首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of prostacyclin analogues to stimulate adenylyl cyclase (AC) and phospholipase C (PLC) in Chinese hamster ovary (CHO) cells expressing cloned human (hIP) or cloned mouse (mIP) prostacyclin receptors has been compared. For hIP, the order of potency (pEC(50)) for stimulating AC and PLC pathways was similar: AFP-07 (9.3, 8.4)>cicaprost (8.3, 6.9), iloprost (7.9, 6.8)>taprostene (7.4, 6.8)>carbacyclin (6.9, 6.6), PGE(1) (6.6, 5.1). Although the standard IP agonists cicaprost and iloprost behaved similarly in both hIP and mIP receptor-expressing cells, carbacyclin and PGE(1) showed significantly higher potency at the mIP receptor, suggesting that the agonist recognition sites on hIP and mIP receptors are not identical. A further distinction between hIP and mIP receptors was found with taprostene, which had greater efficacy at hIP receptors (AC 94%, PLC 14%) than at mIP receptors (AC 77%, PLC 0%) (cicaprost=100% in each assay).  相似文献   

2.
The effect of prostaglandins (PG) on free cytosolic calcium concentrations [( Ca2+]i) and cAMP levels was studied in the osteosarcoma cell line UMR-106. PGF2 alpha and PGE2, but not 6-keto-PGF1 alpha, induced an increase in [Ca2+]i which was mainly due to Ca2+ release from intracellular stores. The EC50 for PGF2 alpha was approximately 7 nM, whereas that for PGE2 was approximately 1.8 microM. Maximal doses of PGF2 alpha increased [Ca2+]i to higher levels than PGE2. Both active PGs also stimulated phosphatidylinositol turnover in UMR-106 cells. The effects of the two PGs were independent of each other and appear to involve separate receptors for each PG. PGE2 was a very potent stimulator of cAMP production and increased cAMP by approximately 80-fold with an EC50 of 0.073 microM. PGF2 alpha was a very poor stimulator of cAMP production; 25 microM PGF2 alpha increased cAMP by 5-fold. The increase in cellular cAMP levels activated a plasma membrane Ca2+ channel which resulted in a secondary, slow increase in [Ca2+]i. High concentrations of both PGs (10-50 microM) inhibited this channel independent of their effect on cAMP levels. Pretreatment of the cells with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate inhibited the PG-mediated increase in phosphatidylinositol turnover and the increase in [Ca2+]i. However, pretreatment with 12-O-tetradecanoyl-13-acetate had no effect on the PGE2-mediated increase in cAMP. The latter finding, together with the dose responses for PGE2-mediated increases in [Ca2+]i and cAMP levels, suggests the presence of two subclasses of PGE2 receptors: one coupled to adenylate cyclase and the other to phospholipase C. With respect to osteoblast function, the cAMP signaling system is antiproliferative, whereas the Ca2+ messenger system, although having no proliferative effect by itself, tempers cAMP's antiproliferative effect.  相似文献   

3.
Mesangial cells play an important role in glomerular function. They are an important source of cyclooxygenase (COX)-derived arachidonic acid metabolites, including prostaglandin E(2) and prostacyclin. Prostacyclin receptor (IP) mRNA was amplified from cultured mesangial cell total RNA by RT-PCR. While the prostaglandin E(2) receptor subtype EP(2) was not detected, EP(1,3,4) mRNA was amplified. Also, IP protein was noted in mesangial cells, proximal tubules, inner medullary collecting ducts, and the inner and outer medulla. But no protein was detected in whole cortex preparations. Prostacyclin analogues: cicaprost and iloprost, increased cAMP levels in mesangial cells. On the other hand, arginine-vasopressin and angiotensin II increased intracellular calcium in mesangial cells, but cicaprost, iloprost and prostaglandin E(2) had no effect. Moreover, a 50% inhibition of cicaprost- and iloprost-cAMP stimulation was observed upon mesangial cell exposure to 25 and 35 mM glucose for 5 days. But no change in IP mRNA was observed at any glucose concentration or time exposure. Although 25 mM glucose had no effect on COX-1 protein levels, COX-2 was increased up to 50%. In contrast, PGIS levels were reduced by 50%. Thus, we conclude that the prostacyclin/IP system is present in cultured rat mesangial cells, coupling to a cAMP stimulatory pathway. High glucose altered both enzymes in the PGI(2) synthesis pathway, increasing COX-2 but reducing PGIS. In addition, glucose diminished the cAMP response to prostacyclin analogues. Therefore, glucose attenuates the PGI(2)/IP system in cultured rat mesangial cells.  相似文献   

4.
The antihypertrophic action of angiotensin-converting enzyme inhibitors in the heart results partly from local potentiation of bradykinin. We have demonstrated that the antihypertrophic action of bradykinin is mediated by the release of nitric oxide from endothelium and elevation of cardiomyocyte cGMP. Whether other paracrine factors derived from the coronary endothelium, such as prostacyclin (PGI2), may act to prevent hypertrophy has not been explored. In the vasculature, activation by PGI2 of IP and EP1 prostanoid receptors elicits vasodilatation (via cAMP-dependent signaling) and vasoconstriction, respectively. The present objective was to determine whether IP prostanoid receptor activation has antihypertrophic actions in adult rat cardiomyocytes (ARCM). The selective IP agonist cicaprost (1 microM) virtually abolished the increase in [3H]phenylalanine incorporation (a marker of hypertrophy) induced either by endothelin-1 (ET-1; 60 nM, n = 10, P < 0.005) or by angiotensin II (1 microM, n = 6, P < 0.005). Cicaprost also inhibited ET-1 induction of c-fos mRNA expression, an additional marker of hypertrophy in ARCM (n = 5, P < 0.005). In the absence of hypertrophic stimuli, cicaprost alone did not significantly influence either marker. The antihypertrophic actions of cicaprost were mimicked by the dual IP/EP1 agonist iloprost (1 microM) in the presence of the EP1 antagonist AH-6809 (3 microM). Furthermore, cicaprost modestly but significantly increased cardiomyocyte cAMP content by 13 +/- 6% (P < 0.05, n = 4), and the antihypertrophic effect of cicaprost was lost in the presence of the cAMP-dependent protein kinase inhibitor H-89 (1 microM, n = 5, P < 0.05). However, ET-1 also induced increases in the activity of the intracellular growth signals ERK1 (by 3-fold) and ERK2 (by 5-fold) in ARCM, and these were not inhibited by cicaprost (P < 0.01, n = 5). Activation of IP receptors thus represents a novel approach to prevention of hypertrophy, and this effect is linked to cAMP-dependent signaling.  相似文献   

5.
The mechanism through which iloprost permits cerebral vasodilation induced by specific stimuli is incompletely understood. Previous study suggests there might be interplay between the adenylyl cyclase and phospholipase C (PLC) systems. Coupling of the prostacyclin receptor with the PLC pathway system was investigated. Iloprost, a stable prostacyclin analog, was used as a prostacyclin receptor agonist. We investigated the effects of iloprost (10-12-10-6 M) on inositol 1,4,5-trisphosphate (IP3) production by piglet cerebrovascular smooth muscle cells in primary culture. Iloprost caused concentration- and time-dependent increases in IP3 production in control cells and in cells pretreated with LiCl (to prevent further IP3 metabolism). Iloprost treatment (10-12 M) of cerebrovascular smooth muscle cells, in the absence and presence of 20 mM LiCl, resulted in 2-fold and 4-fold increases in the formation of IP3, respectively. In contrast, 10-10 M to 10-6 M iloprost, either in the presence or absence of LiCl, induced moderate or no increase in IP3 formation. Iloprost (10-10-10-12 M) strongly stimulated diacylglycerol (DAG) generation, whereas higher concentrations (10-8 M) did not induce an increase. In conclusion, the results suggest that prostacyclin receptors on cerebromicrovascular smooth muscle can couple to PLC, generating the second messengers, IP3 and DAG.  相似文献   

6.
The mechanisms of muscarinic receptor-linked increase in cAMP accumulation in SH-SY5Y human neuroblastoma cells has been investigated. The dose-response relations of carbachol-induced cAMP synthesis and carbachol-induced rise in intracellular free Ca2+ were similar. The stimulated cAMP synthesis was inhibited by about 50% when cells were entrapped with the Ca2+ chelator BAPTA or in the presence of the protein kinase C (PKC) inhibitor staurosporine. Production of cAMP could be induced also by the Ca2+ ionophore, ionomycin and by TPA, an activator of PKC. When added together TPA and ionomycin had a synergistic effect. When cAMP synthesis was activated with cholera toxin, PGE1 or PGE1 + pertussis toxin carbachol stimulated cAMP production to the same extent as in control cells. Ca2+ and protein kinase C thus seem to be the mediators of muscarinic-receptor linked cAMP synthesis by a direct action on adenylate cyclase.  相似文献   

7.
Thrombin induced an increase in [Ca2+]i in mouse mastocytoma P-815 cells. This increase was markedly reduced by prior exposure to pertussis toxin (PT) but not by removal of extracellular Ca2+, suggesting that thrombin stimulates phospholipase C via a PT-sensitive GTP-binding protein. ATP also induced an increase in [Ca2+]i. This increase was insensitive to PT but completely suppressed on removal of extracellular Ca2+, suggesting that ATP stimulates Ca2+ influx in a PT-insensitive manner. Iloprost, a stable prostacyclin analogue, increased the cellular cAMP level and dose-dependently inhibited the thrombin-induced increase in [Ca2+]i, whereas the ATP-induced increase in [Ca2+]i was markedly enhanced by iloprost. Cyclic AMP analogues, dibutyryl cAMP and 8-bromo cAMP, also inhibited the increase in [Ca2+]i induced by thrombin and promoted that by ATP, indicating that the inhibitory and stimulatory effects of iloprost are mediated by cAMP. These results suggest that the prostacyclin receptor differentially regulates two distinct Ca2+ mobilizing systems via cAMP in mastocytoma cells.  相似文献   

8.
Mouse prostacyclin (mIP) receptors transiently expressed in Chinese hamster ovary (CHO) cells activated both adenylyl cyclase and phospholipase C, with a 33-fold preference for signaling through Gs. The prostacyclin (IP) receptor agonists cicaprost, iloprost, carbacyclin, and prostaglandin E1 showed a similar order of potency for activation of both signaling pathways in cells transiently transfected with the mIP and the chimeric prostacyclin/prostaglandin D2 (IPN-VII/DPC and IPN-V/DPVI-C) receptors. Substitution of the carboxyl-terminal tail of the prostacyclin receptor with the corresponding region of the mDP receptor (IPN-VII/DPC) produced a receptor with increased coupling to both Gs and Gq. However, this increased G-protein coupling was lost in the IPN-V/DPVI-C receptor. The observation that both these chimeric receptors can activate phospholipase C indicates that the carboxyl-terminal tail of the IP receptor is not entirely responsible for its ability to couple to Gq. Site-directed mutagenesis studies suggest that isoleucine at position 323 in the IPN-VII/DPC receptor plays an important role in mediating the increased potency of this chimeric receptor.  相似文献   

9.
The possibility that the prostacyclin analogues AFP-07 and cicaprost relax saphenous vein preparations of pig, guinea-pig and rabbit by simultaneously activating prostanoid EP4 and IP (prostacyclin) receptors was investigated using the high-affinity EP4 antagonist GW 627368. The IP receptor system in each preparation was suppressed with the partial agonist taprostene. The results indicate that AFP-07 and cicaprost are moderately potent EP4 agonists on pig saphenous vein, but much weaker EP4 agonists on guinea-pig saphenous vein. GW 627368 did not antagonise AFP-07- and cicaprost-induced relaxation of rabbit saphenous vein, which contrasts with a previous study using the EP4 blocker AH 23848. However, treatment with taprostene was of less value due to poorer antagonism of the rabbit IP system; this may be related to the presence of a sensitive EP2 relaxant system. Relaxation of each preparation induced by the selective EP2 agonist ONO-AE1-259 was unaffected by GW 627368, with and without taprostene.  相似文献   

10.
We have identified both high-affinity (KD = 36 +/- 3 nM) and low-affinity (KD = 2.1 +/- 0.8 microM) prostacyclin (PGI2)-receptor sites on human erythroleukemia (HEL) cells using the radiolabelled prostacyclin analogue. [3H]iloprost. The addition of the phorbol ester, TPA, to the culture medium caused a 5-10-fold increase in the number of both the low- and the high-affinity sites, without any change in their affinity constants. Iloprost stimulated HEL cell membrane adenylate cyclase activity 5-fold. This stimulation was potentiated in the presence of GTP, indicating a conventional PGI2 receptor-G2-adenylate cyclase system. HEL cells represent a source of prostacyclin receptor mRNA which may be of value in expression cloning of this receptor.  相似文献   

11.
Interleukin 2 (IL 2) stimulated DNA synthesis of murine T lymphocytes (CT6) in a concentration-dependent manner, over a range of 1-1000 units/ml. This proliferative effect of IL 2 was attenuated by simultaneous exposure to prostaglandin E2 (PGE)2. In intact cells, IL 2 inhibited both basal and PGE2-stimulated cAMP production; the amount of cAMP generated was dependent upon the relative concentrations of IL 2 and PGE2. The effect of IL 2 on CT6 cell proliferation and cAMP production was mimicked by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), which, like IL 2, causes a translocation and activation of protein kinase C. While PGE2 stimulated adenylate cyclase activity in membrane preparations, neither IL 2 nor TPA inhibited either basal or stimulated membrane adenylate cyclase activity. However, when CT6 cells were pretreated with IL 2 or TPA and membranes incubated with calcium and ATP, both basal and PGE2-and NaF-stimulated membrane adenylate cyclase activity was inhibited. This inhibition of adenylate cyclase activity was also observed if membranes from untreated cells were incubated with protein kinase C purified from CT6 lymphocytes in the presence of calcium and ATP. The data suggest that the decreased cAMP production which accompanies CT6 cell proliferation results from an inhibition of adenylate cyclase activity mediated by protein kinase C and that these two distinct protein phosphorylating systems interact to modulate the physiological response to IL 2.  相似文献   

12.
1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3) receptor content in cultured osteogenic sarcoma cells (UMR-106) was found to be increased after treatment with both bovine and human PTH and human PTH-like peptide (hPLP). The dose dependent increase of receptors was preceded by a dose dependent stimulation of cAMP production. This suggests a role for cAMP as mediator of the PTH- and hPLP-induced 1,25-(OH)2D3 receptor up-regulation. Furthermore, evidence was obtained that new mRNA and de novo receptor synthesis is involved in this heterologous 1,25-(OH)2D3 receptor up-regulation.  相似文献   

13.
The prostacyclin (PGI2) analogues, TEI-9063 and its methyl ester, TEI-1324, have been compared with another stable analogue, iloprost, with respect to binding to the PGI2 receptor, stimulation of adenylate cyclase activity and inhibition of thrombin-induced Ca2+ mobilization in mastocytoma P-815 cells. TEI-9063 displaced the [3H]iloprost binding to the membrane fraction, the IC50 value being 3 nM, but showed very low affinity for the PGE receptor. TEI-9063 dose dependently stimulated cAMP formation in the cells and GTP-dependent adenylate cyclase activity in the membrane fraction, the EC50 value being 50 and 10 nM, respectively. Furthermore, TEI-9063 prevented the thrombin-induced increase in the intracellular Ca2+ concentration, the IC50 value being 50 nM. These IC50 and EC50 values are lower than those obtained for iloprost. On the other hand, those of TEI-1324 were about two-orders higher. Although PGI2 lost its ability to stimulate cAMP formation by preincubation for 20 min at 37 degrees C, TEI-9063 completely retained its ability after 60-min preincubation. These results demonstrate that TEI-9063 is a stable and stronger agonist for the PGI2 receptor than iloprost, and that it prevents thrombin-induced Ca2+ mobilization through stimulation of the adenylate cyclase system in mastocytoma cells.  相似文献   

14.
We investigated the effects of prostacyclin analogs and isoform-selective phosphodiesterase (PDE) inhibitors, alone and in combination, on pulmonary vascular remodeling in vitro and in vivo. Vascular smooth muscle cells (VSMC) isolated from pulmonary (proximal and distal) and systemic circulations demonstrated subtle variations in expression of PDE isoform mRNA. However, using biochemical assays, we found PDE3 and PDE4 isoforms to be responsible for the majority of cAMP hydrolysis in all VSMC. In growth assays, the prostacyclin analogs cicaprost and iloprost inhibited mitogen-induced proliferation of VSMC in a cAMP-dependent manner. In addition, isoform-selective antagonists of PDEs 1, 3, or 4 inhibited VSMC proliferation, an effect that synergized with the effect of prostacyclin analogs. The inhibitory effects were greater in cells isolated from pulmonary circulation. In an in situ perfused rat lung preparation, administration of prostacyclin analogs or the PDE inhibitors vinpocetine (PDE1), cilostamide (PDE3), or rolipram (PDE4), but not EHNA (PDE2), attenuated acute hypoxic vasoconstriction (HPV). Combinations of agents led to a greater reduction in HPV. Furthermore, during exposure to hypoxia for 13 days, Wistar rats were treated with iloprost, rolipram, cilostamide, or combinations of these agents. Compared with normoxic controls, hypoxic animals developed pulmonary hypertension and distal pulmonary artery muscularization. These parameters were attenuated by iloprost+cilostamide, iloprost+rolipram, and cilostamide+rolipram but were not significantly affected by single agents. Together, these findings provide a greater understanding of the role of cAMP PDEs in VSMC proliferation and provide rationale for combined use of prostacylcin analogs plus PDE3/4 inhibitors in treatment of pulmonary vascular remodeling.  相似文献   

15.
Using monolayers of bovine aortic endothelial cells (BAEC) in modified Boyden chambers, we examined the role of prostaglandins (PGs) in the bradykinin (BK)-induced increase of albumin permeability. BK induced a concentration-dependent increase of the permeability of BAEC, which reached 49.9 +/- 1% at the concentration of 10(-8) M. Two inhibitors of the prostaglandin G/H synthase, indomethacin (2.88 microM) and ibuprofen (10 microM), potentiated BK-induced permeability 1.8- and 3.9-fold, respectively. Exogenously administered PGE2 and iloprost, a stable analog of prostacyclin, attenuated the effect of BK in a concentration-dependent manner. Butaprost equally reduced the effect of BK, suggesting the participation of the EP2 receptor in this phenomenon. However, the EP4-selective antagonist AH-23848 did not significantly inhibit the protective effect of PGE2. The inhibitory effect of PGE2 was reversed by the adenylate cyclase inhibitor MDL-12330A (10 microM). These results suggest that BK-induced increase of permeability of BAEC monolayer to (125)I-labeled albumin is negatively regulated by PGs. This postulated autocrine activity of PGs may involve an increase in the intracellular level of cAMP.  相似文献   

16.
Elevated levels of prostaglandin E2 (PGE2) have been reported in many high metastatic human breast cancers, but no relationship between exogenous PGE2 activity, expression of matrix metalloproteinases (MMPs) and metastasis in human tumor cells has been reported. The poorly invasive human breast cancer cell line MCF-7 was cultured for 24h in the presence of both phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA, 50 nM) and PGE2 (1 microM) and the activity of MMP-9, one of the MMPs involved in metastasis, was measured, in growth medium by gelatin substrate zymography. TPA induced a strong production of MMP-9 while exogenous PGE2 had no effect on the basal MMP-9 level, but inhibited the TPA induced enzyme expression and matrigel invasiveness. We showed that MCF-7 cells expressed EP2, EP3 and EP4 receptors for PGE2 and that its action was probably mediated by EP4 receptor and adenylyl cyclase activation while cAMP dependent PKA was not involved in the process of inhibition of MMP-9 production. These findings suggest a possible inhibitory role for exogenous PGE2 in the metastatic process development.  相似文献   

17.
Formation of osteoclast-like cells in mouse bone marrow cultures induced by either 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)), parathyroid hormone (PTH) or prostaglandin E(2) (PGE(2)), respectively, shows partial dependence on interleukin-6 receptor (IL-6R) activation. This suggests that locally produced IL-6 could be relevant for osteoclast formation. Therefore, we evaluated the effects of 1,25-(OH)(2)D(3), PTH, and PGE(2) on IL-6 production in stromal/osteoblastic cell lines. It appeared that these bone resorptive factors differed widely in their ability to modulate IL-6 mRNA expression and, consequently, protein synthesis in each of the cell lines studied. While 1,25-(OH)(2)D(3) was marginally effective only in ST2 cells, and PTH caused a 2- to 20-fold increase in IL-6 levels MC3T3-E1 and UMR-106 cells, PGE(2) enhanced IL-6 production in the ST2 and MC3T3-E1 cell line by two to three orders of magnitude, respectively, and also induced IL-6 in fibroblastic L929 cells. PGE(2)-stimulated IL-6 release from mesenchymal cells seems to be important for autocrine/paracrine control of osteoclast formation in health and disease.  相似文献   

18.
Prostacyclin and adenosine A2 receptors stimulate adenylate cyclase activity in the related somatic hybrid cell lines NG108-15 and NCB20. The role of cAMP in the desensitization of these receptors has been examined. Pretreatment for 17 h with forskolin or 8-bromo-cAMP had the same effect in both cell lines. There was no change in the response to sodium fluoride or forskolin, suggesting that the function of Gs and adenylate cyclase were unaffected by increased levels of cAMP. Receptor responses were affected however; the maximum response to N-ethylcarboxamidoadenosine (an A2 receptor agonist) was reduced by 30-40%, there was a small but consistent shift to the right of the dose-response curve for iloprost (a stable analogue of prostacyclin) and [3H]iloprost binding studies revealed a loss of prostacyclin receptors. However, the loss of receptor responsiveness was much smaller than that which occurs following pretreatment with prostacyclin or adenosine A2 receptor agonists (Keen et al. (1989) Biochem. Pharmacol. 38, 3827-3833; Kelly et al. (1990) Br. J. Pharmacol. 99, 309-316) suggesting that cAMP may not play a major role in agonist mediated desensitization.  相似文献   

19.
The prostacyclin receptor (IP), a G protein-coupled receptor, mediates the actions of the prostanoid prostacyclin and its mimetics. IPs from a number of species each contain identically conserved putative isoprenylation CAAX motifs, each with the sequence CSLC. Metabolic labeling of human embryonic kidney (HEK) 293 cells stably overexpressing the hemagluttinin epitope-tagged IP in the presence of [(3)H]mevalonolactone established that the mouse IP is isoprenylated. Studies involving in vitro assays confirmed that recombinant forms of the human and mouse IP are modified by carbon 15 farnesyl isoprenoids. Disruption of isoprenylation, by site-directed mutagenesis of Cys(414) to Ser(414), within the CAAX motif, abolished isoprenylation of IP(SSLC) both in vitro and in transfected cells. Scatchard analysis of the wild type (IP) and mutant (IP(SSLC)) receptor confirmed that each receptor exhibited high and low affinity binding sites for [(3)H]iloprost, which were not influenced by receptor isoprenylation. Whereas stable cell lines overexpressing IP generated significant agonist (iloprost and cicaprost)-mediated increases in cAMP relative to nontransfected cells, cAMP generation by IP(SSLC) cells was not significantly different from the control, nontransfected HEK 293 cells. Moreover, co-expression of the alpha (alpha) subunit of Gs generated significant augmentations in cAMP by IP but not by IP(SSLC) cells. Whereas IP also demonstrated significant, dose-dependent increases in [Ca(2+)](i) in response to iloprost or cicaprost compared with the nontransfected HEK 293 cells, mobilization of [Ca(2+)](i) by IP(SSLC) was significantly impaired. Co-transfection of cells with either Galpha(q) or Galpha(11) resulted in significant augmentation of agonist-mediated [Ca(2+)](i) mobilization by IP cells but not by IP(SSLC) cells or by the control, HEK 293 cells. In addition, inhibition of isoprenylation by lovastatin treatment significantly reduced agonist-mediated cAMP generation by IP in comparison to the nonisoprenylated beta(2) adrenergic receptor or nontreated cells. Hence, isoprenylation of IP does not influence ligand binding but is required for efficient coupling to the effectors adenylyl cyclase and phospholipase C.  相似文献   

20.
A tumor-derived protein with a spectrum of biologic activities remarkably similar to that of parathyroid hormone (PTH) has recently been purified and its sequence deduced from cloned cDNA. This PTH-like protein (PLP) has substantial sequence homology with PTH only in the amino-terminal 1-13 region and shows little similarity to other regions of PTH thought to be important for binding to receptors. In the present study, we compared the actions of two synthetic PLP peptides, PLP-(1-34)amide and [Tyr36]PLP-(1-36)amide, with those of bovine parathyroid hormone (bPTH)-(1-34) on receptors and adenylate cyclase in bone cells and in renal membranes. Synthetic PLP peptides were potent activators of adenylate cyclase in canine renal membranes (EC50 = 3.0 nM) and in UMR-106 osteosarcoma cells (EC50 = 0.05 nM). Bovine PTH-(1-34) was 6-fold more potent than the PLP peptides in renal membranes, but was 2-fold less potent in UMR-106 cells. A competitive PTH receptor antagonist, [Tyr34]bPTH-(7-34)amide, rapidly and fully inhibited adenylate cyclase stimulation by the PLP peptides as well as bPTH-(1-34). Competitive binding experiments with 125I-labeled PLP peptides revealed the presence of high affinity PLP receptors in UMR-106 cells IC50 = 3-4 nM) and in renal membranes (IC50 = 0.3 nM). There was no evidence of heterogeneity of PLP receptors. Bovine PTH-(1-34) was equipotent with the PLP peptides in binding to PLP receptors. Likewise, PLP peptides and bPTH-(1-34) were equipotent in competing with 125I-bPTH-(1-34) for binding to PTH receptors in renal membranes. Photoaffinity cross-linking experiments revealed that PTH and PLP peptides both interact with a major 85-kDa and minor 55- and 130-kDa components of canine renal membranes. We conclude that PTH and PLP activate adenylate cyclase by binding to common receptors in bone and kidney. The results further imply that subtle differences exist between PTH and PLP peptides in their ability to induce receptor-adenylate cyclase coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号