首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultural influences on the concept of self is a very important topic for social cognitive neuroscientific exploration, as yet, little if anything is known about this topic at the neural level. The present study investigates this problem by looking at the Chinese culture's influence on the concept of self, in which the self includes mother. In Western cultures, self-referential processing leads to a memory performance advantage over other forms of semantic processing including mother-referential, other-referential and general semantic processing, and an advantage that is potentially localizable to the medial prefrontal cortex (MPFC). In Chinese culture, however, the behavioral study showed that mother-referential processing was comparable with self-referential processing in both memory performance and autonoetic awareness. The present study attempts to address whether similar neural correlates (e.g. MPFC) are acting to facilitate both types of referencing. Participants judged trait adjectives under three reference conditions of self, other and semantic processing in Experiment I, and a mother-reference condition replaced the other-reference condition in Experiment II. The results showed that when compared to other, self-referential processing yielded activations of MPFC and cingulate areas. However, when compared to mother, the activation of MPFC disappeared in self-referential processing, which suggests that mother and self may have a common brain region in the MPFC and that the Chinese idea of self includes mother.  相似文献   

2.
There has been increasing interest in neuroimaging studies of the self since Craik et al.’s initial work[1―6]. A common theme of these studies was to localize the self in the brain. All these studies adopted the self-referential processing paradigm intr…  相似文献   

3.
Self-evaluation plays an important role in adaptive functioning and is a process that is typically impaired in patients with schizophrenia. Underlying neural mechanisms for this dysfunction may be associated with manifested psychosis. However, the brain substrates underlying this deficit are not well known. The present study used brain blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) and gray matter voxel-based morphometry to explore the functional and structural brain correlates of self-evaluation deficits in schizophrenia. Eighteen patients with schizophrenia and 17 healthy controls were recruited and asked to judge whether a set of personality-trait adjectives were appropriate for describing themselves, a familiar other, or whether the adjectives were of positive or negative valence. Patients had slower response times for negative trait attributions than controls did; responses to positive trait attributions were faster than those for negative traits among the patient group, while no differences were observed in the control group. Control subjects showed greater activation within the dorsal medial prefrontal cortex (dMPFC) and the anterior cingulate cortex (ACC) than the patient group during the self-evaluation > semantic positivity-evaluation contrast. Patients showed greater activation mainly within the posterior cingulate gyrus (PCC) as compared to controls for the other-evaluation > semantic positivity-evaluation contrast. Furthermore, gray matter volume was reduced in the MPFC, temporal lobe, cuneus, and the dorsal lateral prefrontal cortex (DLPFC) among the patient group when compared to controls. The present study adds to previous findings regarding self- and other-referential processing in schizophrenia, providing support for neurobiological models of self-reflection impairment.  相似文献   

4.
Children who have experienced chronic parental rejection and exclusion during childhood, as is the case in childhood emotional maltreatment, may become especially sensitive to social exclusion. This study investigated the neural and emotional responses to social exclusion (with the Cyberball task) in young adults reporting childhood emotional maltreatment. Using functional magnetic resonance imaging, we investigated brain responses and self-reported distress to social exclusion in 46 young adult patients and healthy controls (mean age = 19.2±2.16) reporting low to extreme childhood emotional maltreatment. Consistent with prior studies, social exclusion was associated with activity in the ventral medial prefrontal cortex and posterior cingulate cortex. In addition, severity of childhood emotional maltreatment was positively associated with increased dorsal medial prefrontal cortex responsivity to social exclusion. The dorsal medial prefrontal cortex plays a crucial role in self-and other-referential processing, suggesting that the more individuals have been rejected and maltreated in childhood, the more self- and other- processing is elicited by social exclusion in adulthood. Negative self-referential thinking, in itself, enhances cognitive vulnerability for the development of psychiatric disorders. Therefore, our findings may underlie the emotional and behavioural difficulties that have been reported in adults reporting childhood emotional maltreatment.  相似文献   

5.
Despite a growing body of neuroimaging data, little consensus has been reached regarding the neural correlates of temporal processing in humans. This paper presents a reanalysis of two previously published neuroimaging experiments, which used two different cognitive timing tasks and examined both sub- and supra-second intervals. By processing these data in an identical manner, this reanalysis allows valid comparison and contrasting across studies. Conjunction of these studies using inclusive masking reveals shared activity in right hemispheric dorsolateral and ventrolateral prefrontal cortex and anterior insula, supporting a general-purpose system for cognitive time measurement in the right hemispheric prefrontal cortex. Consideration of the patterns of activity in each dataset with respect to the others, and taking task characteristics into account, provides insight into the possible role of dorsolateral prefrontal cortex in working memory and of posterior parietal cortex and anterior cingulate in attentional processing during cognitive time measurement tasks.  相似文献   

6.
Specialization in the left prefrontal cortex for sentence comprehension   总被引:5,自引:0,他引:5  
Hashimoto R  Sakai KL 《Neuron》2002,35(3):589-597
Using functional magnetic resonance imaging (fMRI), we examined cortical activation under syntactic decision tasks and a short-term memory task for sentences, focusing on essential properties of syntactic processing. By comparing activation in these tasks with a short-term memory task for word lists, we found that two regions in the left prefrontal cortex showed selective activation for syntactic processing: the dorsal prefrontal cortex (DPFC) and the inferior frontal gyrus (IFG). Moreover, the left DPFC showed more prominent activation under the short-term memory task for sentences than that for word lists, which cannot be explained by general cognitive factors such as task difficulty and verbal short-term memory. These results support the proposal of specialized systems for sentence comprehension in the left prefrontal cortex.  相似文献   

7.

Background

Functional neuroimaging studies have suggested activation of midline frontoparietal brain regions to be at the core of self-related processes. However, although some studies reported involvement of the insula, little attention has been paid to this region as forming part of the “self”-network.

Methodology/Principal Findings

Using functional magnetic resonance imaging (fMRI), we aimed at replicating and extending previous studies by scanning subjects whilst reflecting upon their own personal qualities as compared to those of an acquaintance. A third condition with statements about general knowledge was used to control for attention, semantic processing and decision making processes. The results showed a significant effect of task in brain activity, consistent with previous findings, by which both person conditions recruited a common set of medial prefrontal and posterior regions, yet significant differences between self and other were found in the medial prefrontal cortex (MPFC) and the anterior cingulate cortex (ACC). Notably, significant neural activation in the left anterior insula was observed as uniquely associated with self-reflection.

Conclusions/Significance

The results provide further evidence for the specific recruitment of anterior MPFC and ACC regions for self-related processing, and highlight a role for the insula in self-reflection. As the insula is closely connected with ascending internal body signals, this may indicate that the accumulation of changes in affective states that might be implied in self-processing may contribute to our sense of self.  相似文献   

8.
When humans are engaged in goal-related processing, activity in prefrontal cortex is increased. However, it has remained unclear whether this prefrontal activity encodes a subject's current intention. Instead, increased levels of activity could reflect preparation of motor responses, holding in mind a set of potential choices, tracking the memory of previous responses, or general processes related to establishing a new task set. Here we study subjects who freely decided which of two tasks to perform and covertly held onto an intention during a variable delay. Only after this delay did they perform the chosen task and indicate which task they had prepared. We demonstrate that during the delay, it is possible to decode from activity in medial and lateral regions of prefrontal cortex which of two tasks the subjects were covertly intending to perform. This suggests that covert goals can be represented by distributed patterns of activity in the prefrontal cortex, thereby providing a potential neural substrate for prospective memory. During task execution, most information could be decoded from a more posterior region of prefrontal cortex, suggesting that different brain regions encode goals during task preparation and task execution. Decoding of intentions was most robust from the medial prefrontal cortex, which is consistent with a specific role of this region when subjects reflect on their own mental states.  相似文献   

9.
Otsuka Y  Osaka N  Yaoi K  Osaka M 《PloS one》2011,6(4):e19320
This study examined dissociations between brain networks involved in theory of mind, which is needed for guessing others' mental states, and the self, which might constitute the basis for theory of mind's development. We used event-related fMRI to compare a condition that required participants to guess the mental state of a subject featured in first-person perspective sentences (1stPP condition) with a third-person perspective sentence condition (3rdPP condition). The caudate nucleus was marginally more activated in the 1stPP than in the 3rdPP condition, while the left dorsolateral prefrontal cortex (DLPFC) was significantly more activated in the 3rdPP condition as compared to the 1stPP condition. Furthermore, we examined the correlation between activation (signal intensity) of the caudate nucleus and left DLPFC with that of the right DLPFC, which is thought to be closely connected with sense of self. We found a significant correlation between caudate nucleus and right DLPFC activation in the 1stPP condition, and between left and right DLPFC activation in the 3rdPP condition. Although theory of mind and the self both appear to recruit the right DLPFC, this region seems to be accessed through the left DLPFC during theory of mind tasks, but through the caudate nucleus when tasks require self reference.  相似文献   

10.
Dowd EC  Barch DM 《PloS one》2012,7(5):e35622
Reward processing abnormalities have been implicated in the pathophysiology of negative symptoms such as anhedonia and avolition in schizophrenia. However, studies examining neural responses to reward anticipation and receipt have largely relied on instrumental tasks, which may confound reward processing abnormalities with deficits in response selection and execution. 25 chronic, medicated outpatients with schizophrenia and 20 healthy controls underwent functional magnetic resonance imaging using a pavlovian reward prediction paradigm with no response requirements. Subjects passively viewed cues that predicted subsequent receipt of monetary reward or non-reward, and blood-oxygen-level-dependent signal was measured at the time of cue presentation and receipt. At the group level, neural responses to both reward anticipation and receipt were largely similar between groups. At the time of cue presentation, striatal anticipatory responses did not differ between patients and controls. Right anterior insula demonstrated greater activation for nonreward than reward cues in controls, and for reward than nonreward cues in patients. At the time of receipt, robust responses to receipt of reward vs. nonreward were seen in striatum, midbrain, and frontal cortex in both groups. Furthermore, both groups demonstrated responses to unexpected versus expected outcomes in cortical areas including bilateral dorsolateral prefrontal cortex. Individual difference analyses in patients revealed an association between physical anhedonia and activity in ventral striatum and ventromedial prefrontal cortex during anticipation of reward, in which greater anhedonia severity was associated with reduced activation to money versus no-money cues. In ventromedial prefrontal cortex, this relationship held among both controls and patients, suggesting a relationship between anticipatory activity and anhedonia irrespective of diagnosis. These findings suggest that in the absence of response requirements, brain responses to reward receipt are largely intact in medicated individuals with chronic schizophrenia, while reward anticipation responses in left ventral striatum are reduced in those patients with greater anhedonia severity.  相似文献   

11.
A large body of evidence suggested that both emotion and self-referential processing can enhance memory. However, it remains unclear how these two factors influence directed forgetting. This study speculates that directed forgetting of negative self-referential memory is more difficult than forgetting of other-referential memory. To verify this speculation, we combined the directed forgetting paradigm with the self-reference task. The behavioral result suggested that although both self-referential and other-referential information can be directly forgotten, less self-referential information can be forgotten than other-referential information. At the neural level, the forget instruction strongly activated the frontal cortex, suggesting that directed forgetting is not memory decay but an active process. In addition, compared with the negative other-referential information, forgetting of the negative self-referential information were associated with a more widespread activation, including the orbital frontal gyrus (BA47), the inferior frontal gyrus (BA45, BA44), and the middle frontal gyrus. Our results suggest that forgetting of the self-referential information seems to be a more demanding and difficult process.  相似文献   

12.

Introduction

Cognitive tasks that do not change the required response for a stimulus over time (‘consistent mapping’) show dramatically improved performance after relative short periods of practice. This improvement is associated with reduced brain activity in a large network of brain regions, including left prefrontal and parietal cortex. The present study used fMRI-guided repetitive transcranial magnetic stimulation (rTMS), which has been shown to reduce processing efficacy, to examine if the reduced activity in these regions also reflects reduced involvement, or possibly increased efficiency.

Methods

First, subjects performed runs of a Sternberg task in the scanner with novel or practiced target-sets. This data was used to identify individual sites for left prefrontal and parietal peak brain activity, as well as to examine the change in activity related to practice. Outside of the scanner, real and sham rTMS was applied at left prefrontal and parietal cortex to examine their involvement novel and practiced conditions.

Results

Prefrontal as well as parietal rTMS significantly reduced target accuracy for novel targets. Prefrontal, but not parietal, rTMS interference was significantly lower for practiced than novel target-sets. rTMS did not affect non-target accuracy, or reaction time in any condition.

Discussion

These results show that task practice in a consistent environment reduces involvement of the prefrontal cortex. Our findings suggest that prefrontal cortex is predominantly involved in target maintenance and comparison, as rTMS interference was only detectable for targets. Findings support process switching hypotheses that propose that practice creates the possibility to select a response without the need to compare with target items. Our results also support the notion that practice allows for redistribution of limited maintenance resources.  相似文献   

13.
The occipital cortex (OC) of early-blind humans is activated during various nonvisual perceptual and cognitive tasks, but little is known about its modular organization. Using functional MRI we tested whether processing of auditory versus tactile and spatial versus nonspatial information was dissociated in the OC of the early blind. No modality-specific OC activation was observed. However, the right middle occipital gyrus (MOG) showed a preference for spatial over nonspatial processing of both auditory and tactile stimuli. Furthermore, MOG activity was correlated with accuracy of individual sound localization performance. In sighted controls, most of extrastriate OC, including the MOG, was deactivated during auditory and tactile conditions, but the right MOG was more activated during spatial than nonspatial visual tasks. Thus, although the sensory modalities driving the neurons in the reorganized OC of blind individuals are altered, the functional specialization of extrastriate cortex is retained regardless of visual experience.  相似文献   

14.
Different people make different responses when they face a frustrating situation: some punish others (extrapunitive), while others punish themselves (intropunitive). Few studies have investigated the neural structures that differentiate extrapunitive and intropunitive individuals. The present fMRI study explored these neural structures using two different frustrating situations: an ego-blocking situation which blocks a desire or goal, and a superego-blocking situation which blocks self-esteem. In the ego-blocking condition, the extrapunitive group (n = 9) showed greater activation in the bilateral ventrolateral prefrontal cortex, indicating that these individuals prefer emotional processing. On the other hand, the intropunitive group (n = 9) showed greater activation in the left dorsolateral prefrontal cortex, possibly reflecting an effortful control for anger reduction. Such patterns were not observed in the superego-blocking condition. These results indicate that the prefrontal cortex is the source of individual differences in aggression direction in the ego-blocking situation.  相似文献   

15.
Why is it hard to divide attention between dissimilar activities, such as reading and listening to a conversation? We used functional magnetic resonance imaging (fMRI) to study interference between simple auditory and visual decisions, independently of motor competition. Overlapping activity for auditory and visual tasks performed in isolation was found in lateral prefrontal regions, middle temporal cortex and parietal cortex. When the visual stimulus occurred during the processing of the tone, its activation in prefrontal and middle temporal cortex was suppressed. Additionally, reduced activity was seen in modality-specific visual cortex. These results paralleled impaired awareness of the visual event. Even without competing motor responses, a simple auditory decision interferes with visual processing on different neural levels, including prefrontal cortex, middle temporal cortex and visual regions.  相似文献   

16.
Individuals with autism spectrum condition (ASC) are known to excel in some perceptual cognitive tasks, but such developed functions have been often regarded as "islets of abilities" that do not significantly contribute to broader intellectual capacities. However, recent behavioral studies have reported that individuals with ASC have advantages for performing Raven's (Standard) Progressive Matrices (RPM/RSPM), a standard neuropsychological test for general fluid intelligence, raising the possibility that ASC's cognitive strength can be utilized for more general purposes like novel problem solving. Here, the brain activity of 25 adults with high-functioning ASC and 26 matched normal controls (NC) was measured using functional magnetic resonance imaging (fMRI) to examine neural substrates of geometric reasoning during the engagement of a modified version of the RSPM test. Among the frontal and parietal brain regions involved in fluid intelligence, ASC showed larger activation in the left lateral occipitotemporal cortex (LOTC) during an analytic condition with moderate difficulty than NC. Activation in the left LOTC and ventrolateral prefrontal cortex (VLPFC) increased with task difficulty in NC, whereas such modulation of activity was absent in ASC. Furthermore, functional connectivity analysis revealed a significant reduction of activation coupling between the left inferior parietal cortex and the right anterior prefrontal cortex during both figural and analytic conditions in ASC. These results indicate altered pattern of functional specialization and integration in the neural system for geometric reasoning in ASC, which may explain its atypical cognitive pattern, including performance on the Raven's Matrices test.  相似文献   

17.
Gold BT  Buckner RL 《Neuron》2002,35(4):803-812
One of the most ubiquitous findings in functional neuroimaging research is activation of left inferior prefrontal cortex (LIPC) during tasks requiring controlled semantic retrieval. Here we show that LIPC participates in the controlled retrieval of nonsemantic representations as well as semantic representations. Results also demonstrate that LIPC coactivates with dissociable posterior regions depending on the information retrieved: activating with left temporal cortex during the controlled retrieval of semantics and with left posterior frontal and parietal cortex during the controlled retrieval of phonology. Correlation of performance to LIPC activation suggests a processing role associated with mapping relatively ambiguous stimulus-to-representation relationships during both semantic and phonological tasks. These findings suggest that LIPC participates in controlled processing across multiple information domains collaborating with dissociable posterior regions depending upon the kind of information retrieved.  相似文献   

18.
Prefrontal cortex: procedural sequence learning and awareness   总被引:1,自引:0,他引:1  
Activation of the prefrontal cortex has been linked to awareness during sequence-learning tasks. A recent study, however, finds activation of the prefrontal cortex during such tasks regardless of awareness. So what is the neurophysiological basis of awareness, and what is the role of the prefrontal cortex in sequence learning?  相似文献   

19.
Working memory enables us to hold in our ''mind''s eye'' the contents of our conscious awareness, even in the absence of sensory input, by maintaining an active representation of information for a brief period of time. In this review we consider the functional organization of the prefrontal cortex and its role in this cognitive process. First, we present evidence from brain-imaging studies that prefrontal cortex shows sustained activity during the delay period of visual working memory tasks, indicating that this cortex maintains on-line representations of stimuli after they are removed from view. We then present evidence for domain specificity within frontal cortex based on the type of information, with object working memory mediated by more ventral frontal regions and spatial working memory mediated by more dorsal frontal regions. We also propose that a second dimension for domain specificity within prefrontal cortex might exist for object working memory on the basis of the type of representation, with analytic representations maintained preferentially in the left hemisphere and image-based representations maintained preferentially in the right hemisphere. Furthermore, we discuss the possibility that there are prefrontal areas brought into play during the monitoring and manipulation of information in working memory in addition to those engaged during the maintenance of this information. Finally, we consider the relationship of prefrontal areas important for working memory, both to posterior visual processing areas and to prefrontal areas associated with long-term memory.  相似文献   

20.
The interplay between hippocampus and prefrontal cortex (PFC) is fundamental to spatial cognition. Complementing hippocampal place coding, prefrontal representations provide more abstract and hierarchically organized memories suitable for decision making. We model a prefrontal network mediating distributed information processing for spatial learning and action planning. Specific connectivity and synaptic adaptation principles shape the recurrent dynamics of the network arranged in cortical minicolumns. We show how the PFC columnar organization is suitable for learning sparse topological-metrical representations from redundant hippocampal inputs. The recurrent nature of the network supports multilevel spatial processing, allowing structural features of the environment to be encoded. An activation diffusion mechanism spreads the neural activity through the column population leading to trajectory planning. The model provides a functional framework for interpreting the activity of PFC neurons recorded during navigation tasks. We illustrate the link from single unit activity to behavioral responses. The results suggest plausible neural mechanisms subserving the cognitive "insight" capability originally attributed to rodents by Tolman & Honzik. Our time course analysis of neural responses shows how the interaction between hippocampus and PFC can yield the encoding of manifold information pertinent to spatial planning, including prospective coding and distance-to-goal correlates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号