首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
生物钟调控机制广泛存在于各种类型的细胞中,控制着细胞代谢的节律性变化.最近的研究发现,NAD+依赖的组蛋白去乙酰化酶Sirt1参与了生物钟调控过程,对维持正常的生物钟节律具有重要作用;另一方面,Sirt1的表达也受到生物钟系统的调控,呈现出昼夜节律性的表达.因此Sirt1能与生物钟进行相互调控,并且这一作用机制很可能广泛参与了不同类型细胞内的信号转导和能量代谢过程.本文总结了Sirt1与生物钟之间相互调控的一些研究进展,对它们之间的分子调控机制进行了概述.  相似文献   

8.
昼夜生物钟、负反馈调节与翻译后修饰   总被引:4,自引:0,他引:4  
罗樨  刘秋云 《生命的化学》2000,20(4):154-155
到目前为止 ,几乎在所有类型的生物中发现了昼夜生物钟。它们以约 2 4小时的周期控制着众多的分子、生理和行为过程[1、2 ] 。一个典型的例子是 ,我们的睡眠、清醒过程受昼夜钟控制 ,并受光、温对相位的重拨 ,以及地球 2 4小时昼夜的约束。不仅如此 ,我们的中心体温、某些激素分泌、生化过程均受生物钟控制。研究发现 ,对某些药物而言 ,一天中某个时候给药会得到最好的效率。乘飞机的时差反应、三班倒都是生物钟系统对环境表现的不适应 ,尽管昼夜钟的相位能即时得到调整 ,但生物钟控制的过程需要一定的时间才能得到适应。生物钟的普遍性、基…  相似文献   

9.
The circadian clock controls cell proliferation in a number of healthy tissues where cell renewal and regeneration are critical for normal physiological function. The intestine is an organ that typically undergoes regular cycles of cell division, differentiation and apoptosis as part of its role in digestion and nutrient absorption. The aim of this study was to explore circadian clock regulation of cell proliferation and cell cycle gene expression in the zebrafish intestine. Here we show that the zebrafish gut contains a directly light-entrainable circadian pacemaker, which regulates the daily timing of mitosis. Furthermore, this intestinal clock controls the expression of key cell cycle regulators, such as cdc2, wee1, p21, PCNA and cdk2, but only weakly influences cyclin B1, cyclin B2 and cyclin E1 expression. Interestingly, food deprivation has little impact on circadian clock function in the gut, but dramatically reduces cell proliferation, as well as cell cycle gene expression in this tissue. Timed feeding under constant dark conditions is able to drive rhythmic expression not only of circadian clock genes, but also of several cell cycle genes, suggesting that food can entrain the clock, as well as the cell cycle in the intestine. Rather surprisingly, we found that timed feeding is critical for high amplitude rhythms in cell cycle gene expression, even when zebrafish are maintained on a light-dark cycle. Together these results suggest that the intestinal clock integrates multiple rhythmic cues, including light and food, to function optimally.  相似文献   

10.
生物钟参与调控植物所有的生长阶段和发育活动。维持植物生物钟稳定的基因在这一过程中起着决定性作用。在克隆了ES1 (EARLY SENESCENCE 1)基因并证明该基因影响水稻(Oryza sativa)叶片失水的基础上, 以前期分离得到的水稻突变体es1-1作为研究对象, 对es1-1及其野生型(日本晴)苗期的地上部分和地下部分进行基因芯片分析。结果表明, es1-1主要的上调基因有42个, 下调基因有14个, 这些差异基因涉及24种代谢途径, 包括调节水稻生物钟的途径(4个)、甲烷代谢途径(3个)和苯基丙氨酸代谢途径(3个)等。进一步对水稻生物钟相关基因进行表达图谱分析, 结果表明, 与野生型相比, es1-1中生物钟相关基因出现了不同程度的差异表达。对es1-1和野生型进行冷胁迫处理, 结果表明es1-1表现更加耐冷, 且冷处理后生物钟基因在日本晴(NPB)和es1-1中都表现出不同程度的差异表达。此外, 在分蘖盛期接种白叶枯菌, 发现es1-1对特定的白叶枯菌具有一定的抗性。由此推测ES1基因参与调控水稻生物钟基因的表达以及响应水稻部分逆境胁迫, 这为更深入研究水稻生物钟基因提供了新线索。  相似文献   

11.
12.

Background

KaiC, a central clock protein in cyanobacteria, undergoes circadian oscillations between hypophosphorylated and hyperphosphorylated forms in vivo and in vitro. Structural analyses of KaiC crystals have identified threonine and serine residues in KaiC at three residues (T426, S431, and T432) as potential sites at which KaiC is phosphorylated; mutation of any of these three sites to alanine abolishes rhythmicity, revealing an essential clock role for each residue separately and for KaiC phosphorylation in general. Mass spectrometry studies confirmed that the S431 and T432 residues are key phosphorylation sites, however, the role of the threonine residue at position 426 was not clear from the mass spectrometry measurements.

Methodology and Principal Findings

Mutational approaches and biochemical analyses of KaiC support a key role for T426 in control of the KaiC phosphorylation status in vivo and in vitro and demonstrates that alternative amino acids at residue 426 dramatically affect KaiC''s properties in vivo and in vitro, especially genetic dominance/recessive relationships, KaiC dephosphorylation, and the formation of complexes of KaiC with KaiA and KaiB. These mutations alter key circadian properties, including period, amplitude, robustness, and temperature compensation. Crystallographic analyses indicate that the T426 site is phosphorylatible under some conditions, and in vitro phosphorylation assays of KaiC demonstrate labile phosphorylation of KaiC when the primary S431 and T432 sites are blocked.

Conclusions and Significance

T426 is a crucial site that regulates KaiC phosphorylation status in vivo and in vitro and these studies underscore the importance of KaiC phosphorylation status in the essential cyanobacterial circadian functions. The regulatory roles of these phosphorylation sites–including T426–within KaiC enhance our understanding of the molecular mechanism underlying circadian rhythm generation in cyanobacteria.  相似文献   

13.
The cyanobacterial circadian clock oscillator is composed of three clock proteins—KaiA, KaiB, and KaiC, and interactions among the three Kai proteins generate clock oscillation in vitro. However, the regulation of these interactions remains to be solved. Here, we demonstrated that ATP regulates formation of the KaiB-KaiC complex. In the absence of ATP, KaiC was monomeric (KaiC1mer) and formed a complex with KaiB. The addition of ATP plus Mg2+ (Mg-ATP), but not that of ATP only, to the KaiB-KaiC1mer complex induced the hexamerization of KaiC and the concomitant release of KaiB from the KaiB-KaiC1mer complex, indicating that Mg-ATP and KaiB compete each other for KaiC. In the presence of ATP and Mg2+ (Mg-ATP), KaiC became a homohexameric ATPase (KaiC6mer) with bound Mg-ATP and formed a complex with KaiB, but KaiC hexamerized by unhydrolyzable substrates such as ATP and Mg-ATP analogs, did not. A KaiC N-terminal domain protein, but not its C-terminal one, formed a complex with KaiB, indicating that KaiC associates with KaiB via its N-terminal domain. A mutant KaiC6mer lacking N-terminal ATPase activity did not form a complex with KaiB whereas a mutant lacking C-terminal ATPase activity did. Thus, the N-terminal domain of KaiC is responsible for formation of the KaiB-KaiC complex, and the hydrolysis of the ATP bound to N-terminal ATPase motifs on KaiC6mer is required for formation of the KaiB-KaiC6mer complex. KaiC6mer that had been hexamerized with ADP plus aluminum fluoride, which are considered to mimic ADP-Pi state, formed a complex with KaiB, suggesting that KaiB is able to associate with KaiC6mer with bound ADP-Pi.  相似文献   

14.
Hair follicles undergo recurrent cycling of controlled growth (anagen), regression (catagen), and relative quiescence (telogen) with a defined periodicity. Taking a genomics approach to study gene expression during synchronized mouse hair follicle cycling, we discovered that, in addition to circadian fluctuation, CLOCK–regulated genes are also modulated in phase with the hair growth cycle. During telogen and early anagen, circadian clock genes are prominently expressed in the secondary hair germ, which contains precursor cells for the growing follicle. Analysis of Clock and Bmal1 mutant mice reveals a delay in anagen progression, and the secondary hair germ cells show decreased levels of phosphorylated Rb and lack mitotic cells, suggesting that circadian clock genes regulate anagen progression via their effect on the cell cycle. Consistent with a block at the G1 phase of the cell cycle, we show a significant upregulation of p21 in Bmal1 mutant skin. While circadian clock mechanisms have been implicated in a variety of diurnal biological processes, our findings indicate that circadian clock genes may be utilized to modulate the progression of non-diurnal cyclic processes.  相似文献   

15.
《Biophysical journal》2020,118(12):2905-2913
The cyanobacterium Synechococcus elongatus possesses a circadian clock in the form of a group of proteins whose concentrations and phosphorylation states oscillate with daily periodicity under constant conditions. The circadian clock regulates the cell cycle such that the timing of the cell divisions is biased toward certain times during the circadian period, but the mechanism underlying this phenomenon remains unclear. Here, we propose a mechanism in which a protein limiting for division accumulates at a rate proportional to the cell volume growth and is modulated by the clock. This “modulated rate” model, in which the clock signal is integrated over time to affect division timing, differs fundamentally from the previously proposed “gating” concept, in which the clock is assumed to suppress divisions during a specific time window. We found that although both models can capture the single-cell statistics of division timing in S. elongatus, only the modulated rate model robustly places divisions away from darkness during changes in the environment. Moreover, within the framework of the modulated rate model, existing experiments on S. elongatus are consistent with the simple mechanism that division timing is regulated by the accumulation of a division limiting protein in a phase with genes whose activity peaks at dusk.  相似文献   

16.
17.
18.
《Current biology : CB》2014,24(11):1248-1255
  1. Download : Download high-res image (179KB)
  2. Download : Download full-size image
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号