首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The switch from vegetative to reproductive growth is extremely stable even if plants are only transiently exposed to environmental stimuli that trigger flowering. In the photoperiodic pathway, a mobile signal, florigen, encoded by FLOWERING LOCUS T (FT) in Arabidopsis thaliana, induces flowering. Because FT activity in leaves is not maintained after transient photoperiodic induction, the molecular basis for stable floral commitment is unclear. Here, we show that Polycomb-group (Pc-G) proteins, which mediate epigenetic gene regulation, maintain the identity of inflorescence and floral meristems after floral induction. Thus, plants with reduced Pc-G activity show a remarkable increase of cauline leaves under noninductive conditions and floral reversion when shifted from inductive to noninductive conditions. These phenotypes are almost completely suppressed by loss of FLOWERING LOCUS C (FLC) and SHORT VEGETATIVE PHASE, which both delay flowering and promote vegetative shoot identity. Upregulation of FLC in Pc-G mutants leads to a strong decrease of FT expression in inflorescences. We find that this activity of FT is needed to prevent floral reversion. Collectively, our results reveal that floral meristem identity is at least partially maintained by a daylength-independent role of FT whose expression is indirectly sustained by Pc-G activity.  相似文献   

2.
3.
Identification of the gene(s) responsible for flowering time in Arabidopsis has significant implications. We used the T-DNA insertion library of Arabidopsis thaliana to screen an early-flowering mutant that exhibits accelerated flowering under short-day conditions. AP22.65, a novel flowering-time gene in that species, was isolated and identified via genome-walking and bioinformatics analysis. The flowering time of AP22.65-complementing plants was similar to that of the Col-0 wild type (WT). Conversely, its overexpression delayed flowering. Consistent with this phenotype, expression of AP22.65 was decreased in the ap22.65-1 mutant, recovered in AP22.65-complementing plants, and increased in AP22.65-overexpressing plants. Compared with the WT, expression levels of critical genes in different flowering pathways, i.e., SPY, FLC, GI, CO, FT, and LFY, were down-regulated in loss-of-function mutants. Expression of AP22.65 was distributed in flowers, siliques, rosette leaves, and whole seedlings. Therefore, this gene may be a negative regulator of Arabidopsis flowering.  相似文献   

4.
5.
Transition from vegetative to reproductive development (flowering) is one of the most important decisions during the post-embryonic development of flowering plants. More than twenty loci are known to regulate this process inArabidopsis. Some of these flowering-time genes may act at the shoot apical meristem to regulate its competence to respond to floral inductive signals and floral evocation. Genetic and phenotypic analyses of mutants suggest that the late-flowering geneFT may be a good candidate for such genes. To test this, we have cloned theFT gene using aFT-deficiency line associated with a T-DNA insertion. Cloned genes and loss-of-function mutants in hand, it is now possible to analyse the role ofFT and other genes in flowering at the biochemical and cellular levels as well as at the genetic level. The deduced FT protein has homology with TFL1 and CEN proteins believed to be involved in regulation of inflorescence meristem identity. Phylogenetic analysis suggests that theFT group and theTFL1/CEN group of genes diverged before the diversification of major angiosperm clades. This raises the interesting question of the evolutionary relationship between the regulation of vegetative/reproductive switching in the shoot apical meristem and the regulation of inflorescence architecture in angiosperms. The extended abstract of a paper presented at the 13th International Symposium in Conjugation with Award of the International Prize for Biology “Fronitier of Plant Biology”  相似文献   

6.
7.
High temperature-induced bolting of lettuce is undesirable agriculturally, making it important to find the mechanism governing the transition from vegetative to reproductive growth. FLOWERING LOCUS T (FT) genes play important roles in the induction of flowering in several plant species. To clarify floral induction in lettuce, we isolated the FT gene (LsFT) from lettuce. Sequence analysis and phylogenetic relationships of LsFT revealed considerable homology to FT genes of Arabidopsis, tomato, and other species. LsFT induced early flowering in transgenic Arabidopsis, but was not completely effective compared to AtFT. LsFT mRNA was abundant in the largest leaves under flowering-inducible conditions (higher temperatures). Gene expression was correlated with flower differentiation of the shoot apical meristem. Our results suggest that LsFT is a putative FT homolog in lettuce that regulates flower transition, similar to its homolog in Arabidopsis. This is the first information on the lettuce floral gene for elucidating regulation of the flowering transition in lettuce.  相似文献   

8.
9.
CONSTANS delays Arabidopsis flowering under short days   总被引:1,自引:0,他引:1  
Long days (LD) promote flowering of Arabidopsis thaliana compared with short days (SD) by activating the photoperiodic pathway. Here we show that growth under very‐SD (3 h) or darkness (on sucrose) also accelerates flowering on a biological scale, indicating that SD actively repress flowering compared with very‐SD. CONSTANS (CO) repressed flowering under SD, and the early flowering of co under SD required FLOWERING LOCUS T (FT). FT was expressed at a basal level in the leaves under SD, but these levels were not enhanced in co. This indicates that the action of CO in A. thaliana is not the mirror image of the action of its homologue in rice. In the apex, CO enhanced the expression of TERMINAL FLOWER 1 (TFL1) around the time when FT expression is important to promote flowering. Under SD, the tfl1 mutation was epistatic to co and in turn ft was epistatic to tfl1. These observations are consistent with the long‐standing but not demonstrated model where CO can inhibit FT induction of flowering by affecting TFL1 expression.  相似文献   

10.
The wide variety of plant architectures is largely based on diverse and flexible modes of axillary shoot development. In Arabidopsis, floral transition (flowering) stimulates axillary bud development. The mechanism that links flowering and axillary bud development is, however, largely unknown. We recently showed that FLOWERING LOCUS T (FT) protein, which acts as florigen, promotes the phase transition of axillary meristems, whereas BRANCHED1 (BRC1) antagonizes the florigen action in axillary buds. Here, we present evidences for another possible role of florigen in axillary bud development. Ectopic overexpression of FT or another florigen gene TWIN SISTER OF FT (TSF) with LEAFY (LFY) induces ectopic buds at cotyledonary axils, confirming the previous proposal that these genes are involved in formation of axillary buds. Taken together with our previous report that florigen promotes axillary shoot elongation, we propose that florigen regulates axillary bud development at multiple stages to coordinate it with flowering in Arabidopsis.  相似文献   

11.
GIGANTEA (GI), CONSTANS (CO) and FLOWERING LOCUS T (FT) regulatephotoperiodic flowering in Arabidopsis. In rice, OsGI, Hd1 andHd3a were identified as orthologs of GI, CO and FT, respectively,and are also important regulators of flowering. Although GIhas roles in both flowering and the circadian clock, our understandingof its biochemical functions is still limited. In this study,we purified novel OsGI-interacting proteins by using the tandemaffinity purification (TAP) method. The TAP method has beenused effectively in a number of model species to isolate proteinsthat interact with proteins of interest. However, in plants,the TAP method has been used in only a few studies, and no novelproteins have previously been isolated by this method. We generatedtransgenic rice plants and cell cultures expressing a TAP-taggedversion of OsGI. After a two-step purification procedure, theinteracting proteins were analyzed by mass spectrometry. Sevenproteins, including dynamin, were identified as OsGI-interactingproteins. The interaction of OsGI with dynamin was verifiedby co-immunoprecipitation using a myc-tagged version of OsGI.Moreover, an analysis of Arabidopsis dynamin mutants indicatedthat although the flowering times of the mutants were not differentfrom those of wild-type plants, an aerial rosette phenotypewas observed in the mutants. We also found that OsGI is presentin both the nucleus and the cytosol by Western blot analysisand by transient assays. These results indicate that the TAPmethod is effective for the isolation of novel proteins thatinteract with target proteins in plants.  相似文献   

12.
Flowering in rice is influenced by not only endogenous factors that comprise an autonomous pathway, but also environmental effects, such as photoperiod, water availability, and temperature just before floral initiation. Recent molecular genetics studies have elucidated the functional roles of genes involved in the photoperiod pathway, e.g., photoreceptors, circadian clock components, and short-day (SD) promotion factors. Although these molecular players are well conserved between rice andArabidopsis, their actual genetic functions are distinct. This is exemplified byHd1 (aCO counterpart) and phytochromes, in particular, ricePHYA. Hd1 has a dual role in regulating flowering time and the expression ofHd3a (anFT counterpart) repression under long-day (LD) conditions while promotion under SDs. Models have been proposed to explain these photoperiod-dependent antagonistic activities. Some regulatory factors are present in only one of the model systems, e.g.,FLC inArabidopsis orEhd1 in rice. Furthermore, epistatic relationships vary among such flowering regulators asHd3a (FT), OsMADS50 (SOCT), andOsMADS14 (AP1). Further experiments to probe these differences will be essential to enlarging our understanding of the diversified flowering regulation mechanisms in rice.  相似文献   

13.
Switchgrass (Panicum virgatum L.), a perennial warm season bunchgrass native to North America, has been a target in the U.S. as a renewable bioenergy crop because of its ability to produce moderate to high biomass yield on marginal soils. Delaying flowering can increase vegetative biomass production by allowing prolonged growth before switching to the reproductive phase. Despite the identification of flowering time as a biomass trait in switchgrass, the molecular regulatory factors involved in controlling floral transition are poorly understood. Here we identified PvFT1, PvAPL1‐3 and PvSL1, 2 as key flowering regulators required from floral transition initiation to development of floral organs. PvFT1 expression in leaves is developmentally regulated peaking at the time of floral transition, and diurnally regulated with peak at approximately 2 h into the dark period. Ectopic expression of PvFT1 in Arabidopsis, Brachypodium and switchgrass led to extremely early flowering, and activation of FT downstream target genes, confirming that it is a strong activator of flowering in switchgrass. Ectopic expression of PvAPL1‐3 and PvSL1, 2 in Arabidopsis also activated early flowering with distinct floral organ phenotypes. Our results suggest that switchgrass has conserved flowering pathway regulators similar to Arabidopsis and rice.  相似文献   

14.
15.
Yamagishi N  Yoshikawa N 《Planta》2011,233(3):561-568
The flowering integrator gene FLOWERING LOCUS T (FT) in Arabidopsis thaliana is conserved between diverse plant species and is thought to be the flowering signal ‘‘florigen’’, a universal long-distance mobile signal. In soybean, two FT homologs having a function to induce flowering in Arabidopsis have been identified. In this study, we showed that the expression of FT from Arabidopsis by the Apple latent spherical virus (ALSV) vector promoted precocious flowering and terminated vegetative growth in a wide range of genotypes of soybean, without using a short-day treatment. Four determinate and two indeterminate cultivars, infected with ALSV expressing FT (FT-ALSV), set flower buds on shoot apices and terminated vegetative growth at the fourth- to seventh-node stages under long-day conditions. In contrast, non-infected, healthy plants did not set flower buds on shoot apices at the same stage under the same conditions. After flowering, soybean cultivars infected with FT-ALSV, belonging to different maturity groups and stem growth habits, matured and produced seeds. The results suggest that the basic flowering pathway controlled by FT in A. thaliana might also be conserved in soybean. A system for precocious flowering and shortening of generation time using FT-ALSV would be a useful and novel technology for efficient soybean breeding.  相似文献   

16.
17.
Flowering was initiated by the integration of environmental signals such as day-length with the internal development status in Arabidopsis, a facultative long-day plant. The photoperiodic flowering involves two key components, CONSTANS and FT, whereas the autonomous flowering is operated through a central quantitative floral repressor, FLC, and several other genes that act upstream of FLC. SOC1 acts downstream to integrate the flowering signals from the two pathways. Here, we report that SHB1 plays dual roles in both photoperiodic and autonomous flowering. shb1-D, a gain-of-function mutant, flowered early and shb1, a loss-of-function allele, flowered late under both long days and short days. The shb1-D mutation activated the expression of CO, FT, and SOC1 under both long and short days, and however, the co-2 mutation attenuated the shb1-D activated expression of FT and SOC1 only under long days but not short days. The shb1-D or shb1 mutations also reduced and increased, respectively, the expression of FLC under both long and short days. Transgenic remedy of FLC to wide-type level in shb1-D background also reverted shb1-D flowering and FT or SOC1 expression to wild type mostly under short days. Furthermore, the shb1-D suppression on FLC expression is likely operated through LD as ld-3 blocked this suppression and SHB1 appears to act upstream of LD. In summary, SHB1 represents signaling steps that regulate CO expression in leaves and LD or FLC expression in either leaves or shoot apical meristem, contributing to a threshold expression of SOC1 in shoot apical meristem for floral initiation.  相似文献   

18.
We show that in the temperate grass, Brachypodium distachyon, PHYTOCHROME C (PHYC), is necessary for photoperiodic flowering. In loss-of-function phyC mutants, flowering is extremely delayed in inductive photoperiods. PHYC was identified as the causative locus by utilizing a mapping by sequencing pipeline (Cloudmap) optimized for identification of induced mutations in Brachypodium. In phyC mutants the expression of Brachypodium homologs of key flowering time genes in the photoperiod pathway such as GIGANTEA (GI), PHOTOPERIOD 1 (PPD1/PRR37), CONSTANS (CO), and florigen/FT are greatly attenuated. PHYC also controls the day-length dependence of leaf size as the effect of day length on leaf size is abolished in phyC mutants. The control of genes upstream of florigen production by PHYC was likely to have been a key feature of the evolution of a long-day flowering response in temperate pooid grasses.  相似文献   

19.
FLOWERING LOCUS T (FT), a major effect gene, regulates flowering time in Arabidopsis. We analyzed evolutionary changes distinguishing two FT homeologous loci in B. rapa, described genetic variation in homologs isolated and reported expression pattern of FT in B. juncea. Synteny analysis confirmed presence of two FT genomic copies in B. rapa ssp. pekinensis and resolved pre-existing anomalies regarding copy number in “AA” genome. Synteny analysis of B. rapa homeologous regions CR1 (129 kb) and CR2 (232 kb) revealed differential gene fractionation and wide-spread re-arrangements. Seven genomic DNA (gDNA) variants (2.1–2.2 kb) and 10 complementary DNA (cDNA) variants (528 bp) were isolated from 6 Brassica species. The gDNA variants shared 72–99 % similarity within Brassica and 58–60 % between Arabidopsis and Brassica. FT cDNA variants shared 92–100 % similarity within Brassica and 87 % between Arabidopsis and Brassica. Phylogenetic analysis of FT gDNA, cDNA and protein sequences revealed two major clades, differentiating homologs derived from species containing shared “BB” and “CC” genomes. Phylogram based on Brassica FT gDNA differentiated homeologs derived from AA-LF (Least fractioned) and AA-MF1 (Moderately fractioned) sub-genomes. Analysis of FT expression pattern in B. juncea revealed increasing levels correlating with attainment of physiological maturity; highest levels were detected in older leaves implying conservation in spatio-temporal expression pattern vis-à-vis Arabidopsis. In conclusion, our study reveals that polyploidy in Brassicas resulted in expansion of FT gene copies with homologs charting independent evolutionary course through accumulation of mutations. However, expression domains of FT remained conserved across Brassicaceae to preserve the critical function of FT in controlling flowering time.  相似文献   

20.
In this study we investigated Arabidopsis thaliana (L.) Heynh. inflorescence development by characterizing morphological changes at the shoot apex during the transition to flowering. Sixteen-hour photoperiods were used to synchronously induce flowering in vegetative plants grown for 30 d in non-inductive 8-h photoperiods. During the first inductive cycle, the shoot apical meristem ceased producing leaf primordia and began to produce flower primordia. The differentiation of paraclades (axillary flowering shoots), however, did not occur until after the initiation of multiple flower primordia from the shoot apical meristem. Paraclades were produced by the basipetal activation of buds from the axils of leaf primordia which had been initiated prior to photoperiodic induction. Concurrent with the activation of paraclades was the partial suppression of paraclade-associated leaf primordia, which became bract leaves. The suppression of bract-leaf primordia and the abrupt initiation of flower primordia during the first inductive photoperiod is indicative of a single phase change during the transition to flowering in photoperiodically induced Arabidopsis. Morphogenetic changes characteristic of the transition to flowering in plants grown continuously in 16-h photoperiods were qualitatively equivalent to the changes observed in plants which were photoperiodically induced after 30 d. These results suggest that Arabidopsis has only two phases of development, a vegetative phase and a reproductive phase; and that the production of flower primordia, the differentiation of paraclades from the axils of pre-existing leaf primordia and the elongation of internodes all occur during the reproductive phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号