首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Introduction

The use of the 5-alpha reductase inhibitors (5-ARIs) finasteride and dutasteride for prostate cancer prevention is still under debate. The FDA recently concluded that the increased prevalence of high-grade tumors among 5-ARI-treated patients must not be neglected, and they decided to disallow the use of 5-ARIs for prostate cancer prevention. This study was conducted to verify the effects of finasteride on prostate cell migration and invasion and the related enzymes/proteins in normal human and tumoral prostatic cell lines.

Materials and Methods

RWPE-1, LNCaP, PC3 and DU145 cells were cultivated to 60% confluence and exposed for different periods to either 10 µM or 50 µM finasteride that was diluted in culture medium. The conditioned media were collected and concentrated, and MMP2 and MMP9 activities and TIMP-1 and TIMP-2 protein expression were determined. Cell viability, migration and invasion were analyzed, and the remaining cell extracts were submitted to androgen receptor (AR) detection by western blotting techniques. Experiments were carried out in triplicate.

Results

Cell viability was not significantly affected by finasteride exposure. Finasteride significantly downregulated MMP2 and MMP9 activities in RWPE-1 and PC3 cells and MMP2 in DU145 cells. TIMP-2 expression in RWPE-1 cells was upregulated after exposure. The cell invasion of all four tested cell lines was inhibited by exposure to 50 µM of finasteride, and migration inhibition only occurred for RWPE-1 and LNCaP cells. AR was expressed by LNCaP, RWPE-1 and PC3 cells.

Conclusions

Although the debate on the higher incidence of high-grade prostate cancer among 5-ARI-treated patients remains, our findings indicate that finasteride may attenuate tumor aggressiveness and invasion, which could vary depending on the androgen responsiveness of a patient’s prostate cells.  相似文献   

2.
miR-145通过靶向吞噬和细胞活力蛋白1抑制乳腺癌细胞侵袭   总被引:1,自引:0,他引:1  
吞噬和细胞活力蛋白1(engulfment and cell motility protein 1,ELMO1)可以促进多种癌细胞的侵袭和转移,但ELMO1的表达是否受miRNA的调控鲜有研究。本研究旨在探讨miR-145与ELMO1表达的相关性,以及miR-145通过结合ELMO1的mRNA对乳腺癌侵袭的影响。通过TargetScan (http://www.targetscan.org/)靶基因预测软件预测与ELMO1的3′UTR结合的miR-145。荧光素酶结果证实两者互补结合。Transwell侵袭结果显示,miR-145组和siELMO1+miR-145组MDA-231乳腺癌细胞穿膜数较对照组分别降低40%(P<0.05)和79%(P<0.05)。siELMO1+miR-145组和siELMO1组细胞穿膜数则无显著差异(P>0.05)。结果提示,miR-145通过与ELMO1的mRNA结合抑制细胞侵袭。qRT-PCR显示,低侵袭的MCF-7乳腺癌细胞miR-145的表达量较高侵袭的MDA-435细胞高80%(P<0.05),较MDA-231乳腺癌细胞高75%(P<0.05),即miR-145与癌细胞侵袭能力呈负相关。Western印迹结果表明,miR-145组ELMO1表达量低于阴性对照组,miR-145 抑制组ELMO1表达量高于抑制剂NC组(P<0.05),证明miR-145抑制ELMO1的表达。qRT-PCR显示,过表达miR-145后ELMO1 mRNA含量与对照组无显著差异(P>0.05)。结果提示,miR-145对ELMO1的调控作用通过抑制其翻译实现。F-肌动蛋白聚合实验表明,miR-145组和阴性对照组于20 s和60 s时F-肌动蛋白聚合结果存在明显区别(P<0.05)。Western 印迹结果表明,miR-145组活化的Rac1表达量较阴性对照组降低60%(P<0.05),抑制剂NC组活化的Rac1较miR-145 抑制组降低55%(P<0.05);miR-145组磷酸化的整合素β1较对照组于15 min时降低42%(P<0.05),于30 min时降低31%(P<0.05)。由此得出的miR-145过表达显著促进乳腺癌细胞F-肌动蛋白聚合、Rac1活化和整合素β1磷酸化结论。综上所述,miR-145通过靶向ELMO1的 mRNA抑制ELMO1翻译,从而抑制乳腺癌的侵袭。  相似文献   

3.
吞噬和细胞活力蛋白1(engulfment and cell motility protein 1,ELMO1)可以促进多种癌细胞的侵袭和转移,但ELMO1的表达是否受miRNA的调控鲜有研究。本研究旨在探讨miR-145与ELMO1表达的相关性,以及miR-145通过结合ELMO1的mRNA对乳腺癌侵袭的影响。通过TargetScan (http://www.targetscan.org/)靶基因预测软件预测与ELMO1的3′UTR结合的miR-145。荧光素酶结果证实两者互补结合。Transwell侵袭结果显示,miR-145组和siELMO1+miR-145组MDA-231乳腺癌细胞穿膜数较对照组分别降低40%(P<0.05)和79%(P<0.05)。siELMO1+miR-145组和siELMO1组细胞穿膜数则无显著差异(P>0.05)。结果提示,miR-145通过与ELMO1的mRNA结合抑制细胞侵袭。qRT-PCR显示,低侵袭的MCF-7乳腺癌细胞miR-145的表达量较高侵袭的MDA-435细胞高80%(P<0.05),较MDA-231乳腺癌细胞高75%(P<0.05),即miR-145与癌细胞侵袭能力呈负相关。Western印迹结果表明,miR-145组ELMO1表达量低于阴性对照组,miR-145 抑制组ELMO1表达量高于抑制剂NC组(P<0.05),证明miR-145抑制ELMO1的表达。qRT-PCR显示,过表达miR-145后ELMO1 mRNA含量与对照组无显著差异(P>0.05)。结果提示,miR-145对ELMO1的调控作用通过抑制其翻译实现。F-肌动蛋白聚合实验表明,miR-145组和阴性对照组于20 s和60 s时F-肌动蛋白聚合结果存在明显区别(P<0.05)。Western 印迹结果表明,miR-145组活化的Rac1表达量较阴性对照组降低60%(P<0.05),抑制剂NC组活化的Rac1较miR-145 抑制组降低55%(P<0.05);miR-145组磷酸化的整合素β1较对照组于15 min时降低42%(P<0.05),于30 min时降低31%(P<0.05)。由此得出的miR-145过表达显著促进乳腺癌细胞F-肌动蛋白聚合、Rac1活化和整合素β1磷酸化结论。综上所述,miR-145通过靶向ELMO1的 mRNA抑制ELMO1翻译,从而抑制乳腺癌的侵袭。  相似文献   

4.
5.
6.
7.
膜联蛋白A2(annexin A2,ANXA2)可促进人结直肠癌的侵袭和迁移。然而,ANXA2在乳腺癌中的作用以及调节机制尚缺乏系统的研究。本研究旨在探讨微小RNA-206(microRNA-206,miR-206)如何调节ANXA2基因的表达,进而影响乳腺癌的侵袭。通过基因预测软件TargetScan (TargetScan V5.2)找到与ANXA2的3′UTR区互补结合的miR-206。运用实时定量 PCR(qRT-PCR)检测不同乳腺癌细胞系中miR-206的表达水平,发现低侵袭性乳腺癌MCF-7细胞株miR-206 表达量明显高于高侵袭性乳腺癌细胞株MDA-231、MDA-435和T47D。运用转染技术将 miR-206 质粒及miR-206 抑制剂转入乳腺癌细胞系MDA-231后,qRT-PCR检测转染后各组细胞中miR-206的表达情况,结果显示转染成功。用Western印迹法检测各组细胞中ANXA2的表达情况,结果显示,miR-206负向调控ANXA2蛋白的表达。 qRT-PCR显示,过表达乳腺癌细胞内miR-206 后,ANXA2 mRNA基本没有变化。结果显示,miR-206是在翻译水平上影响ANXA2蛋白的表达。荧光素酶实验显示:miR-206能特异性地与ANXA2 mRNA的3′UTR结合,抑制其荧光素酶活性。Transwell侵袭实验检测各组细胞的侵袭能力。结果显示,过表达miR-206后,乳腺癌细胞体外侵袭能力明显减弱。综上所述,miR-206 通过靶向结合癌基因ANXA2 mRNA的3′UTR区,抑制ANXA2蛋白翻译,从而抑制了乳腺癌细胞的侵袭。因此,miR-206有望成为抑制乳腺癌侵袭与治疗乳腺癌的新靶点和生物学标记物。  相似文献   

8.
肿瘤转移是导致肿瘤患者死亡的最主要原因,TGF-β超家族成员Nodal分子被证实参与肿瘤细胞的增殖和转移,因而基于Nodal信号为靶标开展抗肿瘤研究成为可能。该研究应用Western blot检测乳腺癌细胞株BT-549、T-47D、MCF-7、SK-BR-3和MDA—MB-231中的Nodal和基质金属蛋白酶-2(matrix metalloproteinase-2,MMP-2)的表达水平,发现它们在BT-549细胞中表达量最高。然后采用不同浓度_Nodal信号抑制剂SB.431542(1-50μmol/L)处理BT-549细胞48h,利用MTT法揭示20~50gmol/L的SB-431542抑制该细胞增殖。进一步利用细胞划痕和Transwell实验证明,10μmol/L的SB-431542可抑制乳腺癌细胞的迁移和侵袭。最后,通过明胶酶谱和Westernblot显示,10~30gmol/L的sB.431542可剂量依赖性地抑制MMP-2的表达和活性。上述结果说明,SB-431542通过阻断Nodal信号通路可效抑制乳腺癌细胞BT-549的增殖、迁移和侵袭,其作用机制可能与降低MMP-2的表达和活性有关。  相似文献   

9.
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality worldwide. Despite progress in diagnostics and treatment of HCC, its prognosis remains poor because the molecular mechanisms underlying hepatocarcinogenesis are not well understood. In the study, we focused on identifying the role of miRNAs in HCC progression. miRNA microarray was used to analyze the differentially expressed miRNAs, and the results were validated by qPCR. We found that the miR-150-5p expression is down-regulated in HCC tissues compared with pair non-tumor tissues. miR-150-5p expression is also decreased in metastatic cancer tissues compared with pair primary tissues, indicating that miR-150-5p may be involved in HCC metastasis. Functionally, miR-150-5p inhibition significantly promotes hepatoma cell migration and invasion, whereas miR-150-5p overexpression suppresses cancer cell migration and invasion in vitro. The matrix metalloproteinase 14 (MMP14) is identified as a new target gene of miR-150-5p. miR-150-5p markedly inhibits MMP14 expression in hepatoma cells, and miR-150-5p expression is negative correlation with MMP14 expression in vivo. More important, re-expression of MMP14 in hepatoma cells partially reverses the effect of miR-150-5p in inhibiting cell invasion.  相似文献   

10.
11.
目的 为了探究miR-375是否通过影响基质金属蛋白酶13(MMP13)的表达来调控骨肉瘤(osteosarcoma,OS)恶性特征。方法 用Lipofectamine 3000试剂盒将质粒、miRNA转染至骨肉瘤细胞和HEK293细胞中。实时定量聚合酶链反应(real-time quantitative PCR,RT-qPCR)检测OS患者和OS细胞中miR-375和MMP13的表达。蛋白质印迹法(Western blot)分析OS患者和OS细胞中MMP13蛋白的表达。双荧光素酶法分析miR-375与MMP13的靶向关系。伤口愈合和transwell实验分别分析OS细胞的迁移和侵袭。结果 OS组织中miR-375的表达低于正常组织。MMP13在OS组织中表达上调。在OS患者中,MMP13的表达与miR-375呈负相关。与转染miRNA对照的OS细胞相比,转染miR-375模拟物OS细胞的迁移和侵袭明显被抑制。MMP13能部分逆转miR-375对OS细胞迁移和侵袭的抑制作用。结论 在OS细胞中,过表达miR-375通过调控MMP13的表达抑制细胞的迁移和侵袭。  相似文献   

12.
13.
Triple-negative breast cancer (TNBC) is a massive threat to women''s health due to its high morbidity, malignancy, and the refractory, effective therapeutic option of TNBC is still deficient. The mitochondrial protein showed therapeutic potential on breast cancer, whereas the mechanism and downstream pathway of mitochondrial uncoupling protein 1 (UCP1) was not fully elucidated. We found that UCP1 was negatively regulated to the process of TNBC. Overexpressing UCP1 could inhibit the proliferation and metastasis of TNBC, meanwhile inducing the mitochondrial swelling and activation of mitophagy in vitro. Mitophagy activation was then assessed to elucidate whether it was downstream of UCP1 in TNBC metastasis. GSDME is the core of pyroptosis. We found that GSDME was activated in the TNBC cells when UCP1 levels were high. It regulates TNBC cell proliferation potential instead of the apoptosis process in vitro and in vivo. Our results suggested that UCP1 could inhibit the process of TNBC by activating mitophagy and pyroptosis. Impaired activation of mitophagy weakens the regulation effect of UCP1 on metastasis of TNBC, similar to the impairment of GSDME activation on the proliferation regulation of UCP1 on TNBC. UCP1 might be a novel therapeutic target of TNBC.  相似文献   

14.
MicroRNAs play key roles in tumor metastasis. Here, we describe the regulation and function of miR-218 in gastric cancer (GC) metastasis. miR-218 expression is decreased along with the expression of one of its host genes, Slit3 in metastatic GC. However, Robo1, one of several Slit receptors, is negatively regulated by miR-218, thus establishing a negative feedback loop. Decreased miR-218 levels eliminate Robo1 repression, which activates the Slit-Robo1 pathway through the interaction between Robo1 and Slit2, thus triggering tumor metastasis. The restoration of miR-218 suppresses Robo1 expression and inhibits tumor cell invasion and metastasis in vitro and in vivo. Taken together, our results describe a Slit-miR-218-Robo1 regulatory circuit whose disruption may contribute to GC metastasis. Targeting miR-218 may provide a strategy for blocking tumor metastasis.  相似文献   

15.
O-GlcNAcylation is a post-translational modification that regulates a broad range of nuclear and cytoplasmic proteins and is emerging as a key regulator of various biological processes. Previous studies have shown that increased levels of global O-GlcNAcylation and O-GlcNAc transferase (OGT) are linked to the incidence of metastasis in breast cancer patients, but the molecular basis behind this is not fully known. In this study, we have determined that the actin-binding protein cofilin is O-GlcNAcylated by OGT and mainly, if not completely, mediates OGT modulation of cell mobility. O-GlcNAcylation at Ser-108 of cofilin is required for its proper localization in invadopodia at the leading edge of breast cancer cells during three-dimensional cell invasion. Loss of O-GlcNAcylation of cofilin leads to destabilization of invadopodia and impairs cell invasion, although the actin-severing activity or lamellipodial localization is not affected. Our study provides insights into the mechanism of post-translational modification in fine-tuning the regulation of cofilin activity and suggests its important implications in cancer metastasis.  相似文献   

16.
MicroRNAs (miRNAs) are non-protein-coding sequences that can function as oncogenes or tumor suppressor genes. This study documents the tumor suppressor role of miR-1280 in bladder cancer. Quantitative real-time PCR and in situ hybridization analyses showed that miR-1280 is significantly down-regulated in bladder cancer cell lines and tumors compared to a non-malignant cell line or normal tissue samples. To decipher the functional significance of miR-1280 in bladder cancer, we ectopically over-expressed miR-1280 in bladder cancer cell lines. Over-expression of miR-1280 had antiproliferative effects and impaired colony formation of bladder cancer cell lines. FACS (fluorescence activated cell sorting) analysis revealed that re-expression of miR-1280 in bladder cancer cells induced G2-M cell cycle arrest and apoptosis. Our results demonstrate that miR-1280 inhibited migration and invasion of bladder cancer cell lines. miR-1280 also attenuated ROCK1 and RhoC protein expression. Luciferase reporter assays demonstrated that oncogene ROCK1 is a direct target of miR-1280 in bladder cancer. This study also indicates that miR-1280 may be of diagnostic and prognostic importance in bladder cancer. For instance, ROC analysis showed that miR-1280 expression can distinguish between malignant and normal bladder cancer cases and Kaplan-Meier analysis revealed that patients with miR-1280 high expression had higher overall survival compared to those with low miR-1280 expression. In conclusion, this is the first study to document that miR-1280 functions as a tumor suppressor by targeting oncogene ROCK1 to invasion/migration and metastasis. Various compounds are currently being used as ROCK1 inhibitors; therefore restoration of tumor suppressor miR-1280 might be therapeutically useful either alone or in combination with these compounds in the treatment of bladder cancer.  相似文献   

17.
C9orf86 which is a novel subfamily within the Ras superfamily of GTPases, is overexpressed in the majority of primary breast tumors. Few functional studies have focused on the C9orf86 protein; therefore, in this study, we explored the role of C9orf86 in breast carcinogenesis. In our study, we found that silencing of C9orf86 by siRNA in MCF-7 and SK-BR-3 cells resulted in suppressed cell proliferation as well as in vitro cell invasion capabilities. Moreover, knockdown of C9orf86 inhibited tumor growth in nude mice. Cell cycle and apoptotic assays showed that the anti-proliferative effect of C9orf86-siRNA was mediated by arresting cells in the G1 phase and promoting apoptosis. In addition, we found that patients with high levels of C9orf86 expression showed a significant trend towards worse survival compared to patients with low C9orf86 expression (P = 0.002). These results provide evidence that C9orf86 represents a novel and clinically useful biomarker for BC patients and plays an important role during the progression of BC.  相似文献   

18.
The receptor for advanced glycation end-products (RAGE) is an oncogenic trans-membranous receptor, which is overexpressed in multiple human cancers. However, the role of RAGE in gastric cancer is still elusive. In this study, we investigated the expression and molecular mechanisms of RAGE in gastric cancer cells. Forty cases of gastric cancer and corresponding adjacent non-cancerous tissues (ANCT) were collected, and the expression of RAGE was assessed using immunohistochemistry (IHC) in biopsy samples. Furthermore, RAGE signaling was blocked by constructed recombinant small hairpin RNA lentiviral vector (Lv-shRAGE) used to transfect into human gastric cancer SGC-7901 cells. The expression of AKT, proliferating cell nuclear antigen (PCNA) and matrix metallopeptidase-2 (MMP-2) was detected by Real-time PCR and Western blot assays. Cell proliferative activities and invasive capability were respectively determined by MTT and Transwell assays. Cell apoptosis and cycle distribution were analyzed by flow cytometry. As a consequence, RAGE was found highly expressed in cancer tissues compared with the ANCT (70.0% vs 45.0%, P=0.039), and correlated with lymph node metastases (P=0.026). Knockdown of RAGE reduced cell proliferation and invasion of gastric cancer with decreased expression of AKT, PCNA and MMP-2, and induced cell apoptosis and cycle arrest. Altogether, upregulation of RAGE expression is associated with lymph node metastases of gastric cancer, and blockade of RAGE signaling suppresses growth and invasion of gastric cancer cells through AKT pathway, suggesting that RAGE may represent a potential therapeutic target for this aggressive malignancy.Key words: RAGE, gastric cancer, growth, invasion  相似文献   

19.
藤茶活性成分二氢杨梅素(3, 5, 7, 3′, 4′, 5′-六羟基-2, 3-二氢黄酮醇,DMY)体外对几种癌细胞具有抗增殖作用,但机制尚未完全清楚.本文研究DMY对人高转移型乳腺癌MDA-MB-231细胞侵袭的影响,并探讨可能的机制.用MTT法检测DMY对MDA-MB-231细胞的增殖抑制率;明胶酶谱分析明胶酶活力;基质金属蛋白酶(MMP-2/-9)的基因表达水平和蛋白质表达水平分别利用实时定量PCR和Western blot分析进行检测.Transwell模型检测DMY对肿瘤细胞侵袭的影响.结果显示,DMY以剂量依赖方式抑制MDA-MB-231细胞的增殖,作用48 h的IC50为73.6 mg/L.DMY显著抑制明胶酶活性和MMP-2/-9蛋白表达,并抑制MMP-2/-9 的mRNA表达水平.此外,DMY不依赖细胞毒作用和以剂量依赖方式抑制MDA- MB-231细胞的侵袭.这些结果提示:DMY能显著抑制人乳腺癌MDA-MB-231细胞的侵袭和增殖, 其侵袭抑制的机制可能与其下调MMP-2/-9蛋白表达水平相关.  相似文献   

20.
Vascular endothelial growth factor receptor-1 (VEGFR-1 or Flt-1), a tyrosine kinase receptor, is highly expressed in breast cancer tissues, but near absent in normal breast tissue. While VEGFR-1 expression is associated with poor prognosis of women with breast cancer, it is not clear whether it is involved in the aggressiveness of breast cancer. Thus, the present study examined whether VEGFR-1 activation is associated with the invasiveness of breast cancer. We reported that VEGFR-1 was detected in 60.6% of invasive breast carcinoma tissue sections. In addition, VEGFR-1 expression positively correlated with lymph node-positive tumor status, low expression level of membranous E-cadherin, and high expression levels of N-cadherin and Snail. We found that PlGF-mediated VEGFR-1 activation promoted migration and invasion in MCF-7 (luminal) cells and led to morphologic and molecular changes of epithelial-mesenchymal transition (EMT). This was blocked by the down-regulation of VEGFR-1. Conversely, down-regulation of VEGFR-1 in MDA-MB-231 (post-EMT) cells resulted in morphologic and molecular changes similar to mesenchymal-epithelial transition (MET), and exogenous PlGF could not reverse these changes. Moreover, VEGFR-1 activation led to an increase in nuclear translocation of Snail. Finally, MDA-MB-231 cells expressing shRNA against VEGFR-1 significantly decreased the tumor growth and metastasis capacity in a xenograft model. Histological examination of VEGFR-1/shRNA-expressing tumor xenografts showed up-regulation of E-cadherin and down-regulation of N-cadherin and Snail. These findings suggest that VEGFR-1 may promote breast cancer progression and metastasis, and therapies that target VEGFR-1 may be beneficial in the treatment of breast cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号