首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work a new strategy for automatic detection of ischemic episodes is proposed. A new measure for ST deviation based on the time–frequency analysis of the ECG and the use of a reduced set of Hermite basis functions for T wave and QRS complex morphology characterization, are the key points of the proposed methodology.Usually, ischemia manifests itself in the ECG signal by ST segment deviation or by QRS complex and T wave changes in morphology. These effects might occur simultaneously. Time–frequency methods are especially adequate for the detection of small transient characteristics hidden in the ECG, such as ST segment alterations. A Wigner–Ville transform-based approach is proposed to estimate the ST shift. To characterize the alterations in the T wave and the QRS morphologies, each cardiac beat is described by expansions in Hermite functions. These demonstrated to be suitable to capture the most relevant morphologic characteristics of the signal. A lead dependent neural network classifier considers, as inputs, the ST segment deviation and the Hermite expansion coefficients. The ability of the proposed method in ischemia episodes detection is evaluated using the European Society of Cardiology ST–T database. A sensitivity of 96.7% and a positive predictivity of 96.2% reveal the capacity of the proposed strategy to perform ischemic episodes identification.  相似文献   

2.
How we manage to reconstruct the three-dimensional character of the world from the two-dimensional representations on our retinae has been a lively subject of research in the last ten or fifteen years. One principle that has emerged unifying many of these ideas is the need for constraints to allow the visual system to interpret the images it receives as three-dimensional. These constraints come from assumptions about the nature of the situation that produced the image. We have looked at how gravity can be used as a constraint in the case of a free fall trajectory projected onto an image plane by central projection. We have examined several possible methods for deriving the initial conditions of the trajectory from the two-dimensional projection, and examined their behavior under noisy and noiseless conditions, using both image simulations and videotapes of a real ball. We show that there are several ways to robustly compute the initial conditions of the parabolic trajectory from the image data in the presence of noise.  相似文献   

3.
The subcellular localization and physiological functions of biomolecules are closely related and thus it is crucial to precisely determine the distribution of different molecules inside the intracellular structures. This is frequently accomplished by fluorescence microscopy with well-characterized markers and posterior evaluation of the signal colocalization. Rigorous study of colocalization requires statistical analysis of the data, albeit yet no single technique has been established as a standard method. Indeed, the few methods currently available are only accurate in images with particular characteristics. Here, we introduce a new algorithm to automatically obtain the true colocalization between images that is suitable for a wide variety of biological situations. To proceed, the algorithm contemplates the individual contribution of each pixel's fluorescence intensity in a pair of images to the overall Pearsońs correlation and Manders' overlap coefficients. The accuracy and reliability of the algorithm was validated on both simulated and real images that reflected the characteristics of a range of biological samples. We used this algorithm in combination with image restoration by deconvolution and time-lapse confocal microscopy to address the localization of MEK1 in the mitochondria of different cell lines. Appraising the previously described behavior of Akt1 corroborated the reliability of the combined use of these techniques. Together, the present work provides a novel statistical approach to accurately and reliably determine the colocalization in a variety of biological images.  相似文献   

4.
Three-dimensional (3D) reconstruction in single-particle cryo-electron microscopy (cryo-EM) is a significant technique for recovering the 3D structure of proteins or other biological macromolecules from their two-dimensional (2D) noisy projection images taken from unknown random directions. Class averaging in single-particle cryo-EM is an important procedure for producing high-quality initial 3D structures, where image alignment is a fundamental step. In this paper, an efficient image alignment algorithm using 2D interpolation in the frequency domain of images is proposed to improve the estimation accuracy of alignment parameters of rotation angles and translational shifts between the two projection images, which can obtain subpixel and subangle accuracy. The proposed algorithm firstly uses the Fourier transform of two projection images to calculate a discrete cross-correlation matrix and then performs the 2D interpolation around the maximum value in the cross-correlation matrix. The alignment parameters are directly determined according to the position of the maximum value in the cross-correlation matrix after interpolation. Furthermore, the proposed image alignment algorithm and a spectral clustering algorithm are used to compute class averages for single-particle 3D reconstruction. The proposed image alignment algorithm is firstly tested on a Lena image and two cryo-EM datasets. Results show that the proposed image alignment algorithm can estimate the alignment parameters accurately and efficiently. The proposed method is also used to reconstruct preliminary 3D structures from a simulated cryo-EM dataset and a real cryo-EM dataset and to compare them with RELION. Experimental results show that the proposed method can obtain more high-quality class averages than RELION and can obtain higher reconstruction resolution than RELION even without iteration.  相似文献   

5.
6.
IntroductionWe have been developing a medical imaging technique using a Compton camera, which is expected to reconstruct three-dimensional images. If the number of views is not sufficient, star-shaped artifacts (streak artifacts) could arise in cross-sectional images. Therefore, we estimated the point spread function (PSF) of cross-sectional Compton images and the effect of the number of views by Monte Carlo simulations and experimental studies.Materials and methodsA cross-sectional Compton image was reconstructed using a dataset comprising 719 view directions and PSF was analyzed using a radial distribution. The peak height, full width at half maximum (FWHM), background (BG), and residual sum of squares (RSS) were calculated from the obtained PSF. In addition, RSSs were plotted against the number of views to estimate the required number to suppress star-shaped artifacts.ResultsThere was no correlation found between the number of views and both FWHM (16 mm) and peak/BG ratio (∼1 × 104). RSSs were reduced with the number of views and approached the minimum asymptotically. Correlation was observed between the required number of views and the number of Compton events used for image reconstruction.ConclusionWe determined the PSF of cross-sectional Compton images and the effect of the number of views on the images. The required number of views to suppress the star-shaped artifact is related to the square root of the number of Compton events used to reconstruct the image. From this study, we concluded that 21 or more views are required for clinical purposes.  相似文献   

7.
Template matching together with the comprehensive theory of image formation in electron microscope provides an optimal (in Bayesian sense) tool for solving one of the outstanding problems in single particle analysis, i.e., automatic selection of particle views from noisy micrograph fields. The method is based on the assumption that the reference three-dimensional structure is known and that the relevant parameters of the model of the image formation process can be estimated. In the first stage of the procedure, a set of possible particle views is generated using the available reference structure. The template images are constructed as linear combinations of available particle views using a clustering technique. Next, the micrograph noise characteristic is established using an automated contrast transfer function (CTF) estimation procedure. Finally, the CTF parameters calculated are used to construct a matched filter and correlation functions corresponding to the available template images are calculated. In order to alleviate the problem of the biased caused by varying image formation conditions, a decision making strategy based on the predicted distribution of correlation coefficients is proposed. It is demonstrated that due to the inclusion of CTF considerations, the template matching method performed very well in a broad range of microscopy conditions.  相似文献   

8.
The scattering density of the virus is represented as a truncated weighted sum of orthonormal basis functions in spherical coordinates, where the angular dependence of each basis function has icosahedral symmetry. A statistical model of the image formation process is proposed and the maximum likelihood estimation method computed by an expectation-maximization algorithm is used to estimate the weights in the sum and thereby compute a 3-D reconstruction of the virus particle. If multiple types of virus particle are represented in the boxed images then multiple 3-D reconstructions are computed simultaneously without first requiring that the type of particle shown in each boxed image be determined. Examples of the procedure are described for viruses with known structure: (1). 3-D reconstruction of Flockhouse Virus from experimental images, (2). 3-D reconstruction of the capsid of Nudaurelia Omega Capensis Virus from synthetic images, and (3). 3-D reconstruction of both the capsid and the procapsid of Nudaurelia Omega Capensis Virus from a mixture of unclassified synthetic images.  相似文献   

9.
Parameters representing three-dimensional (3D) biofilm structure are quantified from confocal laser-scanning microscope (CLSM) images. These 3D parameters describe the distribution of biomass pixels within the space occupied by a biofilm; however, they lack a direct connection to biofilm activity. As a result, researchers choose a handful of parameters without there being a consensus on a standard set of parameters. We hypothesized that a select 3D parameter set could be used to reconstruct a biofilm image and that the reconstructed and original biofilm images would have similar activities. To test this hypothesis, an algorithm was developed to reconstruct a biofilm image with parameters identical to those of the original CLSM image. We introduced an objective method to assess the reconstruction algorithm by comparing the activities of the original and reconstructed biofilm images. We found that biofilm images with identical structural parameters showed nearly identical activities and substrate concentration profiles. This implies that the set containing all common structural parameters can successfully describe biofilm structure. This finding is significant, as it opens the door to the next step, of finding a smaller standard set of biofilm structural parameters that can be used to compare biofilm structure.  相似文献   

10.
基于遥感的建筑物高度快速提取研究综述   总被引:1,自引:0,他引:1  
钱瑶  唐立娜  赵景柱 《生态学报》2015,35(12):3886-3895
近年来我国城市化进程不断推进,不仅体现在城市面积上的增长,也体现在建筑物高度的增长。高度增长一方面能尽量克服城市土地资源匮乏的瓶颈,另一方面为优化城市结构及城市功能做出贡献。在城市遥感研究领域,对于城市建筑物高度的提取也成为研究的重点。城市建筑物高度的估计与测量,已成为城市规划和扩张、城市灾害风险预警与评估的重要参数,同时也为数字城市三维模型的建立提供了基础测绘资料。分别基于光学遥感影像、高分辨率SAR(Synthetic Aperture Radar)影像以及光学遥感影像与高分辨率SAR影像的融合三方面,全面阐述城市建筑物高度的提取方法,并比较两类影像在提取建筑物高度的优劣势,通过回顾早年研究方法,逐步引入近年来新的发展趋势。  相似文献   

11.
 A technique for measuring the motion of a rigid, textured plane in the frontoparallel plane is developed and tested on synthetic and real image sequences. The parameters of motion – translation in two dimensions, and rotation about a previously unspecified axis perpendicular to the plane – are computed by a single-stage, non-iterative process which interpolates the position of the moving image with respect to a set of reference images. The method can be extended to measure additional parameters of motion, such as expansion or shear. Advantages of the technique are that it does not require tracking of features, measurement of local image velocities or computation of high-order spatial or temporal derivatives of the image. The technique is robust to noise, and it offers a simple, novel way of tackling the ‘aperture’ problem. An application to the computation of robot egomotion is also described. Received: 3 September 1993/Accepted in revised form: 16 April 1994  相似文献   

12.
基于样品及点源光声信号逆卷积的光声成像方法   总被引:2,自引:0,他引:2  
光声成像是一种新的生物组织成像方法,在目前的光声成像中,都是通过样品光声信号和超声探测器的脉冲响应来计算样品光吸收的投影,但是由于无法获得超声探测器较准确的脉冲响应,影响重建图像质量。提出一种新的计算样品光吸收投影的方法,从理论上给出了样品光吸收投影和样品及点源光声信号的关系,由样品及点源光声信号的逆卷积可直接计算样品光吸收的投影,点源光声信号通过聚焦入射激光直接测得。试验结果显示,重建图像和样品的相对位置、形状及尺寸完全吻合,成像系统空间分辨率达到0.3mm,证明这是一种有效的光声成像方法。  相似文献   

13.
The library POLCA implements the averaging of biological structureswhose images are recorded in digital form from electron micrographs.The averaging protocol is based upon a method developed aboutten years ago, which allows one to operate on a sequence ofobjects oriented and displaced at random within their frame;the relative rotations and the displacements of the structuresare detected with the use of correlation algorithms and modifiedto make all objects appear the same, apart from their noisycomponents. The average image is then obtained by a simple additionand the signal-to-noise ratio is improved by a factor equalto the square root of the number of objects used to calculatethe average. With respect to the original implementation ofthe method, two novel features characterize the library: thefirst one deals with the functions that are cross-correlatedto determine the relative rotations of the structures; the functionsused here are the inverse transforms of the amplitude spectra(IAS functions), which give rise to sharp maxima when they arecross-correlated. The second peculiarity is the systematic adoption,in the transformations of coordinates and in other circumstances,of an interpolation technique based upon the Fourier serieskernel. POLCA is written in C and runs on a VME machine underthe UNIX V/68 operating system. A programming style has beenadopted to exploit fully the machine resources. Received on December 8, 1989; accepted on January 31, 1990  相似文献   

14.
Understanding local microstructural deformations and strains in cortical bone may lead to a better understanding of cortical bone damage development, fracture, and remodeling. Traditional experimental techniques for measuring deformation and strain do not allow characterization of these quantities at the microstructural level in cortical bone. This study describes a technique based on digital stereoimaging used to measure the microstructural strain fields in cortical bone. The technique allows the measurement of material surface displacements and strains by comparing images acquired from a specimen at two distinct stress states. The accuracy of the system is investigated by analyzing an undeformed image set; the test image is identical to the reference image but translated by a known pixel amount. An increase in the correlation sub-image train parameter results in an increase in displacement measurement accuracy from 0.049 to 0.012 pixels. Errors in strain calculated from the measured displacement field were between 39 and 564 microstrain depending upon the sub-image train size and applied image displacement. The presence of a microcrack in cortical bone results in local strain at the crack tip reaching 0.030 (30,000 microstrain) and 0.010 (10,000 microstrain) near osteocyte lacunae. It is expected that the use of this technique will allow a greater understanding of bone strength and fracture as well as bone mechanotransduction.  相似文献   

15.
We present a novel algorithm for the efficient generation of high-quality space-filling molecular graphics that is particularly appropriate for the creation of the large number of images needed in the animation of molecular dynamics. Each atom of the molecule is represented by a sphere of an appropriate radius, and the image of the sphere is constructed pixel-by-pixel using a generalization of the lighting model proposed by Porter (Comp. Graphics 1978, 12, 282). The edges of the spheres are antialiased, and intersections between spheres are handled through a simple blending algorithm that provides very smooth edges. We have implemented this algorithm on a multiprocessor computer using a procedure that dynamically repartitions the effort among the processors based on the CPU time used by each processor to create the previous image. This dynamic reallocation among processors automatically maximizes efficiency in the face of both the changing nature of the image from frame to frame and the shifting demands of the other programs running simultaneously on the same processors. We present data showing the efficiency of this multiprocessing algorithm as the number of processors is increased. The combination of the graphics and multiprocessor algorithms allows the fast generation of many high-quality images.  相似文献   

16.
We present an extensive investigation of the accuracy and precision of temporal image correlation spectroscopy (TICS). Using simulations of laser scanning microscopy image time series, we investigate the effect of spatiotemporal sampling, particle density, noise, sampling frequency, and photobleaching of fluorophores on the recovery of transport coefficients and number densities by TICS. We show that the recovery of transport coefficients is usually limited by spatial sampling, while the measurement of accurate number densities is restricted by background noise in an image series. We also demonstrate that photobleaching of the fluorophore causes a consistent overestimation of diffusion coefficients and flow rates, and a severe underestimation of number densities. We derive a bleaching correction equation that removes both of these biases when used to fit temporal autocorrelation functions, without increasing the number of fit parameters. Finally, we image the basal membrane of a CHO cell with EGFP/alpha-actinin, using two-photon microscopy, and analyze a subregion of this series using TICS and apply the bleaching correction. We show that the photobleaching correction can be determined simply by using the average image intensities from the time series, and we use the simulations to provide good estimates of the accuracy and precision of the number density and transport coefficients measured with TICS.  相似文献   

17.
Images of multiply labeled fluorescent samples provide unique insights into the localization of molecules, cells, and tissues. The ability to image multiple channels simultaneously at high speed without cross talk is limited to a few colors and requires dedicated multichannel or multispectral detection procedures. Simpler microscopes, in which each color is imaged sequentially, produce a much lower frame rate. Here, we describe a technique to image, at high frame rate, multiply labeled samples that have a repeating motion. We capture images in a single channel at a time over one full occurrence of the motion then repeat acquisition for other channels over subsequent occurrences. We finally build a high-speed multichannel image sequence by combining the images after applying a normalized mutual information-based time registration procedure. We show that this technique is amenable to image the beating heart of a double-labeled embryonic quail in three channels (brightfield, yellow, and mCherry fluorescent proteins) using a fluorescence wide-field microscope equipped with a single monochrome camera and without fast channel switching optics. We experimentally evaluate the accuracy of our method on image series from a two-channel confocal microscope.  相似文献   

18.
Blind (previously sighted) subjects are able to analyse, describe and graphically represent a number of high-contrast visual images translated into musical form de novo. We presented musical transforms of a random assortment of photographic images of objects and urban scenes to such subjects, a few of which depicted architectural and other landmarks that may be useful in navigating a route to a particular destination. Our blind subjects were able to use the sound representation to construct a conscious mental image that was revealed by their ability to depict a visual target by drawing it. We noted the similarity between the way the visual system integrates information from successive fixations to form a representation that is stable across eye movements and the way a succession of image frames (encoded in sound) which depict different portions of the image are integrated to form a seamless mental image. Finally, we discuss the profound resemblance between the way a professional musician carries out a structural analysis of a musical composition in order to relate its structure to the perception of musical form and the strategies used by our blind subjects in isolating structural features that collectively reveal the identity of visual form.  相似文献   

19.
The main contribution of this paper is to use homogenization techniques to compute diffusion coefficients from experimental images of microbial biofilms. Our approach requires the analysis of several experimental spatial structures of biofilms in order to derive from them a Representative Volume Element (RVE). Then, we apply a suitable numerical procedure to the RVE to derive the diffusion coefficients. We show that diffusion coefficients significantly vary with the biofilm structure. These results suggest that microbial biofilm structures can favour nutrient access in some cases.  相似文献   

20.
Pan-sharpening is an image fusion approach that combines the spectral information in multispectral (MS) images with the spatial properties of PAN (Panchromatic) images. This vital technique is used in categorization, detection, and other remote sensing applications. In the first step, the article focuses on increasing the finer spatial details in the MS image with PAN images using two levels of fusion without causing spectral deterioration. The suggested fusion method efficiently utilizes image transformation techniques and spatial domain image fusion methods. The luminance component of MS images typically contains spatial features that are not as detailed as the PAN images. A multiscale transform is applied to the intensity/luminance component and PAN image to introduce features into the intensity component. In the first level of processing, coefficients obtained from the non-subsampled contourlet transform are subjected to particle swarm optimization weighted block-based fusion. The second level of fusion is carried out using the concept of spatial frequency to reduce spectral distortion. Numerous reference and non-reference parameters are used to evaluate the sharpened image's quality. In the next step, the article focuses on designing an evaluation metric for analysing spectral distortion based on the Bhattacharyya coefficient and distance. The Bhattacharyya coefficient and distance are calculated for each segmented region to assess the sharpened images' quality. Spectral degradation analysis using proposed techniques can also be useful for analysing materials in the segmented regions. The research findings demonstrate that the spatial features of fused images obtained from the proposed technique increased with the least spectral degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号