces ROS-dependent apoptosis by directly attacking the mitochondria in a caspase-independent manner to cleave NDUFS1, NDUFS2 and NDUFV1 in complex I. Consequently, GB inhibits electron transport chain (ETC) complex I and III activities, mitochondrial ROS production is triggered and mitochondrial respiration is compromised. Interestingly, MOMP is not required for GB to cleave the mitochondrial complex I subunits and ROS production. Moreover, GB action on complex I disrupts the organization of the respiratory chain and triggers the loss of the mitochondrial cristae junctions. We also show that GB-mediated mitocentric ROS are necessary for proper apoptogenic factor release from the mitochondria to the cytosol and for the rapid DNA fragmentation, both hallmarks of apoptosis. Moreover, GB-induced ROS are necessary for lysosomal membrane rupture. Thus, our work brings a new light to the GB pathway, showing that GB-mediated mitochondrial ROS are not adventitious waste of cell death, but essential mediators of apoptosis.  相似文献   

7.
8.
Q Xia  Q Hu  H Wang  H Yang  F Gao  H Ren  D Chen  C Fu  L Zheng  X Zhen  Z Ying  G Wang 《Cell death & disease》2015,6(3):e1702
Neuroinflammation is a striking hallmark of amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Previous studies have shown the contribution of glial cells such as astrocytes in TDP-43-linked ALS. However, the role of microglia in TDP-43-mediated motor neuron degeneration remains poorly understood. In this study, we show that depletion of TDP-43 in microglia, but not in astrocytes, strikingly upregulates cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production through the activation of MAPK/ERK signaling and initiates neurotoxicity. Moreover, we find that administration of celecoxib, a specific COX-2 inhibitor, greatly diminishes the neurotoxicity triggered by TDP-43-depleted microglia. Taken together, our results reveal a previously unrecognized non-cell-autonomous mechanism in TDP-43-mediated neurodegeneration, identifying COX-2-PGE2 as the molecular events of microglia- but not astrocyte-initiated neurotoxicity and identifying celecoxib as a novel potential therapy for TDP-43-linked ALS and possibly other types of ALS.Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by the degeneration of motor neurons in the brain and spinal cord.1 Most cases of ALS are sporadic, but 10% are familial. Familial ALS cases are associated with mutations in genes such as Cu/Zn superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TARDBP) and, most recently discovered, C9orf72. Currently, most available information obtained from ALS research is based on the study of SOD1, but new studies focusing on TARDBP and C9orf72 have come to the forefront of ALS research.1, 2 The discovery of the central role of the protein TDP-43, encoded by TARDBP, in ALS was a breakthrough in ALS research.3, 4, 5 Although pathogenic mutations of TDP-43 are genetically rare, abnormal TDP-43 function is thought to be associated with the majority of ALS cases.1 TDP-43 was identified as a key component of the ubiquitin-positive inclusions in most ALS patients and also in other neurodegenerative diseases such as frontotemporal lobar degeneration,6, 7 Alzheimer''s disease (AD)8, 9 and Parkinson''s disease (PD).10, 11 TDP-43 is a multifunctional RNA binding protein, and loss-of-function of TDP-43 has been increasingly recognized as a key contributor in TDP-43-mediated pathogenesis.5, 12, 13, 14Neuroinflammation, a striking and common hallmark involved in many neurodegenerative diseases, including ALS, is characterized by extensive activation of glial cells including microglia, astrocytes and oligodendrocytes.15, 16 Although numerous studies have focused on the intrinsic properties of motor neurons in ALS, a large amount of evidence showed that glial cells, such as astrocytes and microglia, could have critical roles in SOD1-mediated motor neuron degeneration and ALS progression,17, 18, 19, 20, 21, 22 indicating the importance of non-cell-autonomous toxicity in SOD1-mediated ALS pathogenesis.Very interestingly, a vital insight of neuroinflammation research in ALS was generated by the evidence that both the mRNA and protein levels of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2) are upregulated in both transgenic mouse models and in human postmortem brain and spinal cord.23, 24, 25, 26, 27, 28, 29 The role of COX-2 neurotoxicity in ALS and other neurodegenerative disorders has been well explored.30, 31, 32 One of the key downstream products of COX-2, prostaglandin E2 (PGE2), can directly mediate COX-2 neurotoxicity both in vitro and in vivo.33, 34, 35, 36, 37 The levels of COX-2 expression and PGE2 production are controlled by multiple cell signaling pathways, including the mitogen-activated protein kinase (MAPK)/ERK pathway,38, 39, 40 and they have been found to be increased in neurodegenerative diseases including AD, PD and ALS.25, 28, 32, 41, 42, 43, 44, 45, 46 Importantly, COX-2 inhibitors such as celecoxib exhibited significant neuroprotective effects and prolonged survival or delayed disease onset in a SOD1-ALS transgenic mouse model through the downregulation of PGE2 release.28Most recent studies have tried to elucidate the role of glial cells in neurotoxicity using TDP-43-ALS models, which are considered to be helpful for better understanding the disease mechanisms.47, 48, 49, 50, 51 Although the contribution of glial cells to TDP-43-mediated motor neuron degeneration is now well supported, this model does not fully suggest an astrocyte-based non-cell autonomous mechanism. For example, recent studies have shown that TDP-43-mutant astrocytes do not affect the survival of motor neurons,50, 51 indicating a previously unrecognized non-cell autonomous TDP-43 proteinopathy that associates with cell types other than astrocytes.Given that the role of glial cell types other than astrocytes in TDP-43-mediated neuroinflammation is still not fully understood, we aim to compare the contribution of microglia and astrocytes to neurotoxicity in a TDP-43 loss-of-function model. Here, we show that TDP-43 has a dominant role in promoting COX-2-PGE2 production through the MAPK/ERK pathway in primary cultured microglia, but not in primary cultured astrocytes. Our study suggests that overproduction of PGE2 in microglia is a novel molecular mechanism underlying neurotoxicity in TDP-43-linked ALS. Moreover, our data identify celecoxib as a new potential effective treatment of TDP-43-linked ALS and possibly other types of ALS.  相似文献   

9.
10.
Tumor heterogeneity is in part determined by the existence of cancer stem cells (CSCs) and more differentiated tumor cells. CSCs are considered to be the tumorigenic root of cancers and suggested to be chemotherapy resistant. Here we exploited an assay that allowed us to measure chemotherapy-induced cell death in CSCs and differentiated tumor cells simultaneously. This confirmed that CSCs are selectively resistant to conventional chemotherapy, which we revealed is determined by decreased mitochondrial priming. In agreement, lowering the anti-apoptotic threshold using ABT-737 and WEHI-539 was sufficient to enhance chemotherapy efficacy, whereas ABT-199 failed to sensitize CSCs. Our data therefore point to a crucial role of BCLXL in protecting CSCs from chemotherapy and suggest that BH3 mimetics, in combination with chemotherapy, can be an efficient way to target chemotherapy-resistant CSCs.Colorectal cancer is the third most common cancer worldwide.1, 2 Patients with advanced stage colorectal cancer are routinely treated with 5-fluorouracil (5-FU), leucovorin and oxaliplatin (FOLFOX), or with 5-FU, leucovorin and irinotecan (FOLFIRI), often in combination with targeted agents such as anti-VEGF or anti-EGFR at metastatic disease.3, 4, 5, 6 Despite this intensive treatment, therapy is still insufficiently effective and chemotherapy resistance occurs frequently. Although still speculative, it has been suggested that unequal sensitivity to chemotherapy is due to an intratumoral heterogeneity that is orchestrated by cancer stem cells (CSCs) that can self-renew and give rise to more differentiated progeny.7, 8 When isolated from patients, CSCs efficiently form tumors upon xenotransplantation into mice which resemble the primary tumor from which they originated.9, 10, 11 In addition, many xenotransplantation studies have emphasized the importance of CSCs for tumor growth.9, 10, 11, 12 Colon CSCs were originally isolated from primary human colorectal tumor specimens using CD133 as cell surface marker and shown to be highly tumorigenic when compared with the non-CSCs population within a tumor.9, 10 Later, other cell surface markers as well as the activity of the Wnt pathway have been used to isolate colon CSCs from tumors.12, 13 Spheroid cultures have been established from human primary colorectal tumors that selectively enrich for the growth of colon CSCs,11, 12 although it is important to realize that these spheres also contain more differentiated tumor cells.12 In agreement, we have shown that the Wnt activity reporter that directs the expression of enhanced green fluorescent protein (TOP-GFP) allows for the separation of CSCs from more differentiated progeny in the spheroid cultures.12CSCs are suggested to be responsible for tumor recurrence after initial therapy, as they are considered to be selectively resistant to therapy.11, 14 Conventional chemotherapy induces, among others, DNA damage and subsequent activation of the mitochondrial cell death pathway, which is regulated by a balance between pro- and anti-apoptotic BCL2 family members.15 Upon activation of apoptosis, pro-apoptotic BH3 molecules are activated and these may perturb the balance in favor of apoptosis initiated by mitochondrial outer membrane polarization (MOMP), release of cytochrome c and subsequent activation of a caspase cascade.The apoptotic balance of cancer cells can be measured with the use of a functional assay called BH3 profiling.16 BH3 profiling is a method to determine the apoptotic ‘priming'' level of a cell by exposing mitochondria to standardized amounts of roughly 20-mer peptides derived from the alpha-helical BH3 domains of BH3-only proteins and determining the rate of mitochondrial depolarization. Using this approach, priming was measured in various cancers and compared with normal tissues.17, 18 In all cancer types tested, the mitochondrial priming correlated well with the observed clinical response to chemotherapy. That is, cancers that are highly primed are more chemosensitive, whereas chemoresistant tumor cells and normal tissues are poorly primed.17, 18 This suggests that increasing mitochondrial priming can potentially increase chemosensitivity, which can be achieved by directly inhibiting the anti-apoptotic BCL2 family members.18 To this end, small-molecule inhibitors, so-called BH3 mimetics, have been developed. ABT-737 and the highly related ABT-263 both inhibit BCL2, BCLXL and BCLW19, 20, 21 and were shown to be effective in killing cancer cells in vitro and in vivo21 with a preference for BCL2.19, 22 As BCL2 protein expression is often upregulated in hematopoietic cancers, it represents a promising target, which was supported by high efficacy of these BH3 mimetics in animal experiments.21 However, in vivo efficacy is limited due to thrombocytopenia, which relates to a dependence of platelets on BCLXL for survival.23, 24 To overcome this toxicity, a BCL2-specific compound, ABT-199, was developed.25 Souers et al.25 showed that inhibition of BCL2 using ABT-199 blocks tumor growth of acute lymphoblastic leukemia cells in xenografts. In addition to the single compound effects of ABT-199, combination with rituximab inhibited growth of non-Hodgkin''s lymphoma, mantle cell lymphoma and acute lymphoblastic leukemia tumor cells growth in vivo.25 Moreover, highly effective tumor lysis was observed in all three patients with chronic lymphocytic leukemia that were treated with ABT-199.25 More recently, a BCLXL-specific compound, WEHI-539, was discovered using high-throughput chemical screening.26As the apoptotic balance appears a useful target for the treatment of cancers and CSCs have been suggested to resist therapy selectively, we set out to analyze whether specifically colon CSCs are resistant to therapy and whether this is due to an enhanced anti-apoptotic threshold, specific to CSCs. To study chemosensitivity, we developed a robust single cell-based analysis in which we can measure apoptosis simultaneously in CSCs and their differentiated progeny. Utilizing this system we showed that colon CSCs and not their differentiated progeny are resistant to chemotherapeutic compounds and that this was due to the fact that these cells are less primed to mitochondrial death. Furthermore, inhibition of anti-apoptotic BCLXL molecule with either ABT-737 or WEHI-539, but not ABT-199, breaks this resistance and sensitizes the CSCs to chemotherapy.  相似文献   

11.
A 5.5-y-old intact male cynomolgus macaque (Macaca fasicularis) presented with inappetence and weight loss 57 d after heterotopic heart and thymus transplantation while receiving an immunosuppressant regimen consisting of tacrolimus, mycophenolate mofetil, and methylprednisolone to prevent graft rejection. A serum chemistry panel, a glycated hemoglobin test, and urinalysis performed at presentation revealed elevated blood glucose and glycated hemoglobin (HbA1c) levels (727 mg/dL and 10.1%, respectively), glucosuria, and ketonuria. Diabetes mellitus was diagnosed, and insulin therapy was initiated immediately. The macaque was weaned off the immunosuppressive therapy as his clinical condition improved and stabilized. Approximately 74 d after discontinuation of the immunosuppressants, the blood glucose normalized, and the insulin therapy was stopped. The animal''s blood glucose and HbA1c values have remained within normal limits since this time. We suspect that our macaque experienced new-onset diabetes mellitus after transplantation, a condition that is commonly observed in human transplant patients but not well described in NHP. To our knowledge, this report represents the first documented case of new-onset diabetes mellitus after transplantation in a cynomolgus macaque.Abbreviations: NODAT, new-onset diabetes mellitus after transplantationNew-onset diabetes mellitus after transplantation (NODAT, formerly known as posttransplantation diabetes mellitus) is an important consequence of solid-organ transplantation in humans.7-10,15,17,19,21,25-28,31,33,34,37,38,42 A variety of risk factors have been identified including increased age, sex (male prevalence), elevated pretransplant fasting plasma glucose levels, and immunosuppressive therapy.7-10,15,17,19,21,25-28,31,33,34,37,38,42 The relationship between calcineurin inhibitors, such as tacrolimus and cyclosporin, and the development of NODAT is widely recognized in human medicine.7-10,15,17,19,21,25-28,31,33,34,37,38,42 Cynomolgus macaques (Macaca fasicularis) are a commonly used NHP model in organ transplantation research. Cases of natural and induced diabetes of cynomolgus monkeys have been described in the literature;14,43,45 however, NODAT in a macaque model of solid-organ transplantation has not been reported previously to our knowledge.  相似文献   

12.
To grant faithful chromosome segregation, the spindle assembly checkpoint (SAC) delays mitosis exit until mitotic spindle assembly. An exceedingly prolonged mitosis, however, promotes cell death and by this means antimicrotubule cancer drugs (AMCDs), that impair spindle assembly, are believed to kill cancer cells. Despite malformed spindles, cancer cells can, however, slip through SAC, exit mitosis prematurely and resist killing. We show here that the Fcp1 phosphatase and Wee1, the cyclin B-dependent kinase (cdk) 1 inhibitory kinase, play a role for this slippage/resistance mechanism. During AMCD-induced prolonged mitosis, Fcp1-dependent Wee1 reactivation lowered cdk1 activity, weakening SAC-dependent mitotic arrest and leading to mitosis exit and survival. Conversely, genetic or chemical Wee1 inhibition strengthened the SAC, further extended mitosis, reduced antiapoptotic protein Mcl-1 to a minimum and potentiated killing in several, AMCD-treated cancer cell lines and primary human adult lymphoblastic leukemia cells. Thus, the Fcp1-Wee1-Cdk1 (FWC) axis affects SAC robustness and AMCDs sensitivity.The spindle assembly checkpoint (SAC) delays mitosis exit to coordinate anaphase onset with spindle assembly. To this end, SAC inhibits the ubiquitin ligase Anaphase-Promoting Complex/Cyclosome (APC/C) to prevent degradation of the anaphase inhibitor securin and cyclin B, the major mitotic cyclin B-dependent kinase 1 (cdk1) activator, until spindle assembly.1 However, by yet poorly understood mechanisms, exceedingly prolonging mitosis translates into cell death induction.2, 3, 4, 5, 6, 7 Although mechanistic details are still missing on how activation of cell death pathways is linked to mitosis duration, prolongation of mitosis appears crucial for the ability of antimicrotubule cancer drugs (AMCDs) to kill cancer cells.2, 3, 4, 5, 6, 7 These drugs, targeting microtubules, impede mitotic spindle assembly and delay mitosis exit by chronically activating the SAC. Use of these drugs is limited, however, by toxicity and resistance. A major mechanism for resistance is believed to reside in the ability of cancer cells to slip through the SAC and exit mitosis prematurely despite malformed spindles, thus resisting killing by limiting mitosis duration.2, 3, 4, 5, 6, 7 Under the AMCD treatment, cells either die in mitosis or exit mitosis, slipping through the SAC, without or abnormally dividing.2, 3, 4 Cells that exit mitosis either die at later stages or survive and stop dividing or proliferate, giving rise to resistance.2, 3, 4 Apart from a role for p53, what dictates cell fate is still unknown; however, it appears that the longer mitosis is protracted, the higher the chances for cell death pathway activation are.2, 3, 4, 5, 6, 7Although SAC is not required per se for killing,6 preventing SAC adaptation should improve the efficacy of AMCD by increasing mitosis duration.2, 3, 4, 5, 6, 7 Therefore, further understanding of the mechanisms by which cells override SAC may help to improve the current AMCD therapy. Several kinases are known to activate and sustain SAC, and cdk1 itself appears to be of primary relevance.1, 8, 9 By studying mitosis exit and SAC resolution, we recently reported a role for the Fcp1 phosphatase to bring about cdk1 inactivation.10, 11 Among Fcp1 targets, we identified cyclin degradation pathway components, such as Cdc20, an APC/C co-activator, USP44, a deubiquitinating enzyme, and Wee1.10, 11 Wee1 is a crucial kinase that controls the G2 phase by performing inhibitory phosphorylation of cdk1 at tyr-15 (Y15-cdk1). Wee1 is also in a feedback relationship with cdk1 itself that, in turn, can phosphorylate and inhibit Wee1 in an autoamplification loop to promote the G2-to-M phase transition.12 At mitosis exit, Fcp1 dephosphorylated Wee1 at threonine 239, a cdk1-dependent inhibitory phosphorylation, to dampen down the cdk1 autoamplification loop, and Cdc20 and USP44, to promote APC/C-dependent cyclin B degradation.10, 11, 12 In this study we analysed the Fcp1 relevance in SAC adaptation and AMCD sensitivity.  相似文献   

13.
Mitophagy mediates clearance of dysfunctional mitochondria, and represents one type of mitochondrial quality control, which is essential for optimal mitochondrial bioenergetics. p32, a chaperone-like protein, is crucial for maintaining mitochondrial membrane potential and oxidative phosphorylation. However, the relationship between p32 and mitochondrial homeostasis has not been addressed. Here, we identified p32 as a key regulator of ULK1 stability by forming complex with ULK1. p32 depletion potentiated K48-linked but impaired K63-linked polyubiquitination of ULK1, leading to proteasome-mediated degradation of ULK1. As a result, silencing p32 profoundly impaired starvation-induced autophagic flux and the clearance of damaged mitochondria caused by mitochondrial uncoupler. Importantly, restoring ULK1 expression in p32-depleted cells rescued autophagy and mitophagy defects. Our findings highlight a cytoprotective role of p32 under starvation conditions by regulating ULK1 stability, and uncover a crucial role of the p32–ULK1-autophagy axis in coordinating stress response, cell survival and mitochondrial homeostasis.Mitophagy is a selective form of autophagy by which mitochondria are degraded in autolysosomes. p32 is a critical regulator of mitochondrial bioenergetics.1 It primarily localizes to the mitochondrial matrix, but has also been reported to be present in other subcellular locations.2, 3, 4, 5 Many human tumors exhibit higher p32 expression levels than their nonmalignant counterpart tissues.6, 7, 8, 9 Depleting p32 in human cancer cells strongly shifts their metabolism from oxidative phosphorylation to glycolysis.1 Consistently, p32 knockout causes mid-gestation lethality of knockout embryos and defects in oxidative phosphorylation. Mouse embryonic fibroblasts (MEFs) generated from p32 knockout embryos exhibited impaired ATP production and reduced mitochondrial membrane potential, which is in agreement with the observation that p32 silencing leads to increased mitochondrial fragmentation.10, 11 Notably, p32 was found to form protein complex with a variety of molecules7, 12, 13 and has been suggested that it may act as a multifunctional chaperone protein.12, 13, 14ULK1 has a crucial role in mitophagy induction.15 Despite the pivotal role of ULK1 in mitochondrial clearance, little is known as how ULK1 itself is regulated. ULK1 is a relatively stable protein and is subject to proteasome-mediated degradation. Post-translational modifications including K63-linked ubiquitylation16, 17 and phosphorylation18, 19, 20 have been reported to modulate the rates of ULK1 turnover and kinase activity in different cellular contexts. Hsp90 and Cdc37 have been shown to regulate ULK1 stability and activity by forming complex with ULK1, which subsequently influences Atg13-mediated mitophagy.21 Here, we found p32 regulates ULK1 stability by forming protein complex with ULK1. The interaction between ULK1 and p32 is crucial for maintaining the steady-state levels and activity of ULK1. We further show that p32 ablation results in a defect in autophagy in EBSS-starved cells, and impairs clearance of dysfunctional mitochondria in cells exposed to mitochondrial uncoupler. Importantly, these autophagy and mitophagy defects can be restored by re-introducing ULK1 into p32-deficient cells, demonstrating ULK1 functions as a crucial downstream effector of p32.  相似文献   

14.
Necroptosis is a form of regulated necrotic cell death mediated by receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3. Necroptotic cell death contributes to the pathophysiology of several disorders involving tissue damage, including myocardial infarction, stroke and ischemia-reperfusion injury. However, no inhibitors of necroptosis are currently in clinical use. Here we performed a phenotypic screen for small-molecule inhibitors of tumor necrosis factor-alpha (TNF)-induced necroptosis in Fas-associated protein with death domain (FADD)-deficient Jurkat cells using a representative panel of Food and Drug Administration (FDA)-approved drugs. We identified two anti-cancer agents, ponatinib and pazopanib, as submicromolar inhibitors of necroptosis. Both compounds inhibited necroptotic cell death induced by various cell death receptor ligands in human cells, while not protecting from apoptosis. Ponatinib and pazopanib abrogated phosphorylation of mixed lineage kinase domain-like protein (MLKL) upon TNF-α-induced necroptosis, indicating that both agents target a component upstream of MLKL. An unbiased chemical proteomic approach determined the cellular target spectrum of ponatinib, revealing key members of the necroptosis signaling pathway. We validated RIPK1, RIPK3 and transforming growth factor-β-activated kinase 1 (TAK1) as novel, direct targets of ponatinib by using competitive binding, cellular thermal shift and recombinant kinase assays. Ponatinib inhibited both RIPK1 and RIPK3, while pazopanib preferentially targeted RIPK1. The identification of the FDA-approved drugs ponatinib and pazopanib as cellular inhibitors of necroptosis highlights them as potentially interesting for the treatment of pathologies caused or aggravated by necroptotic cell death.Programmed cell death has a crucial role in a variety of biological processes ranging from normal tissue development to diverse pathological conditions.1, 2 Necroptosis is a form of regulated cell death that has been shown to occur during pathogen infection or sterile injury-induced inflammation in conditions where apoptosis signaling is compromised.3, 4, 5, 6 Given that many viruses have developed strategies to circumvent apoptotic cell death, necroptosis constitutes an important, pro-inflammatory back-up mechanism that limits viral spread in vivo.7, 8, 9 In contrast, in the context of sterile inflammation, necroptotic cell death contributes to disease pathology, outlining potential benefits of therapeutic intervention.10 Necroptosis can be initiated by death receptors of the tumor necrosis factor (TNF) superfamily,11 Toll-like receptor 3 (TLR3),12 TLR4,13 DNA-dependent activator of IFN-regulatory factors14 or interferon receptors.15 Downstream signaling is subsequently conveyed via RIPK116 or TIR-domain-containing adapter-inducing interferon-β,8, 17 and converges on RIPK3-mediated13, 18, 19, 20 activation of MLKL.21 Phosphorylated MLKL triggers membrane rupture,22, 23, 24, 25, 26 releasing pro-inflammatory cellular contents to the extracellular space.27 Studies using the RIPK1 inhibitor necrostatin-1 (Nec-1) 28 or RIPK3-deficient mice have established a role for necroptosis in the pathophysiology of pancreatitis,19 artherosclerosis,29 retinal cell death,30 ischemic organ damage and ischemia-reperfusion injury in both the kidney31 and the heart.32 Moreover, allografts from RIPK3-deficient mice are better protected from rejection, suggesting necroptosis inhibition as a therapeutic option to improve transplant outcome.33 Besides Nec-1, several tool compounds inhibiting different pathway members have been described,12, 16, 21, 34, 35 however, no inhibitors of necroptosis are available for clinical use so far.2, 10 In this study we screened a library of FDA approved drugs for the precise purpose of identifying already existing and generally safe chemical agents that could be used as necroptosis inhibitors. We identified the two structurally distinct kinase inhibitors pazopanib and ponatinib as potent blockers of necroptosis targeting the key enzymes RIPK1/3.  相似文献   

15.
The role of calcium-mediated signaling has been extensively studied in plant responses to abiotic stress signals. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) constitute a complex signaling network acting in diverse plant stress responses. Osmotic stress imposed by soil salinity and drought is a major abiotic stress that impedes plant growth and development and involves calcium-signaling processes. In this study, we report the functional analysis of CIPK21, an Arabidopsis (Arabidopsis thaliana) CBL-interacting protein kinase, ubiquitously expressed in plant tissues and up-regulated under multiple abiotic stress conditions. The growth of a loss-of-function mutant of CIPK21, cipk21, was hypersensitive to high salt and osmotic stress conditions. The calcium sensors CBL2 and CBL3 were found to physically interact with CIPK21 and target this kinase to the tonoplast. Moreover, preferential localization of CIPK21 to the tonoplast was detected under salt stress condition when coexpressed with CBL2 or CBL3. These findings suggest that CIPK21 mediates responses to salt stress condition in Arabidopsis, at least in part, by regulating ion and water homeostasis across the vacuolar membranes.Drought and salinity cause osmotic stress in plants and severely affect crop productivity throughout the world. Plants respond to osmotic stress by changing a number of cellular processes (Xiong et al., 1999; Xiong and Zhu, 2002; Bartels and Sunkar, 2005; Boudsocq and Lauriére, 2005). Some of these changes include activation of stress-responsive genes, regulation of membrane transport at both plasma membrane (PM) and vacuolar membrane (tonoplast) to maintain water and ionic homeostasis, and metabolic changes to produce compatible osmolytes such as Pro (Stewart and Lee, 1974; Krasensky and Jonak, 2012). It has been well established that a specific calcium (Ca2+) signature is generated in response to a particular environmental stimulus (Trewavas and Malhó, 1998; Scrase-Field and Knight, 2003; Luan, 2009; Kudla et al., 2010). The Ca2+ changes are primarily perceived by several Ca2+ sensors such as calmodulin (Reddy, 2001; Luan et al., 2002), Ca2+-dependent protein kinases (Harper and Harmon, 2005), calcineurin B-like proteins (CBLs; Luan et al., 2002; Batistič and Kudla, 2004; Pandey, 2008; Luan, 2009; Sanyal et al., 2015), and other Ca2+-binding proteins (Reddy, 2001; Shao et al., 2008) to initiate various cellular responses.Plant CBL-type Ca2+ sensors interact with and activate CBL-interacting protein kinases (CIPKs) that phosphorylate downstream components to transduce Ca2+ signals (Liu et al., 2000; Luan et al., 2002; Batistič and Kudla, 2004; Luan, 2009). In several plant species, multiple members have been identified in the CBL and CIPK family (Luan et al., 2002; Kolukisaoglu et al., 2004; Pandey, 2008; Batistič and Kudla, 2009; Weinl and Kudla, 2009; Pandey et al., 2014). Involvement of specific CBL-CIPK pair to decode a particular type of signal entails the alternative and selective complex formation leading to stimulus-response coupling (D’Angelo et al., 2006; Batistič et al., 2010).Several CBL and CIPK family members have been implicated in plant responses to drought, salinity, and osmotic stress based on genetic analysis of Arabidopsis (Arabidopsis thaliana) mutants (Zhu, 2002; Cheong et al., 2003, 2007; Kim et al., 2003; Pandey et al., 2004, 2008; D’Angelo et al., 2006; Qin et al., 2008; Tripathi et al., 2009; Held et al., 2011; Tang et al., 2012; Drerup et al., 2013; Eckert et al., 2014). A few CIPKs have also been functionally characterized by gain-of-function approach in crop plants such as rice (Oryza sativa), pea (Pisum sativum), and maize (Zea mays) and were found to be involved in osmotic stress responses (Mahajan et al., 2006; Xiang et al., 2007; Yang et al., 2008; Tripathi et al., 2009; Zhao et al., 2009; Cuéllar et al., 2010).In this report, we examined the role of the Arabidopsis CIPK21 gene in osmotic stress response by reverse genetic analysis. The loss-of-function mutant plants became hypersensitive to salt and mannitol stress conditions, suggesting that CIPK21 is involved in the regulation of osmotic stress response in Arabidopsis. These findings are further supported by an enhanced tonoplast targeting of the cytoplasmic CIPK21 through interaction with the vacuolar Ca2+ sensors CBL2 and CBL3 under salt stress condition.  相似文献   

16.
Neuropeptides induce signal transduction across the plasma membrane by acting through cell-surface receptors. The dynorphins, endogenous ligands for opioid receptors, are an exception; they also produce non-receptor-mediated effects causing pain and neurodegeneration. To understand non-receptor mechanism(s), we examined interactions of dynorphins with plasma membrane. Using fluorescence correlation spectroscopy and patch-clamp electrophysiology, we demonstrate that dynorphins accumulate in the membrane and induce a continuum of transient increases in ionic conductance. This phenomenon is consistent with stochastic formation of giant (~2.7 nm estimated diameter) unstructured non-ion-selective membrane pores. The potency of dynorphins to porate the plasma membrane correlates with their pathogenic effects in cellular and animal models. Membrane poration by dynorphins may represent a mechanism of pathological signal transduction. Persistent neuronal excitation by this mechanism may lead to profound neuropathological alterations, including neurodegeneration and cell death.Neuropeptides are the largest and most diverse family of neurotransmitters. They are released from axon terminals and dendrites, diffuse to pre- or postsynaptic neuronal structures and activate membrane G-protein-coupled receptors. Prodynorphin (PDYN)-derived opioid peptides including dynorphin A (Dyn A), dynorphin B (Dyn B) and big dynorphin (Big Dyn) consisting of Dyn A and Dyn B are endogenous ligands for the κ-opioid receptor. Acting through this receptor, dynorphins regulate processing of pain and emotions, memory acquisition and modulate reward induced by addictive substances.1, 2, 3, 4 Furthermore, dynorphins may produce robust cellular and behavioral effects that are not mediated through opioid receptors.5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 As evident from pharmacological, morphological, genetic and human neuropathological studies, these effects are generally pathological, including cell death, neurodegeneration, neurological dysfunctions and chronic pain. Big Dyn is the most active pathogenic peptide, which is about 10- to 100-fold more potent than Dyn A, whereas Dyn B does not produce non-opioid effects.16, 17, 22, 25 Big Dyn enhances activity of acid-sensing ion channel-1a (ASIC1a) and potentiates ASIC1a-mediated cell death in nanomolar concentrations30, 31 and, when administered intrathecally, induces characteristic nociceptive behavior at femtomolar doses.17, 22 Inhibition of endogenous Big Dyn degradation results in pathological pain, whereas prodynorphin (Pdyn) knockout mice do not maintain neuropathic pain.22, 32 Big Dyn differs from its constituents Dyn A and Dyn B in its unique pattern of non-opioid memory-enhancing, locomotor- and anxiolytic-like effects.25Pathological role of dynorphins is emphasized by the identification of PDYN missense mutations that cause profound neurodegeneration in the human brain underlying the SCA23 (spinocerebellar ataxia type 23), a very rare dominantly inherited neurodegenerative disorder.27, 33 Most PDYN mutations are located in the Big Dyn domain, demonstrating its critical role in neurodegeneration. PDYN mutations result in marked elevation in dynorphin levels and increase in its pathogenic non-opioid activity.27, 34 Dominant-negative pathogenic effects of dynorphins are not produced through opioid receptors.ASIC1a, glutamate NMDA (N-methyl-d-aspartate) and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)/kainate ion channels, and melanocortin and bradykinin B2 receptors have all been implicated as non-opioid dynorphin targets.5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 30, 31, 35, 36 Multiplicity of these targets and their association with the cellular membrane suggest that their activation is a secondary event triggered by a primary interaction of dynorphins with the membrane. Dynorphins are among the most basic neuropeptides.37, 38 The basic nature is also a general property of anti-microbial peptides (AMPs) and amyloid peptides that act by inducing membrane perturbations, altering membrane curvature and causing pore formation that disrupts membrane-associated processes including ion fluxes across the membrane.39 The similarity between dynorphins and these two peptide groups in overall charge and size suggests a similar mode of their interactions with membranes.In this study, we dissect the interactions of dynorphins with the cell membrane, the primary event in their non-receptor actions. Using fluorescence imaging, correlation spectroscopy and patch-clamp techniques, we demonstrate that dynorphin peptides accumulate in the plasma membrane in live cells and cause a profound transient increase in cell membrane conductance. Membrane poration by endogenous neuropeptides may represent a novel mechanism of signal transduction in the brain. This mechanism may underlie effects of dynorphins under pathological conditions including chronic pain and tissue injury.  相似文献   

17.
18.
In the central nervous system (CNS), hyperglycemia leads to neuronal damage and cognitive decline. Recent research has focused on revealing alterations in the brain in hyperglycemia and finding therapeutic solutions for alleviating the hyperglycemia-induced cognitive dysfunction. Adiponectin is a protein hormone with a major regulatory role in diabetes and obesity; however, its role in the CNS has not been studied yet. Although the presence of adiponectin receptors has been reported in the CNS, adiponectin receptor-mediated signaling in the CNS has not been investigated. In the present study, we investigated adiponectin receptor (AdipoR)-mediated signaling in vivo using a high-fat diet and in vitro using neural stem cells (NSCs). We showed that AdipoR1 protects cell damage and synaptic dysfunction in the mouse brain in hyperglycemia. At high glucose concentrations in vitro, AdipoR1 regulated the survival of NSCs through the p53/p21 pathway and the proliferation- and differentiation-related factors of NSCs via tailless (TLX). Hence, we suggest that further investigations are necessary to understand the cerebral AdipoR1-mediated signaling in hyperglycemic conditions, because the modulation of AdipoR1 might alleviate hyperglycemia-induced neuropathogenesis.Adiponectin secreted by the adipose tissue1, 2 exists in either a full-length or globular form.3, 4, 5, 6 Adiponectin can cross the blood–brain barrier, and various forms of adiponectin are found in the cerebrospinal fluid.7, 8, 9, 10, 11 Adiponectin exerts its effect by binding to the adiponectin receptor 1 (AdipoR1) and adiponectin receptor 2 (AdipoR2)12, 13 that have different affinities for the various circulating adiponectins.12, 14, 15, 16, 17 Several studies reported that both receptor subtypes are expressed in the central nervous system (CNS).7, 12, 18 As adiponectin modulates insulin sensitivity and inflammation,19 its deficiency induces insulin resistance and glucose intolerance in animals fed a high-fat diet (HFD).19, 20, 21 In addition, adiponectin can ameliorate the glucose homeostasis and increase insulin sensitivity.22, 23, 24 Adiponectin, which is the most well-known adipokine, acts mainly as an anti-inflammatory regulator,25, 26 and is associated with the onset of neurological disorders.27 In addition, a recent study reported that adiponectin promotes the proliferation of hippocampal neural stem cells (NSCs).28 Considering that adiponectin acts by binding to the adiponectin receptors, investigation of the adiponectin receptor-mediated signaling in the brain is crucial to understand the cerebral effects of adiponectin and the underlying cellular mechanisms.The prevalence of type II diabetes mellitus (DM2) and Alzheimer''s disease increases with aging.29 According to a cross-sectional study, in people with DM2, the risk of dementia is 2.5 times higher than that in the normal population.30, 31 A study performed between 1980 and 2002 suggested that an elevated blood glucose level is associated with a greater risk for dementia in elderly patients with DM2.32 In addition, according to a 9-year-long longitudinal cohort study, the risk of developing Alzheimer''s disease was 65% higher in people with diabetes than in control subjects.33 A community-based cohort study also reported that higher plasma glucose concentrations are associated with an increased risk for dementia, because the higher glucose level has detrimental effects on the brain.31 High blood glucose level causes mitochondria-dependent apoptosis,34, 35, 36 and aggravates diverse neurological functions.37, 38 Inflammation and oxidative stress, which are commonly observed in people with diabetes, inhibit neurogenesis.39, 40, 41 Similarly, neurogenesis is decreased in mice and rats with genetically induced type I diabetes.42, 43 In addition, diabetic rodents have a decreased proliferation rate of neural progenitors.43, 44 Furthermore, several studies suggested that an HFD leads to neuroinflammation, the impairment of synaptic plasticity, and cognitive decline.45, 46Here, we investigated whether AdipoR1-mediated signaling is associated with cell death in the brain of mice on a HFD, and whether high glucose level modifies the proliferation and differentiation capacity of NSCs in vitro. Our study provides novel findings about the role of AdipoR1-mediated signaling in hyperglycemia-induced neuropathogenesis.  相似文献   

19.
Intrinsic apoptosis involves BH3-only protein activation of Bax/Bak-mediated mitochondrial outer membrane permeabilization (MOMP). Consequently, cytochrome c is released from the mitochondria to activate caspases, and Smac (second mitochondria-derived activator of caspases) to inhibit XIAP-mediated caspase suppression. Dysfunctional mitochondria can be targeted for lysosomal degradation via autophagy (mitophagy), or directly through mitochondria-derived vesicle transport. However, the extent of autophagy and lysosomal interactions with apoptotic mitochondria remains largely unknown. We describe here a novel pathway of endolysosomal processing of mitochondria, activated in response to canonical BH3-only proteins and mitochondrial depolarization. We report that expression of canonical BH3-only proteins, tBid, BimEL, Bik, Bad, and mitophagy receptor mutants of atypical BH3-only proteins, Bnip3 and Bnip3L/Nix, leads to prominent relocalization of endolysosomes into inner mitochondrial compartments, in a manner independent of mitophagy. As an upstream regulator, we identified the XIAP E3 ligase. In response to mitochondrial depolarization, XIAP actuates Bax-mediated MOMP, even in the absence of BH3-only protein signaling. Subsequently, in an E3 ligase-dependent manner, XIAP rapidly localizes inside all the mitochondria, and XIAP-mediated mitochondrial ubiquitylation catalyses interactions of Rab membrane targeting components Rabex-5 and Rep-1 (RFP-tagged Rab escort protein-1), and Rab5- and Rab7-positive endolysosomes, at and within mitochondrial membrane compartments. While XIAP-mediated MOMP permits delayed cytochrome c release, within the mitochondria XIAP selectively signals lysosome- and proteasome-associated degradation of its inhibitor Smac. These findings suggest a general mechanism to lower the mitochondrial apoptotic potential via intramitochondrial degradation of Smac.The intrinsic mitochondrial apoptotic pathway is required for efficient chemotherapeutic killing of cancer cells,1 and is initiated through BH3-only protein activation of Bax/Bak-mediated mitochondrial outer membrane permeabilization (MOMP). MOMP releases cytochrome c to activate effector caspases.2 Conversely, inhibitor of apoptosis protein (IAP) family members suppress initiator and effector caspases via direct binding and E3 ligase activities.3, 4, 5 Consequently, MOMP-induced release of Smac (second mitochondria-derived activator of caspases) from the mitochondria, to inhibit XIAP (X-chromosome-linked IAP)-mediated caspase suppression, can be required for apoptosis.6Autophagy, a lysosomal degradative mechanism undergoing extensive crosstalk with cell death and survival pathways,7 degrades damaged mitochondria in a process termed mitophagy.8, 9 Damaged mitochondria are targeted by lysosomal degradation through the recruitment of autophagy receptors to the outer mitochondrial membrane (OMM),8 or via delivery of mitochondrial-derived vesicles (MDVs) directly to the lysosome.10 The E3 ubiquitin ligase Parkin targets and ubiquitylates mitochondria, mediating both MDV degradation11 and autophagy receptor-dependent mitophagy.12, 13 Alternatively, Fundc114 and atypical BH3-only Nip family proteins Bnip3 and Bnip3L/Nix localize to the OMM and act as mitophagy receptors via their LC3-interacting region (LIR).15, 16, 17, 18 While targeting of damaged mitochondria suggests that mitophagy may counter apoptotic mitochondria, mitophagy occurs progressively over days,12, 14, 16, 17, 19 a rate that is likely insufficient to alter intracellular propagation of mitochondrial apoptosis, which can occur within minutes.20, 21 Indeed, Bnip3- and Fundc1-induced mitophagy have no direct effect on apoptosis,14, 18 and we determined that Bnip3-mediated mitophagy was cytoprotective if activated before apoptosis.17 While MDV delivery of mitochondria to lysosomes operates at a higher rate, minutes to hours,10 this process is regulated by Parkin and restricted to specific mitochondrial components.11 Overall, for most intrinsic apoptosis scenarios it remains unknown whether lysosomal processing of mitochondria influences their capacity to activate or enhance apoptosis.Here, we used high-resolution imaging to evaluate the behavior of apoptosis, autophagy, lysosomal and ubiquitylation pathways in response to canonical (tBid, BimEL, Bik, Bad) and atypical (Bnip3, Bnip3L/Nix) BH3-only protein expression. We report that, in parallel to intrinsic apoptosis signaling, canonical BH3-only proteins induce the recruitment of endolysosomal machinery, in the absence of mitophagy. We determined that mitochondrial depolarization rapidly translocates the caspase inhibitor XIAP to the mitochondria. There, XIAP actuates MOMP within all mitochondria, concomitant with ubiquitylation at the OMM and inside OMM-bound regions, and triggers ubiquitin-dependent recruitment of Rab5 and its binding partners, as well as late endosomes into the mitochondria. Consequently, in a manner dependent on lysosome- and proteasome-activities, XIAP degrades its inhibitor Smac. We propose that in response to bioenergetic stress, the functional integration between lysosomes and mitochondria, mediated by XIAP and independent of autophagy, offers a novel mechanism to modulate mitochondrial apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号