首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C M Price  R Skopp  J Krueger  D Williams 《Biochemistry》1992,31(44):10835-10843
The 51-kDa telomere protein from Euplotes crassus binds to the extreme terminus of macronuclear telomeres, generating a very salt-stable telomeric DNA-protein complex. The protein recognizes both the sequence and the structure of the telomeric DNA. To explore how the telomere protein recognizes and binds telomeric DNA, we have examined the DNA-binding specificity of the purified protein using oligonucleotides that mimic natural and mutant versions of Euplotes telomeres. The protein binds very specifically to the 3' terminus of single-stranded oligonucleotides with the sequence (T4G4) > or = 3 T4G2; even slight modifications to this sequence reduce binding dramatically. The protein does not bind oligonucleotides corresponding to the complementary C4A4 strand of the telomere or to double-stranded C4A4.T4G4-containing sequences. Digestion of the telomere protein with trypsin generates an N-terminal protease-resistant fragment of approximately 35 kDa. This 35-kDa peptide appears to comprise the DNA-binding domain of the telomere protein as it retains most of the DNA-binding characteristics of the native 51-kDa protein. For example, the 35-kDa peptide remains bound to telomeric DNA in 2 M KCl. Additionally, the peptide binds well to single-stranded oligonucleotides that have the same sequence as the T4G4 strand of native telomeres but binds very poorly to mutant telomeric DNA sequences and double-stranded telomeric DNA. Removal of the C-terminal 15 kDa from the telomere protein does diminish the ability of the protein to bind only to the terminus of a telomeric DNA molecule.  相似文献   

2.
Ligation-mediated PCR was used to characterize intermediates in the fragmentation/de novo telomere addition process that occurs during sexual reproduction in the ciliate E. crassus. Fragmentation generates ends with 6-base, 3' overhangs that have 5'-phosphate and 3'-hydroxyl groups. These intermediates are detected only during the period of chromosome fragmentation. Fragmentation always occurs at a precise distance from a conserved sequence, the E-Cbs, indicating that it is a key cis-acting element in the process. The results also serve to identify the natural substrate for de novo telomere addition and indicate that telomerase recognizes, and compensates for, partial telomeric repeats at the ends of fragmentation intermediates. Similarities of the Euplotes fragmentation/telomere addition process to the movement of some non-long terminal repeat retrotransposons are discussed.  相似文献   

3.
W Wang  R Skopp  M Scofield    C Price 《Nucleic acids research》1992,20(24):6621-6629
We have identified two 1.6 kb macronuclear DNA molecules from Euplotes crassus that hybridize to the alpha subunit of the Oxytricha telomere protein. We have shown that one of these molecules encodes the 51 kDa Euplotes telomere protein while the other appears to encode a homolog of the telomere protein. Although this homolog clearly differs in sequence from the Euplotes telomere protein, the two proteins share extensive amino acid sequence identity with each other and with the alpha subunit of the Oxytricha telomere protein. In all three proteins 35-36% of the amino acids are identical, while 54-56% are similar. The most extended regions of sequence conservation map within the N-terminal section; this section has been shown to comprise the DNA-binding domain in the Euplotes telomere protein. Our findings suggest that some of the conserved amino acids may be involved in DNA recognition and binding. The gene encoding the telomere protein homolog contains two introns; one of these introns is only 24 bp in length. This is the smallest mRNA intron reported to date.  相似文献   

4.
Binding of the telomerase ribonucleoprotein from the ciliate Euplotes aediculatus to telomeric DNA in vitro has been examined by electron microscopy (EM). Visualization of the structures that formed revealed a globular protein complex that localized to the DNA end containing the E. aediculatus telomere consensus 3'-single-strand T(4)G(4)T(4)G(4)T(4)G(2) overhang. Gel filtration confirmed that purified E. aediculatus telomerase is an active dimer in solution, and comparison of the size of the DNA-associated complex with apoferritin suggests that E. aediculatus telomerase binds to a single telomeric 3'-end as a dimer. Up to 43% of the telomerase-DNA complexes appeared by EM to involve tetramers or larger multimers of telomerase in association with two or more DNA ends. These data provide the first direct evidence that telomerase is a functional dimer and suggest that two telomerase ribonucleoprotein particles cooperate to elongate each Euplotes telomere in vivo.  相似文献   

5.
To investigate the developmentally programmed telomere addition that accompanies chromosome fragmentation during macronuclear differentiation in Tetrahymena thermophila, five representative telomeric regions from the macronucleus were cloned and characterized in detail. The sequences adjacent to the telomeric (C4A2:T2G4) repeats on these five macronuclear ends had no significant sequence homology or shared secondary structure. Two developmentally independent examples of one macronuclear telomere had a 5 base pair difference in the position of the junction between the telomeric repeats and the adjacent sequences. A telomere-adjacent sequence, in the form of a synthetic oligonucleotide, was unable to prime the addition of telomeric repeats in vitro. The implications of these results for the mechanisms underlying developmentally programmed chromosome fragmentation and telomere addition in Tetrahymena are discussed.  相似文献   

6.
During sexual reproduction, Euplotes crassus precisely fragments its micronuclear chromosomes and synthesizes new telomeres onto the resulting DNA ends to generate functional macronuclear minichromosomes. In the micronuclear chromosomes, the macronuclear-destined sequences are typically separated from each other by spacer DNA segments, which are eliminated following chromosome fragmentation. Recently, in vivo chromosome fragmentation intermediates that had not yet undergone telomere addition have been characterized. The ends of both the macronuclear-destined and eliminated spacers were found to consist of six-base, 3′ overhangs. As this terminal structure on the macronuclear-destined sequences serves as the substrate for de novo telomere addition, we sought to determine if the spacer DNAs might also undergo telomere addition prior to their elimination. Using a polymerase chain reaction approach, we found that at least some spacer DNAs undergo de novo telomere addition. In contrast to macronuclear-destined sequences, heterogeneity could be observed in the position of telomeric repeat addition. The observation of spacer DNAs with telomeric repeats makes it unlikely that differential telomere addition is responsible for differentiating between retained and eliminated DNA. The heterogeneity in telomere addition sites for spacer DNA also resembles the situation found for telomeric repeat addition to macronuclear-destined sequences in other ciliate species.  相似文献   

7.
We have found abundant telomere-specific terminal transferase activity in crude macronuclear extracts from vegetatively growing cells of the hypotrichous ciliate Oxytricha nova. This activity adds two to seven tandem repeats of the sequence GGGGTTTT (the Oxytricha telomeric repeat) to the 3' end of oligonucleotide primers ending in repeats of G4T4 and always adds the repeats in the proper phase. The activity requires the presence of micromolar amounts of dGTP and dTTP as well as single-stranded oligomer primers ending 3' with repeats of the Oxytricha telomeric sequence. A nuclease activity is present in the extracts which is closely balanced with telomere terminal transferase activity. We propose a simple model for replication of the ends of linear DNA molecules based on the telomere terminal transferase.  相似文献   

8.
Yeo M  Rha SY  Jeung HC  Shen XH  Yang SH  An SW  Roh JK  Chung HC 《FEBS letters》2005,579(1):127-132
Even if template sequence of hTR played an essential role in telomere binding, a 326 nucleotide fragment of hTR containing template, pseudoknot, and CR4-5 domains is critical for both binding with telomeric DNA and reconstitution of telomerase activity. A functional study with antisense oligonucleotides suggested that targeted disruption of the template region efficiently abrogated both telomeric DNA binding and telomerase activity, whereas disruption of the CR4-5 region induced only loss of telomerase activity. hTR interacts with telomeric DNA via structural region composed of the template, pseudoknot, and CR4-5 domains, however, each structural domain plays a distinct role in telomere binding and telomerase activity reconstitution.  相似文献   

9.
Rice proteins that bind single-stranded G-rich telomere DNA   总被引:4,自引:0,他引:4  
In this work, we have identified and characterized proteins in rice nuclear extracts that specifically bind the single-stranded G-rich telomere sequence. Three types of specific DNA-protein complexes (I, II, and III) were identified by gel retardation assays using synthetic telomere substrates consisting of two or more single-stranded TTTAGGG repeats and rice nuclear extracts. Since each complex has a unique biochemical property and differs in electrophoretic mobility, at least three different proteins interact with the G-rich telomere sequences. These proteins are called rice G-rich telomere binding protein (RGBP) and none of them show binding affinity to double-stranded telomere repeats or single-stranded C-rich sequence. Changing one or two G's to C's in the TTTAGGG repeats abolishes binding activity. RGBPs have a greatly reduced affinity for human and Tetrahymena telomeric sequence and do not efficiently bind the cognate G-rich telomere RNA sequence UUUAGGG. Like other telomere binding proteins, RGBPs are resistant to high salt concentrations. RNase sensitivity of the DNA-protein interactions was tested to investigate whether an RNA component mediates the telomeric DNA-protein interaction. In this assay, we observed a novel complex (complex III) in gel retardation assays which did not alter the mobilities or the band intensities of the two pre-existing complexes (I and II). The complex III, in addition to binding to telomeric sequences, has a binding affinity to rice nuclear RNA, whereas two other complexes have a binding affinity to only single-stranded G-rich telomere DNA. Taken together, these studies suggest that RGBPs are new types of telomere-binding proteins that bind in vitro to single-stranded G-rich telomere DNA in the angiosperms.  相似文献   

10.
In the ciliate Euplotes crassus, millions of new telomeres are synthesized by telomerase and polymerase alpha-primase during macronuclear development in mated cells. Concomitant with de novo telomere formation, telomerase assembles into higher-order complexes of 550 kDa, 1,600 kDa, and 5 MDa. We show here that telomerase is physically associated with the lagging-strand replication machinery in these complexes. Antibodies against DNA primase precipitated telomerase activity from all three complexes from mated cells but not the 280-kDa telomerase complex from vegetatively growing cells. Moreover, when telomerase was affinity purified, primase copurified with enzyme from mated cells but not with the 280-kDa vegetative complex. Thus, the association of telomerase and primase is developmentally regulated. Intriguingly, PCNA (proliferating cell nuclear antigen) was also found in the 5-MDa complex from mated cells. We therefore speculate that this complex is a complete telomere synthesis machine, while the smaller complexes are assembly intermediates. The physical association of telomerase and primase explains the coordinate regulation of telomeric G- and C-strand synthesis and the efficiency of telomere addition in E. crassus.  相似文献   

11.
12.
The telomerase enzyme plays a critical role in human aging and cancer biology by maintaining telomere length and extending the proliferative lifespan of most stem cells and cancer cells. Despite the importance of this enzyme, our understanding of the mechanisms that regulate its activity and establish telomere length homeostasis in mammalian cells is incomplete, in part because the perfect repetitive nature of telomeric sequence hampers in situ detection of telomere elongation patterns. Here, we describe a novel assay using a mutant telomerase that adds a well-tolerated variant telomeric repeat sequence to telomere ends. By specifically detecting the addition of these variant repeats, we can directly visualize telomere elongation events in human cells. We validate this approach by in situ mapping of telomere elongation patterns within individual nuclei and across a population of cells.  相似文献   

13.
Replication initiation and replication fork movement in the subtelomeric and telomeric DNA of native Y' telomeres of yeast were analyzed using two-dimensional gel electrophoresis techniques. Replication origins (ARSs) at internal Y' elements were found to fire in early-mid-S phase, while ARSs at the terminal Y' elements were confirmed to fire late. An unfired Y' ARS, an inserted foreign (bacterial) sequence, and, as previously reported, telomeric DNA each were shown to impose a replication fork pause, and pausing is relieved by the Rrm3p helicase. The pause at telomeric sequence TG(1-3) repeats was stronger at the terminal tract than at the internal TG(1-3) sequences located between tandem Y' elements. We show that the telomeric replication fork pause associated with the terminal TG(1-3) tracts begins approximately 100 bp upstream of the telomeric repeat tract sequence. Telomeric pause strength was dependent upon telomere length per se and did not require the presence of a variety of factors implicated in telomere metabolism and/or known to cause telomere shortening. The telomeric replication fork pause was specific to yeast telomeric sequence and was independent of the Sir and Rif proteins, major known components of yeast telomeric heterochromatin.  相似文献   

14.
We analyzed sites of macronuclear telomere addition at a single genetic locus in Paramecium tetraurelia. We showed that in homozygous wild-type cells, differential genomic processing during macronuclear development resulted in the A surface antigen gene being located 8, 13, or 26 kilobases upstream from a macronuclear telomere. We describe variable rearrangements that occurred at the telomere 8 kilobases from the A gene. A mutant (d48) that forms a telomere near the 5' end of the A gene was also analyzed. This mutant was shown to create simple terminal deletions; telomeric repeats were added directly to the truncated wild-type A gene sequence. In both the mutant and wild-type cells, the telomeric sequences (a mixture of C4A2 and C3A3 repeats) were added to various sequences within a specific 200- to 500-base-pair region rather than to a single site. No similarities were found in the primary sequences surrounding the telomere addition sites. The mutation in d48 changed the region of telomere addition at the A gene locus; this is the first example in ciliates of a mutation that affects the site of telomere addition.  相似文献   

15.
During the formation of a new macronucleus in the ciliate Euplotes crassus, micronuclear chromosomes are reproducibly broken at approximately 10 000 sites. This chromosome fragmentation process is tightly coupled with de novo telomere synthesis by the telomerase ribonucleoprotein complex, generating short linear macronuclear DNA molecules. In this study, the sequences of 58 macronuclear DNA termini and eight regions of the micronuclear genome containing chromosome fragmentation/telomere addition sites were determined. Through a statistically based analysis of these data, along with previously published sequences, we have defined a 10 bp conserved sequence element (E-Cbs, 5'-HATTGAAaHH-3', H = A, C or T) near chromosome fragmentation sites. The E-Cbs typically resides within the DNA destined to form a macronuclear DNA molecule, but can also reside within flanking micronuclear DNA that is eliminated during macronuclear development. The location of the E-Cbs in macronuclear-destined versus flanking micronuclear DNA leads us to propose a model of chromosome fragmentation that involves a 6 bp staggered cut in the chromosome. The identification of adjacent macronuclear-destined sequences that overlap by 6 bp provides support for the model. Finally, our data provide evidence that telomerase is able to differentiate between newly generated ends that contain partial telomeric repeats and those that do not in vivo.  相似文献   

16.
Li J  He S  Zhang L  Hu Y  Yang F  Ma L  Huang J  Li L 《Protoplasma》2012,249(1):207-215
Some reports have shown that nucleolar organizer regions are located at the telomeric region and have a structural connection with telomeres at the cellular level in many organisms. In this study, we found that all 45S ribosomal DNA (rDNA) signals were located at telomeric regions on the chromosomes in Chrysanthemum segetum L., and the 45S rDNA showed distinct signal patterns on different metaphase chromosome spreads. The bicolor fluorescence in situ hybridization experiment on the extended fibers revealed that telomere repeats were structurally connected with or interspersed into rDNA sequences. The close cytological structure relation between rDNA and telomere sequences led us to use PCR with combinations of the telomere primer and the rDNA primer to obtain some fragments, which were flanked by different rDNA and telomere primer sequences. One representative clone CHS2 contains closely connected rDNA and telomere sequences, suggesting that the telomere sequence invaded into the conserved rDNA sequence. In addition, the sequences of some PCR clones were flanked by the single telomeric primer sequence or the rDNA primer sequence. These results suggested that homologous recombination occurred between tandem repeat units of rDNA sequences or telomere repeats at the chromosome terminus.  相似文献   

17.
Four telomeres in the chromosomes of Aspergillus oryzae NFRI1599 were cloned and sequenced. The telomeric repeat sequence of A. oryzae consisted of dodeca-nucleotides: TTAGGGTCAACA. The length of the telomeric repeat tract was 114-136 bp, which corresponds to 9-11 repeats of the dodeca-nucleotide sequence. Compared to a chromosome internal control (18S rDNA), the telomeric sequences were found to be sensitive to BAL31 exonuclease digestion, thus proving that the identified telomeric repeat sequences were located at the most terminal tract of the chromosomes. The length of the telomeric repeat tract of A. oryzae is similar to that of Aspergillus nidulans, whose repeat unit is TTAGGG, indicating that the regulatory mechanism of telomere length might be conserved among Aspergillus species.  相似文献   

18.
WRN protein loss causes Werner syndrome (WS), which is characterized by premature aging as well as genomic and telomeric instability. WRN prevents telomere loss, but the telomeric protein complex must regulate WRN activities to prevent aberrant telomere processing. Telomere-binding TRF2 protein inhibits telomere t-loop deletion by blocking Holliday junction (HJ) resolvase cleavage activity, but whether TRF2 also modulates HJ displacement at t-loops is unknown. In this study, we used multiplex fluorophore imaging to track the fate of individual strands of HJ substrates. We report the novel finding that TRF2 inhibits WRN helicase strand displacement of HJs with telomeric repeats in duplex arms, but unwinding of HJs with a telomeric center or lacking telomeric sequence is unaffected. These data, together with results using TRF2 fragments and TRF2 HJ binding assays, indicate that both the TRF2 B- and Myb domains are required to inhibit WRN HJ activity. We propose a novel model whereby simultaneous binding of the TRF2 B-domain to the HJ core and the Myb domain to telomeric arms promote and stabilize HJs in a stacked arm conformation that is unfavorable for unwinding. Our biochemical study provides a mechanistic basis for the cellular findings that TRF2 regulates WRN activity at telomeres.  相似文献   

19.
E J Richards  S Chao  A Vongs    J Yang 《Nucleic acids research》1992,20(15):4039-4046
In an effort to learn more about the genomic organization of chromosomal termini in plants we employed a functional complementation strategy to isolate Arabidopsis thaliana telomeres in the yeast, Saccharomyces cerevisiae. Eight yeast episomes carrying A. thaliana telomeric sequences were obtained. The plant sequences carried on two episomes, YpAtT1 and YpAtT7, were characterized in detail. The telomeric origins of YpAtT1 and YpAtT7 insert DNAs were confirmed by demonstrating that corresponding genomic sequences are preferentially degraded during exonucleolytic digestion. The isolated telomeric restriction fragments contain G-rich repeat arrays characteristic of A. thaliana telomeres, as well as subterminal telomere-associated sequences (TASs). DNA sequence analysis revealed the presence of variant telomeric repeats at the centromere-proximal border of the terminal block of telomere repeats. The TAS flanking the telomeric G-rich repeat in YpAtT7 corresponds to a repetitive element present at other A. thaliana telomeres, while more proximal sequences are unique to one telomere. The YpAtT1 TAS is unique in the Landsberg strain of A. thaliana from which the clone originated; however, the Landsberg TAS cross-hybridizes weakly to a second telomere in the strain Columbia. Restriction analysis with cytosine methylation-sensitive endonucleases indicated that both TASs are highly methylated in the genome.  相似文献   

20.
Telomeres are macromolecular nucleoprotein complexes that protect the ends of eukaryotic chromosomes from degradation, end-to-end fusion events, and from engaging the DNA damage response. However, the assembly of this essential DNA-protein complex is poorly understood. Telomere DNA consists of the repeated double-stranded sequence 5′-TTAGGG-3′ in vertebrates, followed by a single-stranded DNA overhang with the same sequence. Both double- and single-stranded regions are coated with high specificity by telomere end-binding proteins, including POT1 and TPP1, that bind as a heterodimer to single-stranded telomeric DNA. Multiple POT1-TPP1 proteins must fully coat the single-stranded telomere DNA to form a functional telomere. To better understand the mechanism of multiple binding, we mutated or deleted the two guanosine nucleotides residing between adjacent POT1-TPP1 recognition sites in single-stranded telomere DNA that are not required for multiple POT1-TPP1 binding events. Circular dichroism demonstrated that spectra from the native telomere sequence are characteristic of a G-quadruplex secondary structure, whereas the altered telomere sequences were devoid of these signatures. The altered telomere strands, however, facilitated more cooperative loading of multiple POT1-TPP1 proteins compared with the wild-type telomere sequence. Finally, we show that a 48-nucleotide DNA with a telomere sequence is more susceptible to nuclease digestion when coated with POT1-TPP1 proteins than when it is left uncoated. Together, these data suggest that POT1-TPP1 binds telomeric DNA in a coordinated manner to facilitate assembly of the nucleoprotein complexes into a state that is more accessible to enzymatic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号