首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Network models of infectious disease epidemiology can potentially provide insight into how to tailor control strategies for specific regions, but only if the network adequately reflects the structure of the region's contact network. Typically, the network is produced by models that incorporate details about human interactions. Each detail added renders the models more complicated and more difficult to calibrate, but also more faithful to the actual contact network structure. We propose a statistical test to determine when sufficient detail has been added to the models and demonstrate its application to the models used to create a synthetic population and contact network for the USA.  相似文献   

2.
3.
4.
5.
One of the mantras of scientists working in the field of pharmacogenetics is 'the right dose for the right patient'. A recent article has gone someway towards demonstrating that this goal can be achieved using genetic approaches. It is one of the first reports to show that a specific polymorphism can predict the maximum tolerated dose of two anti-epileptic drugs. However, further studies are necessary to validate these observations.  相似文献   

6.

Background

The ‘gynodioecy–dioecy pathway’ is considered to be one of the most important evolutionary routes from hermaphroditism to separate sexes (dioecy). Despite a large accumulation of evidence for female seed fertility advantages in gynodioecious species (females and hermaphrodites coexist) in support of the first step in the gynodioecy–dioecy pathway, we still have very little evidence for the second step, i.e. the transition from gynodioecy to dioecy.

Scope

We review the literature to evaluate whether basic predictions by theory are supported. To establish whether females'' seed fertility advantage and frequencies are sufficient to favour the invasion of males, we review these for species along the gynodioecy–dioecy pathway published in the last 5 years. We then review the empirical evidence for predictions deriving from the second step, i.e. hermaphrodites'' male fertility increases with female frequency, selection favours greater male fertility in hermaphrodites in gynodioecious species, and, where males and hermaphrodites coexist with females (subdioecy), males have greater male fertility than hermaphrodites. We review how genetic control and certain ecological features (pollen limitation, selfing, plasticity in sex expression and antagonists) influence the trajectory of a population along the gynodioecy–dioecy pathway.

Conclusions

Females tend to have greater seed fertility advantages over hermaphrodites where the two coexist, and this advantage is positively correlated with female frequency across species, as predicted by theory. A limited number of studies in subdioecious species have demonstrated that males have an advantage over hermaphrodites, as also predicted by theory. However, less evidence exists for phenotypic selection to increase male traits of hermaphrodites or for increasing male function of hermaphrodites in populations with high female frequency. A few key case studies underline the importance of examining multiple components of male fertility and the roles of pollen limitation, selfing and plasticity, when evaluating advantages. We conclude that we do not yet have a full understanding of the transition from gynodioecy to dioecy.  相似文献   

7.
8.
The generation and targeting of appropriate numbers and types of neurons to where they are needed in the brain is essential for the establishment, maintenance and modification of neural circuitry. This review aims to summarize the patterns, mechanisms and functional significance of neuronal migration in the postnatal brain, with an emphasis on the migratory events that persist in the mature brain.  相似文献   

9.
10.
11.
For more than 30 years the only genetic factor associated with susceptibility to multiple sclerosis (MS) was the human leukocyte antigen (HLA) region. Recent advancements in genotyping platforms and the development of more effective statistical methods resulted in the identification of 16 more genes by genome-wide association studies (GWAS) in the last three years alone. While the effect of each of these genes is modest compared to that of HLA, this list is expected to grow significantly in the near future, thus defining a complex landscape in which susceptibility may be determined by a combination of allelic variants in different pathways according to ethnic background, disease sub-type, and specific environmental triggers. A considerable overlap of susceptibility genes among multiple autoimmune diseases is becoming evident and integration of these genetic variants with our current knowledge of affected biological pathways will greatly improve our understanding of mechanisms of general autoimmunity and of tissue specificity.  相似文献   

12.
Grove EA 《Neuron》2005,48(4):522-524
Normal brain function requires the development of precise connections between thalamus and cerebral cortex. In this issue of Neuron, Cang et al. and Tori and Levitt argue that EphA/ephrin-A signaling in the target tissue guides sensory thalamic axons to the correct cortical area, and sensory cortical axons to precise thalamic targets. Although EphA/ephrin-A signaling organizes sensory maps within areas, and thalamocortical axons in the internal capsule, both papers argue that each developmental event is dissociable from the others.  相似文献   

13.
In biomedical research, one key stage of translating basic science knowledge to clinical practice is the reconciliation of phenotypes employed for laboratory animal studies with those important for the clinical condition. Alcohol dependence (AD) is a prototypic complex genetic trait. There is a long history of behaviour-genetic studies of AD in both human subjects and various genetic animal models. This review assesses the state of the art in our understanding of the genetic contributions to AD. In particular, it primarily focuses on the phenotypes studied in mouse genetic animal models, comparing them to the aspects of the human condition they are intended to target. It identifies several features of AD where genetic animal models have been particularly useful, and tries to identify understudied areas where there is good promise for further genetic animal model work.  相似文献   

14.
15.
16.
17.
Devising a pathway for hyaluronan catabolism: are we there yet?   总被引:9,自引:0,他引:9  
Stern R 《Glycobiology》2003,13(12):105R-115R
Hyaluronan is a negatively charged, high molecular weight glycosaminoglycan found predominantly in the extracellular matrix. Intracellular locations for hyaluronan have also been documented in cytoplasm, nucleus, and nucleolus. The polymer has an extraordinarily high rate of turnover in vertebrate tissues. The focus here is to formulate a metabolic pathway for hyaluronan degradation using all available data, including the recently acquired information on the hyaluronidase gene family. Such a catabolic scheme has defied explication up to now. In somatic tissues, stepwise processing occurs, from the extracellular high molecular weight space filling, antiangiogenic approximately 107-kDa polymer, to intermediate sized highly angiogenic, inflammatory, and immune-stimulating fragments, and ultimately to tetrasaccharides that are antiapoptotic and potent inducers of heat-shock proteins. It is proposed that the high molecular weight extracellular polymer is tethered to the cell surface by the combined efforts of hyaluronan receptors and hyaluronidase-2 (Hyal-2). The hyaluronan is cleaved to a 20-kDa intermediate-sized fragment, the limit product of Hyal-2 digestion. These fragments are delivered to endosomal- and ultimately lysosomal-like structures. Further catabolism occurs there by Hyal-1, coordinated with the activity of two lysosomal beta-exoglycosidases, beta-glucuronidase and beta-N-acetyl-glucosaminidase. A membrane-associated mini-organelle is postulated, the hyaluronasome, in which coordinated synthetic and catabolic enzyme reactions occur. The hyaluronasome can respond to the physiological states of the cell by a series of membrane-bound and soluble hyaluronan-associated receptors, binding proteins, and cofactors that trigger enzymatic events and signal transduction pathways. These in turn can be modulated by the amounts and sizes of the hyaluronan polysaccharides generated in the catabolic cascade. Most of these highly dynamic interactions remain to be determined. It is also proposed that malignant cells can commandeer some of these interactions for facilitating tumor growth and spread.  相似文献   

18.
The last 50 years of research into infections in Australia and New Zealand caused by larvae of the sheep blowfly, Lucilia cuprina, have significantly advanced our understanding of this blowfly and its primary host, the sheep. However, apart from some highly effective drugs it could be argued that no new control methodologies have resulted. This review addresses the major areas of sheep blowfly research over this period describing the significant outcomes and analyses, and what is still required to produce new commercial control technologies. The use of drugs against this fly species has been very successful but resistance has developed to almost all current compounds. Integrated pest management is becoming basic to control, especially in the absence of mulesing, and has clearly benefited from computer-aided technologies. Biological control has more challenges but natural and perhaps transformed biopesticides offer possibilities for the future. Experimental vaccines have been developed but require further analysis of antigens and formulations to boost protection. Genetic technologies may provide potential for long-term control through more rapid indirect selection of sheep less prone to flystrike. Finally in the future, genetic analysis of the fly may allow suppression and perhaps eradication of blowfly populations or identification of new and more viable targets for drug and vaccine intervention. Clearly all these areas of research offer potential new controls but commercial development is perhaps inhibited by the success of current chemical insecticides and certainly requires a significant additional injection of resources.  相似文献   

19.
There is a great deal of current interest in the use of commercial, automated programs for the prediction of mutagenicity and carcinogenicity based on chemical structure. However, the goal of accurate and reliable toxicity prediction for any chemical, based solely on structural information remains elusive. The toxicity prediction challenge is global in its objective, but limited in its solution, to within local domains of chemicals acting according to similar mechanisms of action in the biological system; to predict, we must be able to generalize based on chemical structure, but the biology fundamentally limits our ability to do so. Available commercial systems for mutagenicity and/or carcinogenicity prediction differ in their specifics, yet most fall in two major categories: (1) automated approaches that rely on the use of statistics for extracting correlations between structure and activity; and (2) knowledge-based expert systems that rely on a set of programmed rules distilled from available knowledge and human expert judgement. These two categories of approaches differ in the ways that they represent, process, and generalize chemical-biological activity information. An application of four commercial systems (TOPKAT, CASE/MULTI-CASE, DEREK, and OncoLogic) to mutagenicity and carcinogenicity prediction for a particular class of chemicals—the haloacetic acids (HAs)—is presented to highlight these differences. Some discussion is devoted to the issue of gauging the relative performance of commercial prediction systems, as well as to the role of prospective prediction exercises in this effort. And finally, an alternative approach that stops short of delivering a prediction to a user, involving structure-searching and data base exploration, is briefly considered.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号