首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
神经自发整数倍峰放电节律的随机性和确定性模式的比较   总被引:6,自引:5,他引:1  
为进一步区分神经自发整数倍峰放电节律的随机性和确定性模式的动力学性质,详细研究了实验神经起步点、随机理论模型(Chay模型)和确定性理论模型(Wang模型)产生的3种整数倍峰放电节律及其变化规律。结果发现,实验和随机模型经随机自共振产生的整数倍峰放电节律具有相同的统计性质(峰峰间期越大,出现的频度越低,约呈指数递减)和变化规律,与确定性Wang模型产生的整数倍节律明显不同。这提示,呈指数衰减分布的整数倍峰放电节律是经随机自共振产生的,是确定性因素和随机因素共同作用的结果。  相似文献   

2.
神经放电加周期分岔中由随机自共振引起一类新节律   总被引:1,自引:1,他引:0  
当改变实验性神经起步点细胞外[Ca^2 ]时,放电节律表现出从周期1节律转换为周期4节律的加周期分岔序列。其中,周期n节律转换为周期n 1节律的过程中(n=1,2,3)存在一种新的具有交替特征的节律,该新节律为周期n簇与周期n 1簇放电的交替,并且周期n 1簇的时间间隔序列呈现出整数倍特征。确定性神经放电理论模型(chay模型)只能模拟周期n节律直接到周期n 1节律的加周期分岔序列;而随机chay模型可以模拟实验中的加周期分岔过程和新节律。进一步,新节律被确认是经随机自共振机制产生的。这不仅解释了实验现象,也将随机自共振的产生区间从以前认识到的Hopf分岔点附近扩大到加周期分岔点附近,同时扩大了噪声在神经放电和神经编码中起重要作用的参数区间。  相似文献   

3.
随机Hindmarsh-Rose模型中产生簇(bursting)放电节律是神经放电中存在随机自共振的一个重要理论证据,但是,该簇放电节律在实验中一直没有被发现。在实验性神经起步点细胞外[Ca^2 ]([Ca^2 ]o)低于周期1节律的[Ca^2 ]o时,发现了一种簇放电节律。其簇簇间期(inter-burst intervals,IBIs)呈现出与随机自共振引起的整数倍峰放电(interger multiple spiking)节律的峰峰间期类似的整数倍特征。随机Hindmarsh-Rose模型中产生的簇(bursting)放电节律也表现出类似的特征。结果验证了随机自共振簇放电的存在性,揭示该簇放电节律的统计特征。此外,该簇放电节律的参数区间以及其与整数倍峰放电节律的区别被揭示,簇放电节律的[Ca^2 ]o低于峰放电律的[Ca^2 ]o。  相似文献   

4.
利用心肌细胞耦合模型研究心肌整数倍节律的动力学机理。确定性模型仿真揭示了心肌细胞团同步搏动加周期分岔的节律变化规律;随机模型仿真发现在加周期分岔序列中分岔点附近会出现整数倍节律,其中,0-1整数倍节律产生于从静息到周期1的Hopf分岔点附近,1-2整数倍节律产生于周期1和周期2极限环间的加周期分岔点附近;对系统相空间轨道的分析进一步揭示出整数倍节律是由系统运动在相邻的两个轨道之间随机跃迁形成的。上述分析结果不仅阐明了心肌整数倍节律的机理,并且揭示了各种整数倍节律与加周期分岔序列中相邻节律的内在联系,为重新认识心律变化的规律开辟了新的途径。  相似文献   

5.
在实验性神经起步点自发放电中,发现了两种三态跃迁节律,其特征为静息、周期n及周期n+1(n=1,2)簇放电随机交替出现。应用随机Chay模型数值仿真,分别得到了与实验模型中相似的两种三态跃迁节律,这两种节律都是在两个紧邻的分岔点附近,由噪声驱动而产生的。理论分析提示,当神经元系统接近从静息经分岔到放电的临界状态,且从静息到周期n的分岔点,与从周期n到周期n+1的分岔点非常接近时,在噪声的作用下,系统运动会在静息、周期n和周期n+1三种状态之间随机跃迁,从而形成了这种三态跃迁节律。基于这种三态跃迁放电的随机共振,还有待进一步深入研究。  相似文献   

6.
神经起步点自发放电节律及节律转化的分岔规律   总被引:2,自引:1,他引:1  
在神经起步点的实验中观察到了复杂多样的神经放电([Ca^2 ]o)节律模式,如周期簇放电、周期峰放电、混沌簇放电、混沌峰放电以及随机放电节律等。随着细胞外钙离子浓度的降低,神经放电节律从周期l簇放电,经过复杂的分岔过程(包括经倍周期分岔到混沌簇放电、混沌簇放电经激变到混沌峰放电、以及混沌峰放电经逆倍周期分岔到周期峰放电)转化为周期l峰放电。在神经放电理论模型——Chay模型中,调节与实验相关的参数(Ca^2 平衡电位),可以获得与实验相似的神经放电节律和节律转换规律。这表明复杂的神经放电节律之间存在着一定的分岔规律,它们是理解神经元信息编码的基础。  相似文献   

7.
含快慢子系统的神经元数学模型仿真预期,神经放电节律经历加周期分岔序列,可以进一步表现激变,并通过逆倍周期分岔级联进入周期1峰放电。实验调节胞外钙离子浓度,观察到从周期1簇放电开始的带有随机节律的加周期分岔到簇内有多个峰的簇放电,再经激变转迁到峰放电节律的分岔序列,提供了这种分岔序列模式实验证据。实验所见之激变表现为簇放电节律的休止期消失,放电节律变为混沌峰放电和周期峰放电。作者利用随机Chay模型更加逼真地仿真再现了实验所见的分岔序列。该实验结果验证了以前的确定性数学模型的理论预期,并利用随机理论模型仿真了其在现实神经系统的表现;揭示了一类完整的神经放电节律的转换规律。  相似文献   

8.
神经放电节律转化的分岔序列模式   总被引:3,自引:0,他引:3  
神经元接受到的外界信号是动态变化的,神经放电节律模式则会依据一定的规律动态转化来反映这种变化,以往确定性理论模型(如Chay模型和Rose-Hindmarsh模型)模拟出了部分神经放电模式转化的整体分岔规律。利用Chay模型仿真,通过调节具有生理学意义的参数,模拟出了神经元放电的一系列分岔序列,同时在神经起步点的实验中,应用与模型对应的参数进行调节,观察到了与仿真结果整体上一致的分岔序列,印证了数值模拟的结果,展现了真实的神经元放电整体分岔结构的基本规律,为理解具体的生理调节活动中神经放电节律的转化提供了理论基础。  相似文献   

9.
文章揭示了外界周期脉冲激励下神经元系统产生的随机整数倍和混沌多峰放电节律的关系.随机节律统计直方图呈多峰分布、峰值指数衰减、不可预报且复杂度接近1;混沌节律统计直方图呈不同的多峰分布,峰值非指数衰减、有一定的可预报性且复杂度小于1.混沌节律在激励脉冲周期小于系统内在周期且刺激强度较大时产生,参数范围较小;而随机节律在激励脉冲周期大于系统内在周期且脉冲刺激强度小时,可与随机因素共同作用而产生,产生的参数范围较大.上述结果揭示了两类节律的动力学特性,为区分两类节律提供了实用指标.  相似文献   

10.
为进一步研究损伤神经放电节律的分岔转迁规律,以实验性神经起步点模型为研究对象,在联合改变胞外的钙离子和钾离子浓度的条件下,记录神经单纤维的放电节律转迁方式。选取4-氨基吡啶(4-aminopyridine,4-AP)作为条件参数,Ca2+浓度作为分岔参数,观察了实验性神经起步点自发放电节律的分岔规律。28例实验结果中,有21例神经对本文所取的条件参数变化不敏感,7例实验性神经起步点的自发放电节律会在不同的条件参数下出现不同类型的分岔序列结构。在不同的4-AP浓度下,随着Ca2+浓度的降低,同一实验性神经起步点会表现出不同的放电节律模式的分岔序列,不同实验性神经起步点,双参数分岔序列是不同的。以上结果说明,不同参数配置下的神经放电节律的变化规律是不同的,而且分岔序列结构是认识放电节律转迁规律的基础。  相似文献   

11.
An unnoticed chaotic firing pattern, lying between period-1 and period-2 firing patterns, has received little attention over the past 20 years since it was first simulated in the Hindmarsh-Rose (HR) model. In the present study, the rat sciatic nerve model of chronic constriction injury (CCI) was used as an experimental neural pacemaker to investigate the transition regularities of spontaneous firing patterns. Chaotic firing lying between period-1 and period-2 firings was observed located in four bifurcation scenarios in different, isolated neural pacemakers. These bifurcation scenarios were induced by decreasing extracellular calcium concentrations. The behaviors after period-2 firing pattern in the four scenarios were period-doubling bifurcation not to chaos, period-doubling bifurcation to chaos, period-adding sequences with chaotic firings, and period-adding sequences with stochastic firings. The deterministic structure of the chaotic firing pattern was identified by the first return map of interspike intervals and a short-term prediction using nonlinear prediction. The experimental observations closely match those simulated in a two-dimensional parameter space using the HR model, providing strong evidences of the existence of chaotic firing lying between period-1 and period-2 firing patterns in the actual nervous system. The results also present relationships in the parameter space between this chaotic firing and other firing patterns, such as the chaotic firings that appear after period-2 firing pattern located within the well-known comb-shaped region, periodic firing patterns and stochastic firing patterns, as predicted by the HR model. We hope that this study can focus attention on and help to further the understanding of the unnoticed chaotic neural firing pattern.  相似文献   

12.
Based on bifurcation analysis, the synchronization behaviors of two identical pancreatic β-cells connected by electrical and chemical coupling are investigated, respectively. Various firing patterns are produced in coupled cells when a single cell exhibits tonic spiking or square-wave bursting individually, irrespectively of what the cells are connected by electrical or chemical coupling. On the one hand, cells can burst synchronously for both weak electrical and chemical coupling when an isolated cell exhibits tonic spiking itself. In particular, for electrically coupled cells, under the variation of the coupling strength there exist complex transition processes of synchronous firing patterns such as “fold/limit cycle” type of bursting, then anti-phase continuous spiking, followed by the “fold/torus” type of bursting, and finally in-phase tonic spiking. On the other hand, it is shown that when the individual cell exhibits square-wave bursting, suitable coupling strength can make the electrically coupled system generate “fold/Hopf” bursting via “fold/fold” hysteresis loop; whereas, the chemically coupled cells generate “fold/subHopf” bursting. Especially, chemically coupled bursters can exhibit inverse period-adding bursting sequence. Fast–slow dynamics analysis is applied to explore the generation mechanism of these bursting oscillations. The above analysis of bursting types and the transition may provide us with better insight into understanding the role of coupling in the dynamic behaviors of pancreatic β-cells.  相似文献   

13.
14.
One- and two-dimensional bifurcation studies of a prototypic model of bursting oscillations in pancreatic beta-cells reveal a squid-formed area of chaotic dynamics in the parameter plane, with period-doubling bifurcations on one side of the arms and saddle-node bifurcations on the other. The transition from this structure to the so-called period-adding structure is found to involve a subcritical period-doubling bifurcation and the emergence of type-III intermittency. The period-adding transition itself is not smooth but consists of a saddle-node bifurcation in which (n+1)-spike bursting behavior is born, slightly overlapping with a subcritical period-doubling bifurcation in which n-spike bursting behavior loses its stability.  相似文献   

15.
We have presented a new generation mechanism of slow spiking or repetitive discharges with extraordinarily long inter-spike intervals using the modified Hodgkin-Huxley equations (Doi and Kumagai, 2001). This generation process of slow firing is completely different from that of the well-known potassium A-current in that the steady-state current-voltage relation of the neuronal model is monotonic rather than the N-shaped one of the A-current. In this paper, we extend the previous results and show that the very slow spiking generically appears in both the three-dimensional Hodgkin-Huxley equations and the three dimensional Bonhoeffer-van der Pol (or FitzHugh-Nagumo) equations. The generation of repetitive discharges or the destabilization of the unique equilibrium point (resting potential) is a simple Hopf bifurcation. We also show that the generation of slow spiking does not depend on the stability of the Hopf bifurcation: supercritical or subcritical. The dynamics of slow spiking is investigated in detail and we demonstrate that the phenomenology of slow spiking can be categorized into two types according to the type of the corresponding bifurcation of a fast subsystem: Hopf or saddle-node bifurcation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号