首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The percentage contribution of heart rate ( f H) to change in oxygen consumption ( V o2) was examined in relation to body weight and across the metabolic scope of pike. Also the consequences of variability around the regression relating V o2 and f H for estimating V o2 were considered. The percentage contribution of f H was calculated using two equations, one that ignored and one that included an estimate for oxygen consumed by the gills and absorbed across the skin ( V o2s). Using both equations the percentage contribution of f H calculated using maximum and resting values for f H and V o2 decreased with weight of pike. The omission of V o2s, resulted in erroneously high estimates of the percentage contribution of f H for pike of any given weight. The omission of V o2s resulted in erroneously high estimates of the percentage contribution of f H over the region of the metabolic scope where f H is related linearly to V o2, whereas the equation that included V o2s resulted in the expected value of 100%. Assuming zero experimental error and under normoxic conditions, the 95% confidence limits for single estimates of V o2 from 30–60-min readings of heart rate are ±39% at a heart rate of 30 beats min −1. Averaged over longer periods the error decreases, and used over several days to estimate meal size the error is of the order of 1%.  相似文献   

2.
For pike in the laboratory, the relationship between heart rate (fH) and oxygen consumption ( VO2 , mg h−1 standardized to a 500-g fish weight) can be described by a significant linear regression valid for heart rates below 55 beats min−1. Heart rate increases during activity and feeding, accurately reflecting fluctuations in metabolic rate; so it can be used as a measure of metabolic rate in the field, using heart beat telemetry techniques. Post-prandial heart rates are elevated, and closely correlated with the calorific value of the food taken in the preceding meal. Meal size can be estimated from the heart rate record with an error of less than 10%.  相似文献   

3.
Heart rate telemetry records of up to 5 days duration were obtained from pike living in Lochs Kinord and Davan, Scotland. Applying metabolic rate correlations it was found that mean metabolic rate (R) was 1.5 times standard metabolic rate (Ra), The fish rarely worked near their metabolic limits. Activity metabolism (Ra) was much higher than estimates based on mean swimming speed and comprised up to 10% of R. Most activity metabolism was the result of localized bursts of activity. Less than 10% of activity showed evidence of oxygen debt. Specific Dynamic Action or feeding metabolism (Rf) comprised 15–25% of R. Food intake estimated from heart rate was 1.5% wet body weight day−1, consumed in the form of small items captured during the day and digested during the afternoon and night.  相似文献   

4.
Apparent specific dynamic action (SDA) amplitude in young juvenile Atlantic cod Gadus morhua (1 to 8 g wet mass), fed a standardized meal and then exercised in a circular swimming respirometer at a constant swimming speed of 0·5 ± 0·3 body lengths s-1, occurred within l h after feeding in all juveniles. SDA amplitude were 1·4 to 1·8 times higher in fed fish compared to unfed fish, and rates of oxygen consumption decreased as body mass increased. SDA duration had a tendency to decrease with increasing body mass and was shortest, at 6 h, in the smallest fish (1–1·5 g), but increased to 10–11 h in the largest fish. Apparent SDA in fed fish ( R r) scaled with a mass exponent of 0·89, while maximum metabolic rate ( R max) determined by chasing fish to exhaustion and then measuring oxygen consumption for 12 h, and unfed routine metabolic rate (Rr) scaled with a mass exponent of 0·79 and 0·76 respectively. Relative aerobic scope ( R max– unfed R r) did not appear to vary over the 1 to 8 g increase in wet mass. These results show that as body mass increased in young juvenile Atlantic cod: (1) apparent SDA ( R f) increased more rapidly than R max, and (2) apparent SDA took up >98% of the relative aerobic scope and that young Atlantic cod allocated most of the energy to growth, and left little for other metabolic activities.  相似文献   

5.
Population genetic principles in relation to the pathogenicity genes have been applied on the genotypes (races) of Xanthomonas campestris pv. malvacearum(Xcm) which are characterized on the basis of bacterial blight resistant host genes ( B -genes) attacked. Observed (OF) and expected (EF) frequencies were determined to predict the intensity of selection pressure operating in the pathogen population due to the introduction of particular host resistant gene(s). Race 32 (Vp, V7 V2 V10 VN) was the most prevalent genotype representing 41.55% of the Xcm population. Other prevalent genotypes were race 30 (11.08%, Vp V2 Vin VN), race 20 (8.56%, Vp V2 VN), race 9 (6.80%, Vp Vin) and race 8 (11.59%, Vp V2). The OF (observed frequency) of race 32 was 41.55%, whereas EF (expected frequency) was 15.74% indicating a strong selection pressure favouring this highly virulent genotype. Whereas, race 31 (V7 V2 Vin VN) also overcomes four major genes like race 32 but not the polygene complex, it was less fit and possessed low EF and OF, i.e. 0.25% and 1.18% respectively. Xcm genotypes capable of attacking 3–4 major B -genes were prevalent on G. hirsutum , while genotypes with virulence against 1–2 B -genes favoured G. barbadense cottons. High virulence level in pathogen genotypes, was maintained on resistant/tolerant host genotypes of G. arboreum and G. hirsutum whereas, it was diluted on the highly susceptible G. barbadense.  相似文献   

6.
Gastric emptying time in Scophthalmus maximus , when fed friable artificial pellets based on fishmeal, is composed of two phases:
(a) a delay time (td) during which the meal forms a bolus and which shortens with temperature, and
(b) an emptying phase (duration tend ) which varies with meal size ( S ), body weight ( W ) and temperature (71 according to:
(where t end is in h, S is in g, W is in g and T is °C). During the emptying phase, stomach contents decrease curvilinearly according to:
(where St , & So is in g and t is in h) in which the instantaneous digestion rate, K , varies with fish weight and temperature as:
Food pellets were prepared which remained separate and did not form a bolus in the stomach; K increased if a given meal size was subdivided to increase surface area. If meal size was increased by ingestion of identical pellets, K decreased. After a satiation meal, appetite in young turbot returns in direct relation to the degree of stomach emptiness. When food is regularly available, young turbot feed steadily at a rate which maintains their stomachs at c. 85% maximum fullness. When trained to use demand feeders, the fish interact as a group to feed rhythmically, but feeding rate falls 33% to only two-thirds of the previous rate since stomach fullness, and hence digestion rate (g h−1), is maintained at a lower level. Reduction in dietary energy density below 1 kCal g−1 increases gastric emptying rate and the turbot demonstrate partial compensation by increasing food intake. On energy-rich diets, protein nitrogen and energy assimilation efficiencies remain high (97 5% and 91% respectively) irrespective of feeding rate and frequency.  相似文献   

7.
Abstract: The ability of muscarinic cholinergic receptors to activate phosphoinositide turnover following agonist-induced internalization has been investigated. Incubation of SH-SY5Y neuroblastoma cells with oxotremorine-M resulted in a time-dependent endocytosis of both muscarinic receptors and α subunits of Gq and G11, but not of isoforms of phosphoinositide-specific phospholipase C, into a subfraction of smooth endoplasmic reticulum (V1). Agonist-induced increases in diacylglycerol mass and in 32P-phosphatidate labeling, much of which was of the tetraenoic species, were also observed in the V1 fraction, but these increases persisted when the agonist-induced translocation of receptors into the V1 fraction was blocked. All enzymes of the phosphoinositide cycle were detectable in the V1 fraction. However, with the exception of phosphatidylinositol 4-kinase, none was enriched when compared with cell lysates. Both 32P-labeling studies and enzyme assays point to a very limited capacity of this fraction to synthesize phosphatidylinositol 4,5-bisphosphate, whereas the synthesis of phosphatidylinositol 4-phosphate is robust. These results indicate that endocytosed receptors do not appear to retain their ability to activate phosphoinositide turnover. The availability of the substrate for phospholipase C, phosphatidylinositol 4,5-bisphosphate, may be one factor that limits the activity of muscarinic receptors in this subcellular compartment.  相似文献   

8.
Abstract: Torpedo electric organ synaptosomes possess a typical vacuolar H+-ATPase (V-ATPase), inhibited by concanamycin A and insensitive to vanadate, made of the association of a catalytic soluble sector V1 to a membrane domain V0. In the electric nerves, the 57-kDa subunit B of the V1 sector was transported to the nerve endings by the slow axonal flow and did not accumulate upstream from an axonal block. In contrast, a 500% accumulation of the 15-kDa subunit c of the V0 membrane domain was observed, demonstrating that this subunit is conveyed by the fast axonal anterograde transport. After velocity sedimentation of solubilized nerve proteins, the 57- and 15-kDa subunits were recovered in different complexes corresponding, respectively, to the V1 and V0 domains. No fully assembled V-ATPase was detected. It is concluded that V1 and V0 domains of V-ATPase are transported separately in axons, at different rates, and that they only associate once arrived in nerve endings to form the active V-ATPase.  相似文献   

9.
At 14° C, standard metabolic rate (75·1 mg O2 h−1 kg−1), routine metabolic rate (108.8 mg O2 h−1 kg−1), active metabolic rate ( c . 380 mg O2 h−1 kg−1), critical swimming speed (Ucrit 1·7 BL s−1), heart rate 47 min−1), dorsal aortic pressure (3·2 kPa) and ventilation frequency (63 min−1) for triploid brown trout Salmo trutta were within the ranges reported for diploid brown trout and other salmonids at the same temperature. During prolonged swimming ( c . 80% U crit), cardiac output increased by 2·3-fold due to increases in heart rate (1·8-fold) and stroke volume (1·2-fold). At 18° C, although standard and routine metabolic rates, as well as resting heart rate and ventilation frequency increased significantly, active metabolic rate and certain cardiorespiratory variables during exercise did not differ from those values for fish acclimated to 14° C. As a result, factorial metabolic scope was reduced (2·93-fold at 18° C v . 5·13-fold at 14° C). Therefore, it is concluded that cardiorespiratory performance in triploid brown trout was not unusual at 18° C, but that reduced factorial metabolic scope may be a contributing factor to the mortality observed in triploid brown trout at temperatures near 18° C.  相似文献   

10.
The mean rate of oxygen consumption (routine respiration rate, R R, mg O2 fish−1 h−1), measured for individual or small groups of haddock Melanogrammus aeglefinus (3–12 cm standard length, L S) maintained for 5 days within flow‐through respiratory chambers at four different temperatures, increased with increasing dry mass ( M D). The relationship between R R and M D was allometric ( R R = α  M b ) with b values of 0·631, 0·606, 0·655 and 0·650 at 5·0, 8·0, 12·0 and 15·0° C, respectively. The effect of temperature ( T ) and M D on mean R R was described by     indicating a Q 10 of 2·27 between 5 and 15° C. Juvenile haddock routine metabolic scope, calculated as the ratio of the mean of highest and lowest deciles of R R measured in each chamber, significantly decreased with temperature such that the routine scope at 15° C was half that at 5° C. The cost of feeding ( R SDA) was c . 3% of consumed food energy, a value half that found for larger gadoid juveniles and adults.  相似文献   

11.
Standard metabolic rates were measured as the rate of oxygen consumption in 33 Scyliorhinus canicula , ranging in weight from 3–929 g. The amount of oxygen consumed per hour (Vo2) changed predictably with body size according to the relationship Vo2=0–104 W0.855, where W represents fish weight in g. On a weight specific basis, the level of standard metabolism in juvenile dogfish (5 g) was nearly double that measured in adults (500 g).  相似文献   

12.
Growth of Pacific cod was related to energy consumption (cal g−1 day−1) and was well described by linear equations. Maintenance ration was 11 and 12 cal g−1 day−1 at 4.5 and 6.5° C, respectively. Cod between 200 and 5000 g had similar growth rates when growth was expressed as a function of consumption (cal g−1 day−1). Laboratory consumption of food averaged 0.9 and 1.3% body weight per day at 4.5 and 6.5° C, respectively. At these temperatures growth was 0.34–0.38% body weight day−1.
Maximum stomach volumes equated to approximately 4.7% of body weight with shrimp as prey. At this meal size Pacific cod did not feed the next day. A multiple meal evacuation experiment was used to verify the consumption estimates. A return-to-hunger estimate of the meal size evacuated was 1.5% body weight day−1 at 6.5° C, similar to the 1.3% consumption estimate. For Pacific cod fed a single meal of 1% body weight the estimated instantaneous evacuation rate was 0.63 body weight day−1 at 6.5° C. Meal size markedly affected the evacuation rate.
Measured consumption and growth rates are similar to those of Atlantic cod, Gadus morhua .  相似文献   

13.
Rainbow trout were exposed (90 days) in synthetic soft water to sublethal low pH (5.2) and a simulated climate warming scenario (+2°C above the control summer temperature range of 16.5–21° C), alone and in combination, under conditions of limited food (∼4% dry body weight day−1). Weight specific oxygen consumption rates ( M o2) were ∼55% of M o2(max), in contrast to ∼75% of M o2(max) found in trout fed an unlimited ration. This is likely due to a reduction in food quantity and thus feeding activity. However, the trout exposed to low pH at control temperatures exhibited higher conversion efficiencies and increased growth. In contrast, trout exposed to +2°C had reduced growth rates. No ionoregulatory disturbance occurred in any treatment, suggesting that this ration was sufficient to provide a replacement salt load in the diet. Energy budgets indicated that the limited ration resulted in a lowered optimum temperature for growth, with a greater proportion of the energy intake dissipated for metabolic expenditure, resulting in reduced conversion efficiencies. A fourfold reduction in faecal and unaccounted energy losses indicated higher absorption efficiencies than in satiation-fed trout.  相似文献   

14.
Abstract.— As a first examination of the additive genetic variance of thermoregulatory traits in a natural population of endotherms, we studied the quantitative genetics of key physiological ecology traits in the leaf-eared mouse, Phyllotis darwini. We measured basal metabolic rate (BMR), nonshivering thermogenesis (NST), maximum metabolic rate for thermoregulation (MMR), thermal conductance (CT), body temperature (Tb), and factorial aerobic scope (FAS) in individuals acclimated to cold and warm conditions. For comparability with previous studies, we included the following morphological traits: foot length (FL), total length (TL), body mass (mb, at birth, sexual maturity, 6 months, and 8 months). Variance components were obtained from two different procedures: the expected variance component in an ANOVA Type III sum of squares and an animal model approach using restricted maximum likelihood. Results suggest the presence of additive genetic variance in FL (h2= 0.47, P = 0.045), CT of cold-acclimated animals (h2= 0.66, P = 0.041), and night body temperature, measured in cold-acclimated animals (h2= 0.68, P = 0.080). Heritabilities of mb were near zero at all ages, but maternal effects and common environment effects were high and significant. We found no evidence of additive genetic variance in BMR, NST, MMR, or FAS (i.e., estimates were not significantly different from zero for all tests). Our results are in general agreement with previous studies of mammals that reported low heritability for: (1) BMR and MMR; (2) daytime body temperature; and (3) body mass for wild, but not laboratory or domestic, populations.  相似文献   

15.
Swimming respirometry was employed to compare inactive metabolic rate ( R r), maximum metabolic rate ( R max), resultant aerobic scope and maximum sustainable (critical) swimming speed ( U crit), in growth hormone transgenic (GHT) and wild-type (W) tilapia Oreochromis sp. hybrids. Although the R r of GHT tilapia was significantly (58%) higher than their W conspecifics, there were no significant differences in their net aerobic scope because GHT tilapia exhibited a compensatory increase in R max that was equal to their net increase in R r. As a consequence, the two groups had the same U crit. The GHT and W tilapia also exhibited the same capacity to regulate oxygen uptake during progressive hypoxia, despite the fact that the GHT fish were defending a higher demand for O2. The results indicate that ectopic expression of GH raises metabolic rate in tilapia, but the fish compensate for this metabolic load and preserve such physiological determinants of fitness as aerobic scope, swimming performance and tolerance of hypoxia.  相似文献   

16.
The effects of cyhalothrin on the transient outward potassium current in central neurons of Helicoverpa armigera were studied by using the patch clamp techniques. The results showed that before using cyhalothrin (10.5 mmol/L), activation potential was approximately -40 mV, after application of the drug, the activation potential shifted roughly 10 mV to the negative potential direction, so channels can be activated more easily. Before and after cyhalothrin application, the change of current amplitude was insignificant. The value of V1/2 and k of activation curves did not change significantly, however, the V1/2 of the inactivation curves changed significantly. Inactivation curves significantly shifted to a negative direction, so that inactivation of the channels was hastened. It is indicated that there may exit a primary way in which cyhalothrin provides neurotoxicity to the nervous system through the regulation of activation potentials and inactivation state of IA channels.  相似文献   

17.
The avian postnatal metabolic rate literature is reviewed using power equations, Y = aMb, to describe the relation between postnatal resting metabolic rate (RMR) and chick body mass (M) for 25 species. In altricial species, the relation between RMR and M from hatching to fledging can be described by a single power equation, whereas in most nonaltricial species two such equations are needed, one for chicks weighing less than about 25% of mature mass ( M a) and a second for larger chicks. For altricial chicks and larger nonaltricial chicks, the body-mass exponent, b, of 25 intraspecific power equations ranged from 0.25 to 1.67 and varied inversely with M a. The scaling of postnatal RMR is thus unlike that of either adult or hatchling metabolism in that it is size dependent. We examined the relationship between intraspecific b and M a using Felsenstein's independent contrasts method to control for statistical complications due to the hierarchical nature of phylogenetic relationships. This "phylogenetic regression" technique yielded the relation b = 1.6 M a-015, in which mature mass explained 38% of the variation in b. The mass exponent of this equation (-0.15) did not differ significantly from that determined by nonphylogenetic methods (-0.17).
In altricial chicks and larger nonaltricial chicks, the scaling coefficient, a, of the interspecific power equations varied with adult mass according to the phylogenetically determined relation a (kj/h) = 0.0052Ma0.65and was higher in fed than in fasted chicks. Equations derived in this analysis permit one to estimate the RMR of a growing chick from its mass and adult body mass and provide a basis for evolutionary and ecological comparisons.  相似文献   

18.
Standard metabolic rate ( R s) at 2°C of eight East Siberian cod Arctogadus borisovi , caught in West Greenland, body mass of 601.5 ± 147.6 g (mean ± s.D.), was 40.9 ± 5.9 mg O2 kg-1 h-1 and 59.0 ± 6.6mg O2 kg-1 h-1 when extrapolated to a standardized 100 g fish. R s was compared with three other Gadidae, to test the theory of metabolic cold adaptation (MCA). There was no evidence of MCA in the family.  相似文献   

19.
Short-term exposure to high CO2 increases rates of photosynthesis and growth in soybeans, but with prolonged high CO2 exposure, these high rates are sometimes not maintained. Growth of soybean (Glycine max (L.) Merrill cv. Fiskeby V) seedlings kept for 25 days at atmospheres of 350 or 1000 μ/l CO2 was compared with growth of plants given 2, 4 or 6 day alternating exposure to high and low CO2 levels (13 days of total exposure to each level). Final dry weight of plants increased with number of days in high CO2 but leaf areas were not greatly affected. Thus dry weight gains per unit leaf area (net assimilation rates) were higher in high CO2 than in low CO2 throughout the entire period of the experiment and the pattern of exposure to high CO2 did not affect the rate of dry weight gain in high CO2.  相似文献   

20.
Abstract.  Metabolic rate variation with temperature, body mass, gender and feeding status is documented for Glossina morsitans centralis . Metabolic rate [mean ± SE; VCO2= 19.78 ± 3.11 μL CO2 h−1 in males (mean mass = 22.72 ± 1.41 mg) and 27.34 ± 3.86 μL CO2 h−1 in females (mean mass = 29.28 ± 1.96 mg) at 24 °C in fasted individuals] is strongly influenced by temperature, body mass and feeding status, but not by gender once the effects of body mass have been accounted for. A significant interaction between gender and feeding status is seen, similar to patterns of metabolic rate variation documented in Glossina morsitans morsitans . Synthesis of metabolic rate-temperature relationships in G. m. centralis , G. m. morsitans and Glossina pallidipes indicate that biting frequency as well as mortality risks associated with foraging will probably increase with temperature as a consequence of increasing metabolic demands, although there is little evidence for variation among species at present. Furthermore, metabolic rate–body mass relationships appear to be similarly invariant among these species. These data provide important physiological information for bottom-up modelling of tsetse fly population dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号