首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trapping of ascospores and conidia of Microcyclus ulei among young trees of Hevea brasiliensis in Trinidad from May 1973 to May 1975 snowed that ascospores occurred throughout the year whilst conidia were present only during the wet season. Peak ascospore concentrations occurred in August and November during the wet season, the latter peak being more marked and the former coinciding with the period of maximum conidium liberation. In dry weather the number of ascospores increased during the night to a maximum at 06.00 h, and decreased to a low level during the day. On rainy days heavy ascospore discharge also occurred during the day. Ascospore concentration decreased significantly after dawn on sunny days whilst on overcast days the concentration remained high most of the day. Conidium production was highest around 10.00 h and decreased towards the evening to a low level during the night, reaching a minimum at 07.00 h.  相似文献   

2.
Fine-structure observations of annelloconidium production in filamentous Hyphomycetes are reported for the first time. The difference in conidium morphology between Scopulariopsis brevicaulis and S. koningii was quite distinct. In S. brevicaulis, verrucosities appeared early in conidium ontogeny and formed an integral part of the primary wall layer of mature conidia. In S. koningii, verrucosities were absent. In S. brevicaulis, annellations did not invariably result on conidiophore necks with the production of each conidium in the basipetal sequence, but alternatively could be left on subapical regions of subsequently formed conidia. In S. koningii, annellations were more distinct, and the position of a conidium-delimiting septum was variable. If a septum were formed at a position proximal to previous septa, a portion of the annellophore neck remained attached to the base f the seceding conidium. In both species, a spherical electron-dense body, perhaps analogous to septal pore plugs in vegetative hyphae, plugged the pore between conidia and conidiophores and remained embedded in the base of seceded conidia.  相似文献   

3.
Identification of the production and storage factors that affect conidium germination and bioactivity (fitness) will assist the success of biological control agents. Effects of culturing conditions on conidium fitness of Trichoderma atroviride LU132 were examined in different storage conditions over time. Abiotic factors (temperature, nutrients, water activity and pH) during production were studied. Conidia from the culturing regimes which resulted in greatest and least bioactivity against Rhizoctonia solani in dual culture were selected to assess effects of storage conditions on conidium fitness. Fitness of the test conidia was examined after storage at 30°C and at 0% or 50% relative humidity (RH) over 6 months. Fitness declined over time, and the decline was greater for 50% RH than 0% RH, probably through reduced metabolic activity of conidia during long-term storage. Stored conidia were probably affected by dehydration, temperature and other factors such as oxidation, before and during storage, and also by rehydration after storage. The greatest number of conidia and germination percentage resulted from production at 25°C, but greatest bioactivity resulted from those produced at 30°C. No significant effects on bioactivity were detected between the conidium production treatments C?:?N 5?:?1 and C?:?N 160?:?1, indicating that C?:?N ratio in culture medium is not important for conidium survival of T. atroviride.  相似文献   

4.
Effects of abiotic factors during production (temperature, nutrients, water activity, pH) on conidium fitness (quantity and quality) of Trichoderma atroviride LU132 (a key biocontrol agent) were studied. Conidia from the culturing regimes which resulted in greatest and least bioactivity against Rhizoctonia solani in dual culture assays were selected to assess effects of storage conditions on conidial fitness over time. Further studies assessed interaction effects of temperatures (20°C or 30°C) and sugars (dextrose or sucrose) on conidium germination and bioactivity as fresh conidia, or after 6 months of storage. Biochemical analyses of sugars and fatty acids were carried out to determine relationships between quality variations and cellular characteristics for conidia produced in different culturing conditions. Low trehalose content in conidia (e.g. at 20°C) was associated with the least conidium fitness, although high trehalose content did not necessarily support conidium fitness. High proportions of total fatty acids in conidia were mostly associated with the least conidium fitness. When Trichoderma was grown at high carbon to nitrogen ratio (e.g. at C:N 160:1), the total conidium fatty acids content increased. This study also indicated that the monosaccharide dextrose is metabolically optimal for T. atroviride LU132 at 20°C while the disaccharide sucrose is optimal at 30°C. These studies indicate that physical growth conditions and nutritional requirements attribute in conidium fitness of T. atroviride LU132, and provide important knowledge supporting optimum production of biocontrol agents based on T. atroviride, and possibly other similar biocontrol agents.  相似文献   

5.
The conidia produced by the mycelial form of Paracoccidioides brasiliensis were examined by scanning electron microscopy for the first time. Several different conidial types were characterized. These included intercalary arthroconidia, several types of septate conidia that are formed from other conidia, pedunculate conidia, and terminal hyphal conidia. In addition, the ultrastructure of the supporting pedestal of the pedunculate conidium was found to be separated from the mother conidium by a septum in some instances, and at other times it was not.  相似文献   

6.
South American leaf blight caused by Dothidella ulei occurs only in tropical America, on both indigenous and cultivated Hevea spp. The conidium (Fusicladium macrosporum) is a 1-septate, dry, air-borne spore about 40 × 7 μ, occurring on the abaxial surface of dry leaves in dense, powdery, olive-green masses, and with one or both cells collapsed. The conidia adhere to the surface of water droplets, becoming turgid, and are disseminated in splash droplets. A Hirst volumetric trap, placed within a prepared source in north-west Trinidad, showed a diurnal periodicity of conidial production, with a maximum at 10.00 h and minima at night or in the early morning. On rainless days there was also a minor peak at 20.00 h. Transient increases occurred after rain, most of which fell around noon. On wet days almost equal numbers of conidia were dispersed between 10.00 and 12.00 h. Large increases occurred in 87% of all rain showers between 09.00 and 13.00 h. After 13.00 h fewer rain showers caused such increases; the lowest (36%) was between 21.00 and 01.00 h. Twice as many were trapped on sunny days (> 9 h sun) at 09.00 h when there was full sunshine, compared with overcast days (< 5 h sun). A more clearly defined morning maximum occurred on relatively windy days, compared with calmer ones. Conidial sporulation became very low, or ceased, where rain fell below a mean of 3–4 mm per day for at least 20 days. Abundant sporulation occurred with a daily rainfall about twice this amount. The results support the belief that if Dothidella ulei appeared in Malaysia its spread would be rapid and its effects damaging.  相似文献   

7.
Lipid droplets (LDs) serve as one of the major reservoirs in conidia of Magnaporthe oryzae and are quickly utilized during appressorium formation. Here, we identified a gene, LDP1, encoding a perilipin that is important for LD formation and utilization during appressorium maturation. LDP1 is highly expressed in conidium and immature appressorium. Disruption mutants of LDP1 were significantly reduced in virulence, due to appressorial turgor reduction and difficulty in penetration. LDs were significantly reduced in the Δldp1 mutant, indicating LDP1 was required for LDs formation. LDP1 was colocalized with the LDs in conidium and immature appressorium but was gradually separated during appressorium maturation. A typical intracellular triacylglycerol lipase, TGL1-2, was clearly separated with LDs in conidium and immature appressorium but was well colocalized with LDs during appressorium maturation. The subcellular localization of TGL1-2 was affected by LDP1. These data suggested that LDP1 was bound to LDs for protecting from utilization in conidia and at the early appressorium stage but was separated from LDs for lipase entering and degradation. LDP1 was phosphorylated by CPKA at Thr96, which was essential for its localization and functions. These data indicate perilipin LDP1 can coordinate LD formation and utilization for appressorium-mediated infection of M. oryzae.  相似文献   

8.
Optimising sporulation and virulence in Drechslera avenacea   总被引:1,自引:0,他引:1  
Studies were conducted on agar media to optimise sporulation of Drechslera avenacea, a fungal pathogen being evaluated as a biological control agent for Avena species (wild oats). Conidium production was affected by nutrition, pH, temperature and light conditions. Of the agar media tested, Czapek Dox agar (CZA) and half-strength oatmeal agar (½OMA) were the only media where sporulation occurred at all temperatures tested under a 12-h light:12-h dark photoperiod (L/D). The optimum temperature for conidium production was 20°C on ½OMA, whereas there was no optimum temperature on CZA. Under a 12-h near-ultraviolet (NUV):12-h dark photoperiod (NUV/D), similar numbers of conidia were produced on CZA at 6.66, 14.56, and 22.78 W m?2, whereas on ½OMA conidium production was the highest at 14.56 W m?2. When NUV/D and L/D conditions were compared, similar numbers of conidia where produced on CZA, whereas ½OMA conidium production was superior under the NUV/D photoperiod. Considerable variation in sporulation and degree of virulence of D. avenacea was detected among isolates from different geographic areas. The most virulent conidia were obtained on ½OMA at 20°C incubated under continuous illumination NUV light. Therefore, the most suitable conditions for conidium production of D. avenacea were growth for 1 week on ½OMA at 20°C under continuous NUV at an intensity of 14.56 W m?2. Under these conditions, 1.1×105 conidia mL?1 were produced which is the highest sporulation yet reported for any Drechslera spp., which are traditionally poor sporulators.  相似文献   

9.
Conidial formation and secession by living conidiophores of Blumeria graminis f. sp. hordei on barley leaves were consecutively monitored using a high-fidelity digital microscopic technique combined with electrostatic micromanipulation to trap the released conidia. Conidial chains formed on conidiophores through a series of septum-mediated division and growth of generative cells. Apical conidial cells on the conidiophores were abstricted after the conidial chains developed ten conidial cells. The conidia were electrically conductive, and a positive charge was induced in the cells by a negatively polarized insulator probe (ebonite). The electrostatic force between the conidia and the insulator was used to attract the abstricted conidia from the conidiophores on leaves. This conidium movement from the targeted conidiophore to the rod was directly viewed under the digital microscope, and the length of the interval between conidial septation and secession, the total number of the conidia produced by a single conidiophore, and the modes of conidiogenesis were clarified. During the stage of conidial secession, the generative cells pushed new conidial cells upwards by repeated division and growth. The successive release of two apical conidia was synchronized with the successive septation and growth of a generative cell. The release ceased after 4-5 conidia were released without division and growth of the generative cell. Thus, the life of an individual conidiophore (from the erection of the conidiophore to the release of the final conidium) was shown to be 107 h and to produce an average of 33 conidia. To our knowledge, this is the first report on the direct estimation of life-long conidial production by a powdery mildew on host leaves.  相似文献   

10.
We describe a technique to detect the presence of airborne conidia from the fungus M. acridum (formerly Metarhizium anisopliae var. acridum) (Hypocreales: Clavicipitaceae) with great accuracy. Airborne conidia were collected using Hirst-type spore traps. DNA extractions were optimized to achieve the best possible recovery. DNA was examined using polymerase chain reaction (PCR) with specific oligonucleotides to enable the detection of a single conidium. Experiments using a mini-wind tunnel were conducted to validate the method. Subsequently, this technique was applied to an agricultural region of Mexico, where M. acridum was sprayed to control the grasshopper, Sphenarium purpurascens, population (Orthoptera: Pyrgomorphidae). M. acridum conidia were detected 2 days after spraying in San Mateo Coatepec (Puebla, site of grasshopper study).  相似文献   

11.
The present investigation aimed to isolate the causative agents of onion purple blotch and Stemphylium blight diseases and evaluate the efficacy of certain plant extracts against the two identified pathogens, in vitro and under greenhouse condition. Fourteen isolates of S. vesicarium and two isolates of Alternaria porri were tested for pathogenicity. The results indicated that all isolates were able to produce the symptoms of Stemphylium blight and onion purple blotch diseases with different degrees of severity ranging from 10.42 to 81.25%. A. porri No. 6022 caused the highest disease severity (81.25%), while S. vesicarium No. 6003 was the best one out of the tested 14 isolates (37.5%). Antifungal activity of some aqueous plant extracts (Azadirachta indica, Cydonia oblonga, Datura stramonium, Eucalyptus globulus, Foeniculum vulgare, Ocimum basilicum, Rosmarinus officinalis and Salix mucronata) was assayed in vitro by dry weight technique. The data indicated that there were significant differences between these extracts in their effect on fungal growth of A. porri and S. vesicarium and the best were A. indica and D. stramonium. Under greenhouse conditions, application of the aqueous extract of A. indica either before or after 48?h A. porri inoculation produced the highest reduction in disease severity comprising 70 and 74.7%, respectively. On the other hand, the highest percentage of disease reduction before and after 48?h S. vesicarium inoculation was produced by Ridomil gold plus reached to 84.4 and 95.8% respectively, followed by the aqueous extract of A. indica (74.1 and 89.7, respectively). According to our results, it can be concluded that plant extracts of A. indica and D. stramonium can be used for the biocontrol of purple blotch and Stemphylium blight diseases instead of fungicides to minimise the risks and hazards of using toxic fungicides.  相似文献   

12.
Aquatic hyphomycete species produce large numbers of conidia which rapidly colonize the leaf litter that falls into rivers during autumn. Our objective was to understand how a species which produces many fewer conidia than another in laboratory conditions can nevertheless be codominant in a natural setting. In microcosm studies with two pioneer dominant species, Flagellospora curvula and Tetrachaetum elegans, inoculated on alder leaves, we first verified that the ratio of the conidium production of both species (6 to 7:1) was inverse to that of individual conidial masses (1:7) as previously described. Calculating the percentage of leaf mass loss that corresponds to 1Â mg of conidial mass produced, the combination of the two species produced 2.9-fold more loss than the mean of each species. By contrast, the reproductive biomasses of F. curvula and T. elegans were 5.2- and 2.6-fold lower, respectively. As a result, the conidium production of F. curvula in the combination was only 3.2-fold that of T. elegans instead of 6- to 7-fold in pure culture. In a mixed culture of the two species, T. elegans conidia had a high germination potential (>90%) whereas the proportion of germinated F. curvula conidia was only 50%. Moreover, T. elegans reduced the area on which F. curvula could grow on poor and rich solid media. These results indicate that the dominance of F. curvula conidia in the river may be partly controlled by T. elegans and suggest that a negative interaction between microfungi may have a positive effect on the ecosystem functioning.  相似文献   

13.
Conidiogenesis of the type species and two additional species of the genus Raffaelea Arx & Hennebert are described. In contrast to previous conclusions based on light microscopy that indicate sympodial production of the conidia, we found that conidium development was by annellidic percurrent proliferation in the type species Raffaelea ambrosiae, as well as in Raffaelea arxii and Raffaelea albimanens. Consequently, this mode of conidium development is similar to the conidiogenesis of anamorphs within the Ophiostomatales, but distinguished by sporodochia formed within the genus Raffaelea. These findings reduce the differences between Raffaelea and other anamorphs with annellidic percurrent proliferation of the conidiogenous cells within the Ophiostomatales to different conidiomata and conidiophores, and they support previous reports of the close phylogenetic relationship between Raffaelea and Ophiostoma.  相似文献   

14.
Ramularia collo-cygni causes leaf spots on barley (Hordeum vulgare), a disease of growing economical importance. Scanning electron microscopy was used to study the life cycle of the fungus on barley during the vegetation period and in winter. The infectious stage started with conidium germination on the surface and the penetration into the leaf via the stomatal pore where the hyphae grew within the cells that became necrotic. The conidiophores emerged through the stomatal pore. On older leaves, however, they frequently emerged apart from it and the results suggested a pushing apart of adjacent cell walls of the epidermal cells. An assessment of the amount of conidium formation of one heavily infested barley plant resulted in 4.05 × 106 conidia per plant. For the first time, conidiophores, conidium production and germination of conidia were also observed in winter on barley and on maize leaves.  相似文献   

15.
Role of the conidium in dimorphism of Blastomyces dermatitidis   总被引:2,自引:0,他引:2  
Fine details of yeastlike cell development of Blastomyces dermatitidis from its conidium are described and illustrated by electron micrographs. When cultured in an enriched medium at 37 °C, conidia of two strains of B. dermatitidis readily underwent ultrastructural changes consistent with mycelial to yeast dimorphism. Although hyphal cells contained in the conversion cultures were observed consistently to undergo profound degenerative changes, the conidia rapidly germinated to give rise to short germ tubes which subsequently enlarged to form intermediate yeast mother cells (YMC). The wall of the germ tube arose from the innermost layer of the wall of the germinant. During the transition globoid osmiophilic inclusions of unknown origin and function were observed in vacuolated areas of the germ tube and YMC cytoplasm. Yeastlike daughter cells then budded from the intermediate YMC. Since transformation was readily accomplished under in vitro conditions favoring mycelial to yeast dimorphism, it is suggested that the conidium of B. dermatitidis represents the primary infective unit of this pathogenic fungus.  相似文献   

16.
Farm workers are often exposed to high concentrations of airborne organic dust and fungal conidia, especially when working with plant materials. The purpose of this investigation was to study the possibility of exposure to the mycotoxin ochratoxin A (OTA) through inhalation of organic dust and conidia. Dust and aerosol samples were collected from three local cowsheds. Aerosol samples for determination of total conidia and dust concentrations were collected by stationary sampling on polycarbonate filters. Total dust was analysed by gravimetry, and conidia were counted using scanning electron microscopy. A method was developed for extraction and determination of OTA in small samples of settled dust. OTA was extracted with a mixture of methanol, chloroform, HCI, and water, purified on immunoaffinity column, and analysed by ion-pair HPLC with fluorescence detection. Recovery of OTA from spiked dust samples (0.9–1.0 μg/kg) was 74% (quantitation limit 0.150 μg/kg). OTA was found in 6 out of 14 settled dust samples (0.2–70 μg/kg). The total concentration of airborne conidia ranged from < 1.1 × 104 to 3.9 × 155 per m3, and the airborne dust concentration ranged from 0.08 to 0.21 mg/m3. Conidia collected from cultures of Penicillium verrucosum and Aspergillus ochraceus contained 0.4–0.7 and 0.02–0.06 pg OTA per conidium, respectively. Testing of conidial extracts from these fungi in a Bacillus subtilis bioassay indicated the presence of toxic compounds in addition to OTA. The results show that airborne dust and fungal conidia can be sources of OTA. Peak exposures to airborne OTA may be significant, e.g., in agricultural environments. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Temperature and Sporulation of Aquatic Hyphomycetes   总被引:9,自引:3,他引:6       下载免费PDF全文
Temperature appears to be an important factor affecting the occurrence and distribution of aquatic hyphomycetes, the dominant leaf litter-decomposing fungi in streams. We compared conidium production by eight species of aquatic hyphomycetes grown on yellow poplar leaves in stream-simulating microcosms at three temperatures (15, 20, and 25°C). The greatest conidium production occurred at 15°C for one species, 20°C for two species, and 25°C for two species. Two species produced similar numbers of conidia at 20 and 25°C, and one species produced similar numbers of conidia at all three temperatures. Linear growth rates were determined on malt extract agar. Six species had the same pattern of temperature responses for growth on malt extract agar as for sporulation on leaves, as shown by the positive correlations between the two parameters at the three temperatures. The species examined also exhibited differences in number of conidia produced from a similar amount of leaf material at a given temperature. These differences appeared to be due primarily to differences in individual conidium mass (determined by weighing conidia produced from cultures), as shown by the relationship of the type Y = k/X (r2 = 0.96), where Y is the number of conidia produced, X is the individual conidium mass in milligrams, and k is a constant empirically determined to be 2.11. This finding supports the hypothesis that aquatic hyphomycetes allocate similar amounts of their resources to reproduction but vary with respect how these resources are partitioned into reproductive units (conidia).  相似文献   

18.
Actinomycin D at a concentration of 5 g/ml of medium inhibited DNA-dependent RNA synthesis by 92% at 35 C, 42% at 30 C, and 28% at 25 C in Neurospora crassa. This concentration also inhibited the development of conidiophores and conidia at 35 C, but not at 30 or 25 C. Mycelia which were induced to synchronous development formed conidiophores in 2.5 hr and conidia in 4.5 hr at 35 C in the absence of drug additives. Addition of actinomycin D to synchronously developing mycelia at zero time and at 0.5-hr intervals thereafter at 35 C indicated that RNA synthesis required for conidiophores occurred before 0.5 hr and for conidia before 2 hr. Addition of cycloheximide at the same times to another synchronous mycelial series at 35 C indicated that protein synthesis required for conidiophores occurred before 2 hr and for conidia before 3.5–4 hr.This work was supported in part by U.S. Public Health Service Training Grant 1 TO1 GM 01968 01.  相似文献   

19.
The decomposition of leaves of Ficus benghalensis. Anacardium occidentale. Acacia auriculiformis and Eucalyptus globulus was followed during 16 weeks in two streams in the Western Ghat forest region of Karnataka, India. The concentration of nitrogen increased during decay; the levels of phosphorus, soluble phenolics and calcium decreased. Fungal colonization of the leaves was followed by counting the numbers of conidia released during aeration. Highest conidium production was found on leaves of Ficus: benghalensis. Daily exponential decay coefficients κ where not significantly different between leaf species or streams and varied between −0.0063 and −0,0090. Correlation analyses between κ and initial leaf parameters (N, P, Ca, and phenolics) did not yield any significant values, but there was a significant linear correlation between κ values and log (maximum sporulation rate).  相似文献   

20.
Rudolph , Emanuel D. (Ohio State U., Columbus.) The effect of some physiological and environmental factors on sclerotial Aspergilli. Amer. Jour. Bot. 49(1): 71–78. Illus. 1962.—The effect of varying conditions of carbon-nitrogen balance, temperature, pH, and light upon the formation of sclerotia by 6 species of Aspergillus (A. alliaceus, A. avenaceus, A. flavus, A. quercinus, A. sclerotiorum and A. wentii) was studied. On Czapek's agar, optimal growth as well as maximum production of sclerotia and conidia took place at high sucrose and nitrate concentrations. In general, fewer sclerotia were formed with glucose than with sucrose, and very poor growth took place with lactose. Sclerotia were formed best at temperatures that were optimal or below optimal for mycelial growth. The ranges of pH through which sclerotia were formed were narrower than those through which conidia and mycelia were formed. Light had no effect upon sclerotium formation. The formation of sclerotia in A. alliaceus was found to represent the strand-type development. A number of UV-induced strains and a spontaneous mutant strain of A. alliaceus showing varying amounts of sclerotium and conidium production are characterized. It is suggested that the sclerotia in Aspergillus are sterile stromata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号