首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracytoplasmic sperm injection (ICSI) allows the treatment of virtually every type of male infertility. Unlike in vitro fertilization (IVF), its success does not depend on sperm concentration, motility or morphology and most of the physical barriers to fertilisation are by-passes. Since ICSI does not require strongly motile sperm, its use has now been expanded to incorporate immature sperm from the testes and epididymides. Successful fertilisation, pregnancies and healthy babies have all been reported. However, concerns about the safety of ICSI remain due to its short clinical history and the lack of testing on animal models. Male fertility potential for assisted reproduction by ICSI cannot be measured by conventional parameters. Sperm DNA integrity is increasingly recognised as a more useful indicator. Studies have shown that sperm with higher levels of DNA damage have lower fertilisation rates after IVF and ICSI. Sperm with DNA damage above a certain threshold are associated with a longer time to conceive in otherwise apparently fertile couples and a higher miscarriage rate. DNA damage has been shown to be associated with impaired embryo cleavage. Our group has shown that sperm DNA from testicular sperm is less fragmented than that from epididymal sperm and suggest its preferred use in ICSI. In addition to nuclear (n) DNA we also assessed the quality of mitochondrial (mt) DNA from testicular sperm from men with obstructive azoospermia undergoing ICSI. We observed that couples achieving a pregnancy had both less mtDNA deletions and less nDNA fragmentation. We found inverse relationships between pregnancy and sperm mtDNA deletion numbers, size and nDNA fragmentation. No relationships were observed with fertilisation rates. With this knowledge, we designed an algorithm for the prediction of pregnancy based on the quality of sperm nDNA and mtDNA. Each year 40,000 men have a vasectomy in the UK but every year 2500 request a reversal to begin a second family. For such men, vasectomy reversal has recently been replaced in part by testicular biopsy via fine-needle testicular sperm aspiration (TESA) or percutaneous epididymal sperm aspiration (PESA) performed at an outpatient clinic and subsequently used in ICSI. Since these were previously fertile men it has been assumed that they had ‘fertile’ sperm. However the assited conception success rates of these mens partners has not been assessed until recently. We have shown a significant reduction in the clinical pregnancy rates in the partners of men who had had a vasectomy ≥10yrs previously. There is also evidence to suggest that spermatogenesis is significantly impaired in vasectomised men. Marked decreases in spermatocytes, spermatids and spermatozoa have been observed. We have found this to be associated with concomitant increases in apoptotic markers, such as Fas, FasL and Bax. The quality of the remaining sperm is also compromised. Sperm DNA from vasectomized men shows substantial damage which increases with time after surgery. This new use of ICSI will be discussed.  相似文献   

2.
3.
Yu Y  Zhao C  Lv Z  Chen W  Tong M  Guo X  Wang L  Liu J  Zhou Z  Zhu H  Zhou Q  Sha J 《PloS one》2011,6(7):e22172
The invention of intracytoplasmic sperm injection (ICSI) has possibly been the most important development in reproductive medicine, one that has given hope to thousands of infertile couples worldwide. However, concerns remain regarding the safety of this method since it is a more invasive procedure than in vitro fertilization (IVF), since a spermatozoon is injected into the oocyte cytoplasm. Using mice derived from IVF technology as a control, we assessed the influence of invasive microinjection in the process of transferring sperm into oocyte cytoplasm in ICSI procedure on the development and physiologic function of resultant offspring. Our results demonstrated that mice produced from ICSI and IVF had no significant difference in phenotypic indices including body weight, forelimb physiology, and learning and memory ability. However, increased spermatocyte apoptosis was observed in the testis of adult ICSI mice, when compared with IVF mice. And, decreased testis weight and marked damage of spermatogenic epithelia were found in aged ICSI mice. Furthermore, proteomic analysis verified that most of the differentiated proteins in testes between adult ICSI and IVF mice were those involved in regulation of apoptosis pathways. Our results demonstrated that the microinjection manipulation used in the ICSI procedure might pose potential risks to the fertility of male offspring. The changed expression of a series of proteins relating to apoptosis or proliferation might contribute to it. Further studies are necessary to better understand all the risks of ICSI.  相似文献   

4.
The debate concerning the health of children conceived by artificial reproduction technology (ART) continues. Among these techniques, intracytoplasmic sperm injection (ICSI) is the subject of most attention. Indeed, several studies have concentrated on the evaluation of risks associated with ICSI. The publication of a few recent articles on the subject is providing an opportunity to reconsider the situation. Generally, women conceiving via ART are older, more often primipar and present increased rates of uterine pathologies compared to women conceiving naturally. Furthermore, ART pregnancies are sources of anxiety resulting in a significant increase rates of caesarean section. ART children present an increased risk of low birth rate often linked to multiple pregnancy, but this is also true for singleton pregnancy. Major studies have not revealed a significantly increased rate of malformations in ICSI children. However, sporadic observations of errors in genomic imprinting or of rare tumors in children conceived by ICSI point to a need for increased vigilance of ICSI practices. Finally, the mental development, the family and social life of ICSI children appears similar to children conceived naturally.  相似文献   

5.
Summary Intracytoplasmic sperm injection (ICSI) is a technique commonly used in clinical and research settings. In mouse oocytes, conventional ICSI has a poor survival rate caused by a high level of lysis. Cytochalasin B (CB) is a toxic microfilament-inhibiting agent that is known to relax the cytoskeleton and enhance the flexibility of oocytes. CB has been used widely in nuclear transfer experiments to improve the success rate of the micromanipulation, however information describing the use of CB in ICSI is limited. Here, we demonstrated that the addition of 5 μg/ml CB to the manipulation medium of ICSI procedure significantly improved the survival rate of the ICSI embryos (80.74% vs. 89.50%, p < 0.05), and that there was no harm for the in vitro or in vivo development. The birth rates and birth weights were not significantly different between the CB-treated and -untreated groups. Interestingly, the microfilaments of the ICSI embryos were almost undetectable immediately after CB treatment; however, they gradually re-appeared and had fully recovered to the normal level 2 h later. Moreover, CB did not disturb spindle rotation, second polar body formation or pronuclei migration, and had no effect on the microtubules. We thus conclude that ICSI manipulation in CB-containing medium results in significantly improved survival rate of mouse ICSI embryos, and that short-term treatment with CB during ICSI manipulation does not have adverse effects on the development of ICSI embryos.  相似文献   

6.
Sperm analysis was performed in a male with oligoasthenoteratozoospermia (OAT) and a reciprocal t(Y;16) (q11. 21;q24), using four-color FISH. Intracytoplasmic sperm injection (ICSI) treatment in this patient had resulted in the birth of one chromosomally balanced and two chromosomally normal children. To assess the risk of having a chromosomally unbalanced conception after ICSI, morphologically normal spermatozoa were studied with a set of probes allowing detection of all segregation variants. There were 51% normal or balanced sperm cells. The fraction of sperm products resulting from alternate and adjacent I segregation was 87%, 12% were products of 3:1 disjunction, and the other 1% had other types of aneuploidy. If morphologically abnormal cells were also included in the FISH analysis, nearly 90% of all the spermatozoa were unbalanced. We conclude that although the majority of males with a Y/autosome translocation are infertile due to azoospermia, our patient produces sufficient morphologically and chromosomally normal spermatozoa to have chromosomally normal or balanced offspring after ICSI. Assuming that ICSI with an unbalanced spermatozoon from this patient would result in a nonviable embryo in many cases, the combination of in vitro and subsequent in vivo selection probably results in a risk of unbalanced offspring of much less than 50%. Hence, FISH studies on the sperm of translocation carriers are useful for estimating the risk of having unbalanced offspring after ICSI and in understanding the mechanisms underlying infertility in such carriers.  相似文献   

7.
Male sterility results from a number of characterized exogeneous or genetic dysfunctions preventing normal differentiation into mobile spermatozoa. This may now be overcome by intra cytoplasmic sperm injection (ICSI). This practice does not require mobile, or even mature spermatozoa for in vitro fecondation. However, a functional respiratory chain, partly encoded by the mitochondrial DNA (mtDNA), is required for the mobility of the spermatozoa. We report the case of an infertile patient who wished to procreate. ICSI was proposed but he displayed multiple mtDNA deletions of possible nuclear origin in the spermatozoa and in the deltoid muscle. Even though mtDNA is maternally inherited, the possibility of a nuclear-driven mutation affecting the integrity of the mtDNA should be taken into account when ICSI is to be performed. Together with recent genetic in vitro manipulations in mammals, our data point to the importance of studying the mtDNA structure in human spermatozoa, and the potential risks of these non-natural practices for procreation.  相似文献   

8.
Aneuploid spermatozoa in infertile men: teratozoospermia.   总被引:7,自引:0,他引:7  
We and others have demonstrated that infertile men who are candidates for intracytoplasmic sperm injection (ICSI) have an increased frequency of chromosomal abnormalities in their sperm. Reports based on prenatal diagnosis of ICSI pregnancies have confirmed the increased frequency of chromosomal abnormalities in offspring. Most studies to date have lumped various types of infertility together. However, it is quite likely that some subsets of infertility have an increased risk of sperm chromosomal abnormalities whereas others do not. We have studied nine men with severe teratozoospermia (WHO, 1992 criteria, 0-13% morphologically normal forms) by multicolour fluorescence in situ hybridisation (FISH) analysis to determine if they have an increased frequency of disomy for chromosomes 13, 21, XX, YY, and XY, as well as diploidy. All of the men also had aesthenozoospermia (< 50% forward progression) but none of the men had oligozoospermia (<20 x 10(6) sperm/ml). The patients ranged in age from 20 to 49 years (mean 33.2 years) in comparison to 18 normal control donors who were 23 to 58 years (mean 35.6 years). The control donors had normal semen parameters and no history of infertility. A total of 180,566 sperm were scored in the teratozoospermic men with a minimum of 10,000 sperm analyzed/donor/chromosome probe. There was a significant increase in the frequency of disomy in teratozoospermic men compared to controls for chromosomes 13 (.23 vs.13%), XX (.13 vs.05%), and XY (.50 vs.30%) (P <.0001, 2-tailed Z statistic). This study indicates that men with teratozoospermia and aesthenozoospermia but with normal concentrations of sperm have a significantly increased frequency of sperm chromosomal abnormalities.  相似文献   

9.

Background

Intracytoplasmic Sperm Injection (ICSI) is an Assisted Reproduction Technique (ART) which offers the chance to conceive to patients presenting very low sperm counts (cryptozoospermia/severe oligozoospermia). Sperm freezing before the oocyte pick-up, can prevent from a lack of spermatozoa on the day of the ICSI. It can avoid the cancellation of the ICSI or the use of TESE (Testicular sperm extraction). The objective of this study was to analyse the practice of sperm freezing for these patients in our center over 8 years and the rate of use of these frozen sperms. We also compared the outcome of ICSIs with frozen versus ejaculated sperm.

Material and methods

We performed a retrospective epidemiological study between 2004 and 2011. We recruited all the patients having a sperm count below 1 Million/mL and who were waiting for their first ICSI attempt.

Results

169 patients were recruited: 84 cryopreserved their sperm before the ICSI (secured ICSI) while 85 did not (non-secured ICSI). Both groups were split in cryptozoospermia (<103 spermatozoa/ml): 19 and 17 patients respectively, very severe oligozoospermia (103–105/ml): 37 and 13 patients, and severe oligozoospermia (105–106/ml): 28 and 55 patients. The part of secured ICSI significantly increased from 29% during 2004–2007 to 74% during 2008–2011(p?=?0.0029) and the frozen sperm was used in 5.9% of the cases. Median age was significantly higher in the non secured ICSI group (33.57 vs 35.52 for men, p?=?0.0069 and 30.45 vs 32.26 for women, p?=?0.025) but no significant difference was found in the outcome of the ICSI between frozen-thawed sperm and fresh ejaculated sperm.

Conclusion

Sperm freezing before ICSI for severe oligozoospermic and cryptozoospermic patients significantly increased in our practice but the rate of use remain very low. This encourages to define more accurate criteria leading to sperm freezing.
  相似文献   

10.
Intracytoplasmic sperm injection (ICSI) is a technique that has been successfully used for assisting reproduction in mammals. However, this method is still not reliable in nonmammalian species, including teleosts. We succeeded in producing medaka individuals by ICSI with a rate of 13.4% (28 hatched embryos out of 209 eggs fertilized by ICSI), the best value reported so far in teleosts, including zebrafish and Nile tilapia. Although the technique was based on that developed for mammalian eggs, some critical modifications were made to adjust it to the medaka egg, which has a thick and hard envelope (the chorion) and a single sperm entry site (the micropyle). Medaka ICSI was performed by injecting a demembranated spermatozoon into an egg cytoplasm through the micropyle 10-15 sec after egg activation induced by a piezo-actuated vibration, the site and timing of sperm penetration being consistent with those in normal fertilization in medaka. To increase the efficiency of ICSI in medaka, we found that the fertilization by ICSI should precisely mimic the fertilization by insemination with intact sperm, both spatially and temporally. The success rate of ICSI was highly variable in batches of eggs (ranging from 0% to 56%), suggesting that the conditions of eggs are important factors in stabilizing the production of individuals by ICSI. The success in medaka ICSI provides a basis for future research to understand the basic mechanisms in gamete biology of teleosts as well as for development of new technology that can yield valuable applications in fisheries science.  相似文献   

11.
During the last decades, many studies have shown the possible influence of sperm DNA fragmentation on assisted reproductive technique outcomes. However, little is known about the impact of sperm DNA fragmentation on the clinical outcome of frozen-thawed embryo transfer (FET) from cycles of conventional in vitro fertilization (IVF) and intra-cytoplasmic sperm injection (ICSI). In the present study, the relationship between sperm DNA fragmentation (SDF) and FET clinical outcomes in IVF and ICSI cycles was analyzed. A total of 1082 FET cycles with cleavage stage embryos (C-FET) (855 from IVF and 227 from ICSI) and 653 frozen-thawed blastocyst transfer cycles (B-FET) (525 from IVF and 128 from ICSI) were included. There was no significant change in clinical pregnancy, biochemical pregnancy and miscarriage rates in the group with a SDF >30% compared with the group with a SDF ≤30% in IVF and ICSI cycles with C-FET or B-FET. Also, there was no significant impact on the FET clinic outcome in IVF and ICSI when different values of SDF (such as 10%, 20%, 25%, 35%, and 40%) were taken as proposed threshold levels. However, the blastulation rates were significantly higher in the SDF ≤30% group in ICSI cycle. Taken together, our data show that sperm DNA fragmentation measured by Sperm Chromatin Dispersion (SCD) test is not associated with clinical outcome of FET in IVF and ICSI. Nonetheless, SDF is related to the blastocyst formation in ICSI cycles.  相似文献   

12.
This paper reviews new epidemiological, etiological and therapeutic aspects of male infertility. Because of the great improvement in the efficacy of assisted reproductive techology due to ICSI, the recently discovered genetic causes of male infertility have to be considered. While studies concerning the role of xenobiotics in disrupting endocrine regulation of testicular functions are in progress, genetic causes of male infertility has been discovered. Microdeletions of the long arm of the Y chromosome account for a substantial part of unexplained spermatogenic failures. Mutations of CFTR gene are involved in bilateral agenesis of vas deferens. This condition might be considered as a mild form of cystic fibrosis. These genetic defects together with chromosmal abnormalities, which are known to be responsible for spermatogenic failures, should be considered as potential sources of reproductive abnormalities of more global pathology transmissible to children who can be obtained by ICSI with ejaculated, epididymal or testicular sperm.  相似文献   

13.
Intracarotid cold saline infusion (ICSI) is potentially much faster than whole-body cooling and more effective than cooling caps in inducing therapeutic brain cooling. One drawback of ICSI is hemodilution and volume loading. We hypothesized that cooling caps could enhance brain cooling with ICSI and minimize hemodilution and volume loading. Six-hour-long simulations were performed in a 3D mathematical brain model. The Pennes bioheat equation was used to propagate brain temperature. Convective heat transfer through jugular venous return and the circle of Willis was simulated. Hemodilution and volume loading were modeled using a two-compartment saline infusion model. A feedback method of local brain temperature control was developed where ICSI flow rate was varied based on the rate of temperature change and the deviation of temperature to a target (32 °C) within a voxel in the treated region of brain. The simulations confirmed the inability of cooling caps alone to induce hypothermia. In the ICSI and the combination models (ICSI and cap), the control algorithm guided ICSI to quickly achieve and maintain the target temperature. The combination model had lower ICSI flow rates than the ICSI model resulting in a 55% reduction of infusion volume over a 6 h period and higher hematocrit values compared to the ICSI model. Moreover, in the combination model, the ICSI flow rate decreased to zero after 4 h, and hypothermia was subsequently maintained solely by the cooling cap. This is the first study supporting a role of cooling caps in therapeutic hypothermia in adults.  相似文献   

14.

Background

Concerns regarding the safety of ICSI have been intensified recently due to increased risk of birth defects in ICSI born children. Although fertilization rate is significantly higher in ICSI cycles, studies have failed to demonstrate the benefits of ICSI in improving the pregnancy rate. Poor technical skill, and suboptimal in vitro conditions may account for the ICSI results however, there is no report on the effects of oocyte manipulations on the ICSI outcome.

Objective

The present study elucidates the influence of mock ICSI on the functional and genetic integrity of the mouse oocytes.

Methods

Reactive Oxygen Species (ROS) level, mitochondrial status, and phosphorylation of H2AX were assessed in the in vivo matured and IVM oocytes subjected to mock ICSI.

Results

A significant increase in ROS level was observed in both in vivo matured and IVM oocytes subjected to mock ICSI (P<0.05-0.001) whereas unique mitochondrial distribution pattern was found only in IVM oocytes (P<0.01-0.001). Importantly, differential H2AX phosphorylation was observed in both in vivo matured and IVM oocytes subjected to mock ICSI (P <0.001).

Conclusion

The data from this study suggests that mock ICSI can alter genetic and functional integrity in oocytes and IVM oocytes are more vulnerable to mock ICSI induced changes.  相似文献   

15.
Sperm nuclear transfer or intracytoplasmic sperm injection (ICSI) is a powerful assisted reproductive technology (ART) for treating human male infertility. Controversial reports of increased birth defects have raised concerns about the ART's safety. The cause for birth defects, however, has remained elusive for analysis in human because of the sample size, male infertility genetics, physiological heterogeneity and associated procedures such as embryo manipulations. Animal models are required to evaluate factors leading to the increased birth defects. Here we report the establishment of medakafish model for ICSI and transgenic production. This small laboratory fish has high fecundity and easy embryology. We show that ICSI produced a 5% high percentage of fertile animals that exhibited both paternal and maternal contribution as evidenced by the pigmentation marker. Furthermore, when sperm were pre-incubated with a plasmid ubiquitously expressing RFP and subjected to ICSI, 50% of sperm nuclear transplants showed germline transmission. We conclude that medaka is an excellent model for ICSI to evaluate birth defects and that sperm nuclear transfer can mediate stable gene transfer at high efficiency. Although more demanding for experimentation, sperm-mediated transgenesis should be particularly applicable for aquaculture species with a lengthy generation time and/or a large adult body size.  相似文献   

16.
Intracytoplasmic sperm injection (ICSI) is a popular method used in assisted conception, and live offspring have been born from a variety of species, including humans. In ICSI, sperm chromatin is introduced into the oocyte together with the acrosome, a structure that does not enter the oocyte during normal fertilization. We compared sperm chromatin remodeling, the potential of embryos to develop in vitro, and DNA synthesis in mouse embryos obtained from in vitro fertilization (IVF) and ICSI. We also tested whether sperm pretreatment prior to ICSI (i.e., capacitation, acrosome reaction, membrane removal, and reduction of disulfide bonds in protamines) facilitates chromatin remodeling and affects embryo development. Sperm chromatin was examined on air-dried, Giemsa-stained preparations at 30-min intervals for up to 4.5 h postfertilization. In all experimental groups, the oocytes underwent activation and formed pronuclei with similar rates. However, the dynamics of sperm chromatin remodeling in ICSI and IVF embryos varied. In ICSI, chromatin remodeling was more asynchronous than in IVF. Sperm capacitation prior to injection enhanced remodeling asynchrony and resulted in delayed pronuclei formation and DNA synthesis. The removal of the acrosome prior to injection with calcium ionophore A23187 but not with detergent Triton X-100 allowed more synchronous chromatin remodeling, timely DNA synthesis, and good embryo development. Our data have significance for the refinement of the molecular and biologic mechanisms associated with ICSI for current and future applications.  相似文献   

17.
The effects of cysteine treatment on fertilization rate, intracellular concentration of glutathione, and embryo development in vitro and after embryo transfer were examined following intracytoplasmic sperm injection (ICSI) of in vitro-matured porcine oocytes using a piezo drive unit. Culture of presumed zygotes after ICSI with 1.71-3.71 mM cysteine for 3-12h improved (P<0.05) fertilization rates as compared to treatment with 0.57 mM cysteine or to controls (0mM) (56 to 68%, 48%, 35%, respectively). Extension of treatment time with cysteine beyond 3h did not further increase fertilization rates, suggesting that cysteine promoted early developmental events after ICSI (e.g. decondensation of sperm chromatin). There was no effect of cysteine supplementation on oocyte glutathione levels after ICSI. Pretreatment of spermatozoa for 3h with 1.71 mM cysteine did not improve fertilization rates. The incidence of blastocysts formation when cultured in 1.71 mM cysteine for 3h after ICSI was 31%, which was higher (P<0.05) than controls (18%). Transfer of 20-38 embryos cultured with 1.71 mM cysteine for 3h after ICSI to each of seven recipients yielded three deliveries with an average litter size of 4.0. We concluded that cysteine supplementation for the first 3h after ICSI improved fertilization and embryo development rates, with no influence on glutathione levels in oocytes, and that the cysteine-treated ICSI embryos developed to full term. The study also showed that porcine oocytes matured in a chemically defined medium had the ability for full-term development after piezo-ICSI without additional treatments for oocyte activation.  相似文献   

18.
Understanding the behavior of transgenes introduced into oocytes or embryos is essential for evaluating the methodologies for transgenic animal production. We investigated the expression pattern of a transgene transferred to porcine eggs by intracytoplasmic sperm injection‐mediated gene transfer (ICSI‐MGT) or pronuclear microinjection (PN injection). The introduction of the EGFP gene by ICSI‐MGT yielded significantly more embryos with non‐mosaic transgene expression (P < 0.01). In the ICSI‐MGT group, 61.5% (24/39) of the embryos were EGFP‐positive in all their component blastomeres at the morula stage, while fewer than 10% of such embryos were EGFP‐positive in the PN‐injection group. Using three types of transgenes, ranging from 3.0 to 7.5 kb in size, we confirmed that approximately one in four fetuses obtained by ICSI‐MGT was transgenic, suggesting that ICSI‐MGT is a practical method for transgenic pig production. Southern blot analysis of 12 transgenic fetuses produced by ICSI‐MGT revealed that the number of integrated transgene copies varied from 1 to 300, with no correlation between transgene size and the number of integrated copies. Fluorescence in situ hybridization analysis revealed that the transgenes were randomly integrated into a single site on the host chromosomes. Together, these data indicate that multiple‐copy, single‐site integration of a transgene is the primary outcome of ICSI‐MGT in the pig and that ICSI‐MGT is less likely than PN injection to cause transgene integration in a mosaic manner. Mol. Reprod. Dev. 79: 218–228, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
We investigated whether the incorporation of the sperm membrane into the oolemma contributes to the human plasma membrane block to polyspermy. We used zona pellucida–free oocytes fertilized by intracytoplasmic sperm injection (ICSI) or activated by parthenogenetic activation. Only two of the 35 pronuclear oocytes fertilized by spermatozoa (control) demonstrated one single penetrating spermatozoa. In contrast, the majority of ICSI and parthenogenetically activated pronuclear oocytes were penetrated with an average of three spermatozoa per oocyte. The number of fused and binding spermatozoa of ICSI and parthenogenetically activated oocytes were significantly higher than in control oocytes (3.5 ± 0.6 and 4.3 ± 0.6 for ICSI; 3.0 ± 0.3 and 3.8 ± 0.4 for activated and 0.2 ± 0.1 and 0.6 ± 0.2 for controls, respectively, P < 0.01). Furthermore, the cortical granules were released from the cortex of ICSI and calcium ionophore‐puromycin‐activated pronuclear oocytes to the same extent as that of pronuclear oocytes fertilized by spermatozoa. These results suggest that the establishment of the plasma membrane block to sperm penetration in the human oocyte may require a fusion process between sperm and oocyte plasma membranes. Mol. Reprod. Dev. 52:183–188, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

20.
Yigal Soffer 《Andrologie》2004,14(1):34-44
Surgical sperm retrieval has revolutionized the treatment of azoospermia. Intracytoplasmic sperm injection (ICSI) allows naturally infertile men to have children by allowing defective sperm cells to fertilize oocytes. These techniques, applied without any preliminary animal experimentation, raised an enormous enthusiasm and are performed on a large-scale. To increase the efficiency of these treatments, the clinicians are now trying, without success, to identify factors predictive of success allowing better patient selection and counselling of couples dependent on these techniques in order to avoid useless and harmful interventions. Animal research, conducted after introduction of these techniques, has raised serious doubts about the safety of ICSI and the legitimacy of using defective spermatozoa from genetically high-risk patients. Some studies have also emphasized the unusual frequency of obstetric and neonatal problems as well as rare diseases and malignancies in ICSI-born children and ART-born children. However, these disturbing findings are not specifically related to the ICSI procedure, as demonstrated by well-conducted large-scale follow-up studies in ICSI-born children. This paradox raises a lively debate. ICSI-children follow-up studies should continue until sound data taking into account the genetic and all other parental background are obtained. In conclusion, non obstructive azoospermic patients should be informed of the limits of sperm retrieval and genetic screening tools as well as all risks common to ICSI and ART.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号