首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
In many mammalian neurons, fidelity and robustness of action potential generation and conduction depends on the co-localization of voltage-gated sodium (Nav) and KCNQ2/3 potassium channel conductance at the distal axon initial segment (AIS) and nodes of Ranvier in a ratio of ∼40 to 1. Analogous “anchor” peptides within intracellular domains of vertebrate KCNQ2, KCNQ3, and Nav channel α-subunits bind Ankyrin-G (AnkG), thereby mediating concentration of those channels at AISs and nodes of Ranvier. Here, we show that the channel anchors bind at overlapping but distinct sites near the AnkG N terminus. In pulldown assays, the rank order of AnkG binding strength is Nav1.2 ≫ KCNQ3 > KCNQ2. Phosphorylation of KCNQ2 and KCNQ3 anchor domains by protein kinase CK2 (CK2) augments binding, as previously shown for Nav1.2. An AnkG fragment comprising ankyrin repeats 1 through 7 (R1–7) binds phosphorylated Nav or KCNQ anchors robustly. However, mutational analysis of R1–7 reveals differences in binding mechanisms. A smaller fragment, R1–6, exhibits much-diminished KCNQ3 binding but binds Nav1.2 well. Two lysine residues at the tip of repeat 2–3 β-hairpin (residues 105–106) are critical for Nav1.2 but not KCNQ3 channel binding. Another dibasic motif (residues Arg-47, Arg-50) in the repeat 1 front α-helix is crucial for KCNQ2/3 but not Nav1.2 binding. AnkG''s alternatively spliced N terminus selectively gates access to those sites, blocking KCNQ but not Nav channel binding. These findings suggest that the 40:1 Nav:KCNQ channel conductance ratio at the distal AIS and nodes arises from the relative strength of binding to AnkG.  相似文献   

2.
The axon initial segment (AIS) plays a central role in electrogenesis and in the maintenance of neuronal polarity. Its molecular organization is dependent on the scaffolding protein ankyrin (Ank) G and is regulated by kinases. For example, the phosphorylation of voltage‐gated sodium channels by the protein kinase CK2 regulates their interaction with AnkG and, consequently, their accumulation at the AIS. We previously showed that IQ motif containing J‐Schwannomin‐Interacting Protein 1 (IQCJ‐SCHIP‐1), an isoform of the SCHIP‐1, accumulated at the AIS in vivo. Here, we analyzed the molecular mechanisms involved in IQCJ‐SCHIP‐1‐specific axonal location. We showed that IQCJ‐SCHIP‐1 accumulation in the AIS of cultured hippocampal neurons depended on AnkG expression. Pull‐down assays and surface plasmon resonance analysis demonstrated that AnkG binds to CK2‐phosphorylated IQCJ‐SCHIP‐1 but not to the non‐phosphorylated protein. Surface plasmon resonance approaches using IQCJ‐SCHIP‐1, SCHIP‐1a, another SCHIP‐1 isoform, and their C‐terminus tail mutants revealed that a segment including multiple CK2‐phosphorylatable sites was directly involved in the interaction with AnkG. Pharmacological inhibition of CK2 diminished both IQCJ‐SCHIP‐1 and AnkG accumulation in the AIS. Silencing SCHIP‐1 expression reduced AnkG cluster at the AIS. Finally, over‐expression of IQCJ‐SCHIP‐1 decreased AnkG concentration at the AIS, whereas a mutant deleted of the CK2‐regulated AnkG interaction site did not. Our study reveals that CK2‐regulated IQJC‐SCHIP‐1 association with AnkG contributes to AIS maintenance.

  相似文献   


3.
The axon initial segment (AIS) is a specialized domain essential for neuronal function, the formation of which begins with localization of an ankyrin-G (AnkG) scaffold. However, the mechanism directing and maintaining AnkG localization is largely unknown. In this study, we demonstrate that in vivo knockdown of microtubule cross-linking factor 1 (MTCL1) in cerebellar Purkinje cells causes loss of axonal polarity coupled with AnkG mislocalization. MTCL1 lacking MT-stabilizing activity failed to restore these defects, and stable MT bundles spanning the AIS were disorganized in knockdown cells. Interestingly, during early postnatal development, colocalization of MTCL1 with these stable MT bundles was observed prominently in the axon hillock and proximal axon. These results indicate that MTCL1-mediated formation of stable MT bundles is crucial for maintenance of AnkG localization. We also demonstrate that Mtcl1 gene disruption results in abnormal motor coordination with Purkinje cell degeneration, and provide evidence suggesting possible involvement of MTCL1 dysfunction in the pathogenesis of spinocerebellar ataxia.  相似文献   

4.
The axon initial segment (AIS) is critical for the initiation and propagation of action potentials. Assembly of the AIS requires interactions between scaffolding molecules and voltage-gated sodium channels, but the molecular mechanisms that stabilize the AIS are poorly understood. The neuronal isoform of Neurofascin, Nfasc186, clusters voltage-gated sodium channels at nodes of Ranvier in myelinated nerves: here, we investigate its role in AIS assembly and stabilization. Inactivation of the Nfasc gene in cerebellar Purkinje cells of adult mice causes rapid loss of Nfasc186 from the AIS but not from nodes of Ranvier. This causes AIS disintegration, impairment of motor learning and the abolition of the spontaneous tonic discharge typical of Purkinje cells. Nevertheless, action potentials with a modified waveform can still be evoked and basic motor abilities remain intact. We propose that Nfasc186 optimizes communication between mature neurons by anchoring the key elements of the adult AIS complex.  相似文献   

5.
Accumulation of voltage-gated sodium (Na(v)) channels at nodes of Ranvier is paramount for action potential propagation along myelinated fibers, yet the mechanisms governing nodal development, organization, and stabilization remain unresolved. Here, we report that genetic ablation of the neuron-specific isoform of Neurofascin (Nfasc(NF1??)) in vivo results in nodal disorganization, including loss of Na(v) channel and ankyrin-G (AnkG) enrichment at nodes in the peripheral nervous system (PNS) and central nervous system (CNS). Interestingly, the presence of paranodal domains failed to rescue nodal organization in the PNS and the CNS. Most importantly, using ultrastructural analysis, we demonstrate that the paranodal domains invade the nodal space in Nfasc(NF1??) mutant axons and occlude node formation. Our results suggest that Nfasc(NF1??)-dependent assembly of the nodal complex acts as a molecular boundary to restrict the movement of flanking paranodal domains into the nodal area, thereby facilitating the stereotypic axonal domain organization and saltatory conduction along myelinated axons.  相似文献   

6.
ORP1L is a member of the human oxysterol-binding protein (OSBP) family. ORP1L localizes to late endosomes (LEs)/lysosomes, colocalizing with the GTPases Rab7 and Rab9 and lysosome-associated membrane protein-1. We demonstrate that ORP1L interacts physically with Rab7, preferentially with its GTP-bound form, and provide evidence that ORP1L stabilizes GTP-bound Rab7 on LEs/lysosomes. The Rab7-binding determinant is mapped to the ankyrin repeat (ANK) region of ORP1L. The pleckstrin homology domain (PHD) of ORP1L binds phosphoinositides with low affinity and specificity. ORP1L ANK- and ANK+PHD fragments induce perinuclear clustering of LE/lysosomes. This is dependent on an intact microtubule network and a functional dynein/dynactin motor complex. The dominant inhibitory Rab7 mutant T22N reverses the LE clustering, suggesting that the effect is dependent on active Rab7. Transport of fluorescent dextran to LEs is inhibited by overexpression of ORP1L. Overexpression of ORP1L, and in particular the N-terminal fragments of ORP1L, inhibits vacuolation of LE caused by Helicobacter pylori toxin VacA, a process also involving Rab7. The present study demonstrates that ORP1L binds to Rab7, modifies its functional cycle, and can interfere with LE/lysosome organization and endocytic membrane trafficking. This is the first report of a direct connection between the OSBP-related protein family and the Rab GTPases.  相似文献   

7.
Like most enveloped viruses, HIV must acquire a lipid membrane as it assembles and buds through the plasma membrane of infected cells to spread infection. Several sets of host cell machinery facilitate this process, including proteins of the endosomal sorting complexes required for transport pathway, which mediates the membrane fission reaction required to complete viral budding, as well as angiomotin (AMOT) and NEDD4L, which bind one another and promote virion membrane envelopment. AMOT and NEDD4L interact through the four NEDD4L WW domains and three different AMOT Pro-Pro-x (any amino acid)-Tyr (PPxY) motifs, but these interactions are not yet well defined. Here, we report that individual AMOT PPxY and NEDD4L WW domains interact with the following general affinity hierarchies: AMOT PPxY1>PPxY2>PPxY3 and NEDD4L WW3>WW2>WW1∼WW4. The unusually high-affinity of the AMOT PPxY1–NEDD4L WW3 interaction accounts for most of the AMOT–NEDD4L binding and is critical for stimulating HIV-1 release. Comparative structural, binding, and virological analyses reveal that complementary ionic and hydrophobic contacts on both sides of the WW–PPxY core interaction account for the unusually high affinity of the AMOT PPxY1–NEDD4L WW3 interaction. Taken together, our studies reveal how the first AMOT PPxY1 motif binds the third NEDD4L WW domain to stimulate HIV-1 viral envelopment and promote infectivity.  相似文献   

8.
WAVE2 regulates T cell receptor (TCR)–stimulated actin cytoskeletal dynamics leading to both integrin clustering and affinity maturation. Although WAVE2 mediates integrin affinity maturation by recruiting vinculin and talin to the immunological synapse in an Arp2/3-dependent manner, the mechanism by which it regulates integrin clustering is unclear. We show that the Abl tyrosine kinase associates with the WAVE2 complex and TCR ligation induces WAVE2-dependent membrane recruitment of Abl. Furthermore, we show that WAVE2 regulates TCR-mediated activation of the integrin regulatory guanosine triphosphatase Rap1 via the recruitment and activation of the CrkL–C3G exchange complex. Moreover, we demonstrate that although Abl does not regulate the recruitment of CrkL–C3G into the membrane, it does affect the tyrosine phosphorylation of C3G, which is required for its guanine nucleotide exchange factor activity toward Rap1. This signaling node regulates not only TCR-stimulated integrin clustering but also affinity maturation. These findings identify a previously unknown mechanism by which the WAVE2 complex regulates TCR signaling to Rap1 and integrin activation.  相似文献   

9.
A large number of different pathological L1CAM mutations have been identified that result in a broad spectrum of neurological and non-neurological phenotypes. While many of these mutations have been characterized for their effects on homophilic and heterophilic interactions, as well as expression levels in vitro, there are only few studies on their biological consequences in vivo. The single L1-type CAM gene in Drosophila, neuroglian (nrg), has distinct functions during axon guidance and synapse formation and the phenotypes of nrg mutants can be rescued by the expression of human L1CAM. We previously showed that the highly conserved intracellular FIGQY Ankyrin-binding motif is required for L1CAM-mediated synapse formation, but not for neurite outgrowth or axon guidance of the Drosophila giant fiber (GF) neuron. Here, we use the GF as a model neuron to characterize the pathogenic L120V, Y1070C, C264Y, H210Q, E309K and R184Q extracellular L1CAM missense mutations and a L1CAM protein with a disrupted ezrin–moesin–radixin (ERM) binding site to investigate the signaling requirements for neuronal development. We report that different L1CAM mutations have distinct effects on axon guidance and synapse formation. Furthermore, L1CAM homophilic binding and signaling via the ERM motif is essential for axon guidance in Drosophila. In addition, the human pathological H210Q, R184Q and Y1070C, but not the E309K and L120V L1CAM mutations affect outside-in signaling via the FIGQY Ankyrin binding domain which is required for synapse formation. Thus, the pathological phenotypes observed in humans are likely to be caused by the disruption of signaling required for both, guidance and synaptogenesis.  相似文献   

10.
WIPI proteins, phosphatidylinositol 3-phosphate (PtdIns3P) binding proteins with β-propeller folds, are recruited to the omegasome following PtdIns3P production. The functions of the WIPI proteins in autophagosome formation are poorly understood. In a recent study, we reported that WIPI2B directly binds ATG16L1 and functions by recruiting the ATG12–ATG5-ATG16L1 complex to forming autophagosomes during starvation- or pathogen-induced autophagy. Our model of WIPI2 function provides an explanation for the PtdIns3P-dependent recruitment of the ATG12–ATG5-ATG16L1 complex during initiation of autophagy.  相似文献   

11.
Ankyrin-G (AnkG) coordinates protein composition of diverse membrane domains, including epithelial lateral membranes and neuronal axon initial segments. However, how AnkG itself localizes to these membrane domains is not understood. We report that AnkG remains on the plasma membrane in Madin-Darby canine kidney (MDCK) cells grown in low calcium, although these cells lack apical-basal polarity and exhibit loss of plasma membrane association of AnkG partners, E-cadherin and β2-spectrin. We subsequently demonstrate using mutagenesis and mass spectrometry that AnkG is S-palmitoylated exclusively at Cys-70, which is located in a loop of the first ankyrin repeat and is conserved in the vertebrate ankyrin family. Moreover, C70A mutation abolishes membrane association of 190-kDa AnkG in MDCK cells grown in low calcium. C70A 190-kDa AnkG fails to restore biogenesis of epithelial lateral membranes in MDCK cells depleted of endogenous AnkG. In addition, C70A 270-kDa AnkG fails to cluster at the axon initial segment of AnkG-depleted cultured hippocampal neurons and fails to recruit neurofascin as well as voltage-gated sodium channels. These effects of C70A mutation combined with evidence for its S-palmitoylation are consistent with a requirement of palmitoylation for targeting and function of AnkG in membrane domain biogenesis at epithelial lateral membranes and neuronal axon initial segments.  相似文献   

12.
Neuregulin 1 (Nrg1) functions in neuronal migration, survival and differentiation as well as synaptogenesis during ontogenetic development and maintenance of synaptic functions in the adult mammalian brain. The neural adhesion molecule L1 (L1CAM) functions in similar overlapping, but also non-overlapping roles in the nervous system. In the present study, we therefore investigated some aspects of the functional relationship between Nrg1 and L1 in mammalian neural cells. Nrg1 regulates the expression of L1 in cultures of both human neuroblastoma SK-N-SH cells and mouse cortical and hippocampal neurons. To analyze the role of Nrg1 on L1 expression in vivo, young adult male mice received intraperitoneal injections of Nrg1 or PBS (vehicle control). The correlation between Nrg1 and L1 expression was tested by qPCR, Western blot analysis, and immunocytology. Our data indicate that neuregulin 1-β (Nrg1β) increases L1 expression in neurons of the cerebral cortex, and decreases expression in neurons of the hippocampus in vitro and in vivo. In addition, Nrg1 induces phosphorylation of its receptors, ErbB2 and ErbB4, the predominant ErbB receptors in the nervous system. These results show that Nrg1β affects expression of L1 in the central nervous system and in parallel activates the ErbB receptors for Nrg1, suggesting a crosstalk between molecules that are of prime importance for nervous system functions.  相似文献   

13.
L1 cell adhesion molecule (L1CAM) is aberrantly expressed in malignant tumors and plays important roles in tumor progression. Thus, L1CAM could serve as a therapeutic target and anti-L1CAM antibodies may have potential as anticancer agents. However, L1CAM is expressed in neural cells and the druggability of anti-L1AM antibody must be validated at the earliest stages of preclinical study. Here, we generated a human monoclonal antibody that is cross-reactive with mouse L1CAM and evaluated its pharmacokinetic properties and anti-tumor efficacy in rodent models. First, we selected an antibody (Ab4) that binds human and mouse L1CAM from the human naïve Fab library using phage display, then increased its affinity 45-fold through mutation of 3 residues in the complementarity-determining regions (CDRs) to generate Ab4M. Next, the affinity of Ab4M was increased 1.8-fold by yeast display of single-chain variable fragment containing randomly mutated light chain CDR3 to generate Ab417. The affinities (KD) of Ab417 for human and mouse L1CAM were 0.24 nM and 79.16 pM, respectively. Ab417 specifically bound the Ig5 domain of L1CAM and did not exhibit off-target activity, but bound to the peripheral nerves embedded in normal human tissues as expected in immunohistochemical analysis. In a pharmacokinetics study, the mean half-life of Ab417 was 114.49 h when a single dose (10 mg/kg) was intravenously injected into SD rats. Ab417 significantly inhibited tumor growth in a human cholangiocarcinoma xenograft nude mouse model and did not induce any adverse effect in in vivo studies. Thus, Ab417 may have potential as an anticancer agent.  相似文献   

14.
An interferon-induced endoribonuclease, ribonuclease L (RNase L), is implicated in both the molecular mechanism of action of interferon and the fundamental control of RNA stability in mammalian cells. RNase L is catalytically active only after binding to an unusual activator molecule containing a 5'-phosphorylated 2',5'-linked oligoadenylate (2-5A), in the N-terminal half. Here, we report the crystal structure of the N-terminal ankyrin repeat domain (ANK) of human RNase L complexed with the activator 2-5A. This is the first structural view of an ankyrin repeat structure directly interacting with a nucleic acid, rather than with a protein. The ANK domain folds into eight ankyrin repeat elements and forms an extended curved structure with a concave surface. The 2-5A molecule is accommodated at a concave site and directly interacts with ankyrin repeats 2-4. Interestingly, two structurally equivalent 2-5A binding motifs are found at repeats 2 and 4. The structural basis for 2-5A recognition by ANK is essential for designing stable 2-5As with a high likelihood of activating RNase L.  相似文献   

15.
Rapid nerve impulse conduction in myelinated axons requires the concentration of voltage-gated sodium channels at nodes of Ranvier. Myelin-forming oligodendrocytes in the central nervous system (CNS) induce the clustering of sodium channels into nodal complexes flanked by paranodal axoglial junctions. However, the molecular mechanisms for nodal complex assembly in the CNS are unknown. Two isoforms of Neurofascin, neuronal Nfasc186 and glial Nfasc155, are components of the nodal and paranodal complexes, respectively. Neurofascin-null mice have disrupted nodal and paranodal complexes. We show that transgenic Nfasc186 can rescue the nodal complex when expressed in Nfasc(-/-) mice in the absence of the Nfasc155-Caspr-Contactin adhesion complex. Reconstitution of the axoglial adhesion complex by expressing transgenic Nfasc155 in oligodendrocytes also rescues the nodal complex independently of Nfasc186. Furthermore, the Nfasc155 adhesion complex has an additional function in promoting the migration of myelinating processes along CNS axons. We propose that glial and neuronal Neurofascins have distinct functions in the assembly of the CNS node of Ranvier.  相似文献   

16.
17.
18.
Whereas remarkable advances have uncovered mechanisms that drive nervous system assembly, the processes responsible for the lifelong maintenance of nervous system architecture remain poorly understood. Subsequent to its establishment during embryogenesis, neuronal architecture is maintained throughout life in the face of the animal’s growth, maturation processes, the addition of new neurons, body movements, and aging. The Caenorhabditis elegans protein SAX-7, homologous to the vertebrate L1 protein family of neural adhesion molecules, is required for maintaining the organization of neuronal ganglia and fascicles after their successful initial embryonic development. To dissect the function of sax-7 in neuronal maintenance, we generated a null allele and sax-7S-isoform-specific alleles. We find that the null sax-7(qv30) is, in some contexts, more severe than previously described mutant alleles and that the loss of sax-7S largely phenocopies the null, consistent with sax-7S being the key isoform in neuronal maintenance. Using a sfGFP::SAX-7S knock-in, we observe sax-7S to be predominantly expressed across the nervous system, from embryogenesis to adulthood. Yet, its role in maintaining neuronal organization is ensured by postdevelopmentally acting SAX-7S, as larval transgenic sax-7S(+) expression alone is sufficient to profoundly rescue the null mutants’ neuronal maintenance defects. Moreover, the majority of the protein SAX-7 appears to be cleaved, and we show that these cleaved SAX-7S fragments together, not individually, can fully support neuronal maintenance. These findings contribute to our understanding of the role of the conserved protein SAX-7/L1CAM in long-term neuronal maintenance and may help decipher processes that go awry in some neurodegenerative conditions.  相似文献   

19.
Neurotransmitter release from presynaptic nerve terminals is regulated by soluble NSF attachment protein receptor (SNARE) complex–mediated synaptic vesicle fusion. Tomosyn inhibits SNARE complex formation and neurotransmitter release by sequestering syntaxin-1 through its C-terminal vesicle-associated membrane protein (VAMP)–like domain (VLD). However, in tomosyn-deficient mice, the SNARE complex formation is unexpectedly decreased. In this study, we demonstrate that the N-terminal WD-40 repeat domain of tomosyn catalyzes the oligomerization of the SNARE complex. Microinjection of the tomosyn N-terminal WD-40 repeat domain into neurons prevented stimulated acetylcholine release. Thus, tomosyn inhibits neurotransmitter release by catalyzing oligomerization of the SNARE complex through the N-terminal WD-40 repeat domain in addition to the inhibitory activity of the C-terminal VLD.  相似文献   

20.
A major mRNA decay pathway in eukaryotes is initiated by deadenylation followed by decapping of the oligoadenylated mRNAs and subsequent 5′-to-3′ exonucleolytic degradation of the capless mRNA. In this pathway, decapping is a rate-limiting step that requires the hetero-octameric Lsm1-7–Pat1 complex to occur at normal rates in vivo. This complex is made up of the seven Sm-like proteins, Lsm1 through Lsm7, and the Pat1 protein. It binds RNA and has a unique binding preference for oligoadenylated RNAs over polyadenylated RNAs. Such binding ability is crucial for its mRNA decay function in vivo. In order to determine the contribution of Pat1 to the function of the Lsm1-7–Pat1 complex, we compared the RNA binding properties of the Lsm1-7 complex purified from pat1Δ cells and purified Pat1 fragments with that of the wild-type Lsm1-7–Pat1 complex. Our studies revealed that both the Lsm1-7 complex and purified Pat1 fragments have very low RNA binding activity and are impaired in the ability to recognize the oligo(A) tail on the RNA. However, reconstitution of the Lsm1-7–Pat1 complex from these components restored these abilities. We also observed that Pat1 directly contacts RNA in the context of the Lsm1-7–Pat1 complex. These studies suggest that the unique RNA binding properties and the mRNA decay function of the Lsm1-7–Pat1 complex involve cooperation of residues from both Pat1 and the Lsm1-7 ring. Finally our studies also revealed that the middle domain of Pat1 is essential for the interaction of Pat1 with the Lsm1-7 complex in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号