首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dependence of chlorosome development on bacteriochlorophyll (BChl)c synthesis was studied with the phototrophic green bacteriumChloroflexus aurantiacus. By selecting defined culture conditions, three possibilities could be identified. Upon addition of 5-aminolevulinic acid, cells of resting cultures increased their specific BChlc contents as well as the volumes of already existing chlorosomes. The number of chlorosomes, however, remained constant. Serine-limited chemostat cultures grown under steady state conditions exhibited constant rates of synthesis of both BChlc as well as of chlorosomes. The volume of the latter remained constant, as well. Upon addition of ALA to chemostat cultures, chlorosomes were synthesized at the same rate as before but their volumes increased as a consequence of increased BChlc incorporation. In chlorosomes isolated from resting cultures supplied with ALA the amounts of all of the polypeptides increased only slightly, if at all. Moreover, the ratio of all of the chlorosomal polypeptides remained largely constant. These results show that chlorosomes may incorporate newly synthesized BChlc without concomitant formation of chlorosomal polypeptides. This means that there was no obvious coordination of polypeptide and BChlc synthesis. On this basis, it appears unlikely that one of the chlorosomal polypeptides functions as an apoprotein of a presumed BChlc holochrome complex.  相似文献   

2.
The absorption and fluorescence properties of chlorosomes of the filamentous anoxygenic phototrophic bacterium Chloronema sp. strain UdG9001 were analyzed. The chlorosome antenna of Chloronema consists of bacteriochlorophyll (BChl) d and BChl c together with -carotene as the main carotenoid. HPLC analysis combined with APCI LC-MS/MS showed that the chlorosomal BChls comprise a highly diverse array of homologues that differ in both the degree of alkylation of the macrocycle at C-8 and/or C-12 and the alcohol moiety esterified to the propionic acid group at C-17. BChl c and BChl d from Chloronema were mainly esterified with geranylgeraniol (33% of the total), heptadecanol (24%), octadecenol (19%), octadecanol (14%), and hexadecenol (9%). Despite this pigment heterogeneity, fluorescence emission of the chlorosomes showed a single peak centered at 765 nm upon excitation at wavelengths ranging from 710 to 740 nm. This single emission, assigned to BChl c, indicates an energy transfer from BChl d to BChl c within the same chlorosome. Likewise, incubation of chlorosomes under reducing conditions caused a weak increase in fluorescence emission, which indicates a small redox-dependent fluorescence. Finally, protein analysis of Chloronema chlorosomes using SDS-PAGE and MALDI-TOF-MS revealed the presence of a chlorosomal polypeptide with a molecular mass of 5.7 kDa, resembling the CsmA protein found in Chloroflexus aurantiacus and Chlorobium tepidum chlorosomes. Several minor polypeptides were also detected but not identified. These results indicate that, compared with other members of filamentous anoxygenic phototrophic bacteria and green sulfur bacteria, Chloronema possesses an antenna system with novel features that may be of interest for further investigations.Abbreviations APCI LC-MS/MS Atmospheric pressure chemical ionization liquid chromatography mass spectrometry - BChl Bacteriochlorophyll - Chl. Chlorobium - Cfl. Chloroflexus - MALDI-TOF-MS Matrix assisted laser desorption/ionization time-of-flight mass spectrometry - [Et] Ethyl - [i-Bu] Isobutyl - [Me] Methyl - [neo-Pent] Neopentyl - [n-Pr] Propyl - t R Retention time  相似文献   

3.
《FEBS letters》1985,191(1):34-38
A polypeptide soluble in organic solvents was isolated from whole membrane fractions of the green thermophilic bacterium Chloroflexus aurantiacus by chromatography on Sephadex LH-60, Whatman DE-32 and Bio Gel P-10. The complete amino acid sequence of this 4.9 kDa polypeptide (44 amino acid residues) was determined. The polypeptide shows a 3-domain structure, similar to the domain structure of the antenna BChI polypeptides of purple photosynthetic bacteria, and sequence homologies (27–39%) to the light-harvesting α-polypeptides of the B870 (890) antenna complexes from purple bacteria. Therefore, the 4.9 kDa polypeptide is designated B(808-866)-α. The typical His residue (conserved His residue identified in all antenna polypeptides of purple bacteria as possible BChI binding site) is found within the hydrophobic domain, which extends from Asn 10 to Leu 30.  相似文献   

4.
Artificial aggregates of bacteriochlorophyllc (BChlc) were formed in an aqueous medium in the presence of a lipid, monogalactosyl diglyceride (MGDG), and the optical properties of those aggregates were studied by absorption and circular dichroism (CD) mainly. Four BChlc homologs, ([E,E]BChlc F, [P,E]BChlc F, [E,M]BChlc F and [I,E]BChlc F), were isolated from the green photosynthetic bacteriumChlorobium limicola strain 6230. Above 0.0004%, MGDG induced a red-shift of the absorption maxima of BChlc aggregates. At 0.003% MGDG BChlc aggregates showed absorption maxima in the range of 724 to 745 (±3) nm with a shift of 12 to 24 (±3) nm depending on the homolog species. Four kinds of BChlc-MGDG aggregates showed characteristic CD spectra. [E,M]BChlc F gave rise to a CD spectrum similar to that of chlorosomes, while the other three gave spectra of opposite sign. These aggregates are sensitive to 1-hexanol treatment; in a saturating amount (0.85%) of 1-hexanol, all the homologs gave a monomer-like absorption spectrum peaking at 670nm. At an intermediate concentration (0.5%), [E,M]BChlc F showed an enhanced CD intensity, as observed in native chlorosomes. Resonance Raman spectra of the monomer-like BChlc samples indicated that the keto vibrational band at ca. 1640 cm–1 was considerably weakened by the 0.85% 1-hexanol treatment, however the 1680 cm–1 band characteristic of a free keto group did not appear. These results indicate that the artificial aggregates formed by purified BChlc homologs and MGDG are good models for studying chlorosomes structure.  相似文献   

5.
Examination was made of changes in fluorescence polarization plane by energy transfer in the chlorosomes of the green photosynthetic bacterium,Chloroflexus aurantiacus. Fluorescence anisotropy in the picosecond (ps) time region was analyzed using chlorosomes suspended in solution as well as those oriented in a polyacrylamide gel. When the main component of BChlc was preferentially excited, the decay of fluorescence anisotropy was found to depend on wavelength. In the chlorosome suspension, the anisotropy ratio of BChlc changed from 0.31 to 0.24 within 100 ps following excitation. In the baseplate BChla region, this ratio decreased to a negative value (–0.09) from the initial 0.14. In oriented samples, the degree of polarization remained at 0.68 for BChlc, and changed from 0.25 to –0.40 for the baseplate BChla by excitation light whose electric vector was parallel to the longest axis of chlorosomes. In the latter case, there was a shift from 0.30 to –0.55 by excitation perpendicular to the longest axis. Time-resolved fluorescence polarization spectra clearly indicated extensive changes in polarization plane accompanied by energy transfer. The directions of polarization plane of emission from oriented samples were mostly dependent on chlorosome orientation in the gel but not on that of the polarization plane of excitation light. Orientations of the dipole moment of fluorescence components was consistent with that of absorption components as determined by the linear dichroism (Matsuura et al. (1993) Photochem. Photobiol. 57: 92–97). A model for molecular organization of BChlc anda in chlorosomes is proposed based on anisotropic optical properties.  相似文献   

6.
7.
Cross polarization/magic angle spinning (CP/MAS)13C (solid state high resolution) NMR spectra were observed for chlorosomes and BChlc aggregates. Similarity of both kinds of spectra (except for some signals assignable to proteins and lipids in chlorosomes) indicates that BChlc's in chlorosomes are present just as in synthetic BChlc aggregates. Chemical shifts for C131 carbonyl and C31 hydroxylethyl carbons indicate hydrogen bonding between them. Comparison of solution and solid state13C NMR chemical shifts shows the five coordinated nature of BChlc aggregates. Some chemical shift differences were attributable to ring currents shifts. Their comparisons with calculated ring current shift values predicted structures for the aggregates. Cross polarization dynamics of the CP/MAS13C NMR signals explored dynamic and structural nature of the BChlc aggregates.  相似文献   

8.
The circular dichroism (CD) spectrum of isolated chlorosomes fromChloroflexus aurantiacus showed a conservative, S-shaped signal with a negative maximum at 723 nm, a positive maximum at 750 nm and a zero-crossing at 740 nm. Proteolytic treatment of chlorosomes with trypsin at 37°C did not change the CD signal or the absorption spectrum in contrast to treatment with proteinase K, where a twofold increase in rotational strength and a slight decrease of the absorption band at 740 nm were observed. Treatment with saturating 1-hexanol concentrations resulted in a blue shift of the absorption band at 740 nm as well as in changes of the CD spectrum. These changes reversed when the sample was diluted to half the saturating 1-hexanol concentration. In contrast to that, we observed an irreversible formation of a giant CD signal using the combination of 1-hexanol and proteinase K treatment. Electron micrographs of chlorosomes treated with both 1-hexanol and proteinase K showed large aggregates of multiple chlorosome size. By comparison of proteinase K induced effects with trypsin effects it appeared that the 5.7 kDa polypeptide has a structural role in the organisation of BChlc in the chlorosome.  相似文献   

9.
The secondary structure ofCerebratulus lacteus toxin B-IV, a neurotoxic polypeptide containing 55 amino acid residues and four disulfide bonds, was experimentally estimated by computer analyses of toxin circular dichroism (CD) and laser Raman spectra. The CD spectrum of the toxin displayed typical α-helical peaks at 191, 208, and 222 nm. At neutralpH, the α-helix estimates from CD varied between 49 and 55%, when nonrepresentative spectrum analytical methods were used. Analysis of the laser Raman spectrum obtained at a much higher toxin concentration yielded a 78% α-helix estimate. Both CD and Raman spectroscopic methods failed to detect any β-sheet structure. The spectroscopic analyses revealed significantly more α-helix and less β-sheet for toxin B-IV than was predicted from its sequence. To account for the difference between the 49–55% helix estimate from CD spectra and the 78% helix estimate from the Raman spectrum, we postulate that some terminal residues are unfolded at the low toxin concentrations used for CD measurements but form helix at the high toxin concentration used for Raman measurements. Our CD observations showing thatCerebatulus toxin B-IV helix content increases about 15% in trifluoroethanol or at highpH are consistent with this interpretation.  相似文献   

10.
A modification of the α-helix, termed the ω-helix, has four residues in one turn of a helix. We searched the ω-helix in proteins by the HELFIT program which determines the helical parameters—pitch, residues per turn, radius, and handedness—and p = rmsd/(N ? 1)1/2 estimating helical regularity, where “rmsd” is the root mean square deviation from the best fit helix and “N” is helix length. A total of 1,496 regular α-helices 6–9 residues long with p ≤ 0.10 Å were identified from 866 protein chains. The statistical analysis provides a strong evidence that the frequency distribution of helices versus n indicates the bimodality of typical α-helix and ω-helix. Sixty-two right handed ω-helices identified (7.2% of proteins) show non-planarity of the peptide groups. There is amino acid preference of Asp and Cys. These observations and analyses insist that the ω-helices occur really in proteins.  相似文献   

11.
12.
Macroautophagy is a bulk degradation mechanism in eukaryotic cells. Efficiency of an essential step of this process in yeast, Atg8 lipidation, relies on the presence of Atg16, a subunit of the Atg12–Atg5-Atg16 complex acting as the E3-like enzyme in the ubiquitination-like reaction. A current view on the functional structure of Atg16 in the yeast S. cerevisiae comes from the two crystal structures that reveal the Atg5-interacting α-helix linked via a flexible linker to another α-helix of Atg16, which then assembles into a homodimer. This view does not explain the results of previous in vitro studies revealing Atg16-dependent deformations of membranes and liposome-binding of the Atg12–Atg5 conjugate upon addition of Atg16. Here we show that Atg16 acts as both a homodimerizing and peripheral membrane-binding polypeptide. These two characteristics are imposed by the two distinct regions that are disordered in the nascent protein. Atg16 binds to membranes in vivo via the amphipathic α-helix (amino acid residues 113–131) that has a coiled-coil-like propensity and a strong hydrophobic face for insertion into the membrane. The other protein region (residues 64–99) possesses a coiled-coil propensity, but not amphipathicity, and is dispensable for membrane anchoring of Atg16. This region acts as a Leu-zipper essential for formation of the Atg16 homodimer. Mutagenic disruption in either of these two distinct domains renders Atg16 proteins that, in contrast to wild type, completely fail to rescue the autophagy-defective phenotype of atg16Δ cells. Together, the results of this study yield a model for the molecular mechanism of Atg16 function in macroautophagy.  相似文献   

13.
Small (10 residue) C-terminal deletions of PBP5 cause release of this Inner membrane protein into the periplasm, indicating disruption of the membrane binding domain. To define the extent of the membrane anchoring domain, oligonucleotide-directed mutagenesis was used to introduce both single amino acid changes and novel restriction sites into the DN A, allowing subsequent construction of precise internal deletions. The 10 C-terminal amino acid residues possess very weak membrane anchoring potential. By extending the sequence to 18 residues membrane binding equivalent to that of authentic PBP5 was achieved. A proline substitution in this region, breaking a potential α-helix, also disrupts the membrane binding domain. These results are discussed with respect to the amphi-philicity of the C-terminal sequence when arranged in an α-helix.  相似文献   

14.
The packing of α-helices and β-sheets in six αβ proteins (e.g. flavodoxin) has been analysed. The results provide the basis for a computer algorithm to predict the tertiary structure of an αβ protein from its amino acid sequence and actual assignment of secondary structure.The packing of an individual α-helix against a β-sheet generally involves two adjacent ± 4 rows of non-polar residues on the α-helix at the positions i, i + 4, i + 8, i + 1, i + 5, i + 9. The pattern of interacting β-sheet residues results from the twisted nature of the sheet surface and the attendant rotation of the side-chains. At a more detailed level, four of the α-helical residues (i + 1, i + 4, i + 5 and i + 8) form a diamond that surrounds one particular β-sheet residue, generally isoleucine, leucine or valine. In general, the α-helix sits 10 Å above the sheet and lies parallel to the strand direction.The prediction follows a combinational approach. First, a list of possible β-sheet structures (106 to 1014) is constructed by the generation of all β-sheet topologies and β-strand alignments. This list is reduced by constraints on topology and the location of non-polar residues to mediate the sheet/helix packing, and then rank-ordered on the extent of hydrogen bonding. This algorithm was uniformly applied to 16 αβ domains in 13 proteins. For every structure, one member of the reduced list was close to the crystal structure; the root-mean-square deviation between equivalenced Cα atoms averaged 5.6 Å for 100 residues. For the αβ proteins with pure parallel β-sheets, the total number of structures comparable to or better than the native in terms of hydrogen bonds was between 1 and 148. For proteins with mixed β-sheets, the worst case is glyceraldehyde-3-phosphate dehydrogenase, where as many as 3800 structures would have to be sampled. The evolutionary significance of these results as well as the potential use of a combinatorial approach to the protein folding problem are discussed.  相似文献   

15.
The venom of the North African scorpion Androctonus mauretanicus mauretanicus possesses numerous highly active neurotoxins that specifically bind to various ion channels. One of these, P05, has been found to bind specifically to calcium-activated potassium channels and also to compete with apamin, a toxin extracted from bee venom. Besides the highly potent ones, several of these peptides (including that of P01) have been purified and been found to possess only a very weak, although significant, activity in competition with apamin. The amino acid sequence of P01 shows that it is shorter than P05 by two residues. This deletion occurs within an α-helix stretch (residues 5–12). This α-helix has been shown to be involved in the interaction of P05 with its receptor via two arginine residues. These two arginines are absent in the P01 sequence. Furthermore, a proline residue in position 7 of the P01 sequence may act as an α-helix breaker. We have determined the solution structure of P01 by conventional two-dimensional 1H nuclear magnetic resonance and show that 1) the proline residue does not disturb the α-helix running from residues 5 to 12; 2) the two arginines are topologically replaced by two acidic residues, which explains the drop in activity; 3) the residual binding activity may be due to the histidine residue in position 9; and 4) the overall secondary structure is conserved, i.e., an α-helix running from residues 5 to 12, two antiparallel stretches of β-sheet (residues 15–20 and 23–27) connected by a type I′ β-turn, and three disulfide bridges connecting the α-helix to the β-sheet.  相似文献   

16.
Chlorobaculum [Cba.] tepidum is known to grow optimally at 48–52 °C and can also be cultured at ambient temperatures. In this paper, we prepared constant temperature, temperature shift, and temperature shift followed by backshift cultures and investigated the intrinsic properties and spectral features of chlorosomes from those cultures using various approaches, including temperature-dependent measurements on circular dichroism (CD), UV–visible, and dynamic light scattering. Our studies indicate that (1) chlorosomes from constant temperature cultures at 50 and 30 °C exhibited more resistance to heat relative to temperature shift cultures; (2) as temperature increases bacteriochlorophyll c (BChl c) in chlorosomes is prone to demetalation, which forms bacteriopheophytin c, and degradation under aerobic conditions. Some BChl c aggregates inside reduced chlorosomes prepared in low-oxygen environments can reform after heat treatments; (3) temperature shift cultures synthesize and incorporate more BChl c homologs with a smaller substituent at C-8 on the chlorin ring and less BChl c homologs with a larger long-chain alcohol at C-173 versus constant-temperature cultures. We hypothesize that the long-chain alcohol at C-173 (and perhaps together with the substituent at C-8) may account for thermal stability of chlorosomes and the substituent at C-8 may assist self-assembling BChls; and (4) while almost identical absorption spectra are detected, chlorosomes from different growth conditions exhibited differences in the rotational length of the CD signal, and aerobic and reduced chlorosomes also display different Qy CD intensities. Further, chlorosomes exhibited changes of CD features in response to temperature increases. Additionally, we compare temperature-dependent studies for the Cba. tepidum chlorosomes and previous studies for the Chloroflexus aurantiacus chlorosomes. Together, our work provides useful and novel insights on the properties and organization of chlorosomes.  相似文献   

17.
The Chou-Fasman conformational parameters, P, for amino acid residues in proteins are shown to be a linear function of intermolecular force and steric parameters. For α- helix, coil and turn parameters, steric effects are predominant; whereas for β-sheet parameters, intramolecular forces are predominant. Turn and coil parameters show little or no difference in their dependence which is different from that of α-helix and in some ways almost reciprocal. Factors which increase the probability of finding an amino acid residue in an α-helix usually decrease the probability of finding it in coil or turn. Values of P were calculated for several of the less common amino acids.  相似文献   

18.
A proteinaceous toxin with hemolytic and lethal activities, named neoverrucotoxin (neoVTX), was purified from the venom fluid of stonefish Synanceia verrucosa and its primary structure was elucidated by a cDNA cloning technique. NeoVTX is a dimeric 166 kDa protein composed of α-subunit (702 amino acid residues) and β-subunit (699 amino acid residues) and lacks carbohydrate moieties. Its hemolytic activity is inhibited by anionic lipids, especially potently by cardiolipin. These properties are comparable to those of stonustoxin (SNTX) previously purified from S. horrida. Alignment of the amino acid sequences also reveals that the neoVTX α- and β-subunits share as high as 87 and 95% sequence identity with the SNTX α- and β-subunits, respectively. The distinct differences between neoVTX and SNTX are recognized only in the numbers of Cys residues (18 for neoVTX and 15 for SNTX) and free thiol groups (10 for neoVTX and 5 for SNTX). In contrast, neoVTX considerably differs from verrucotoxin (VTX), a tetrameric 322 kDa glycoprotein, previously purified from S. verrucosa. In addition, the sequence identity of the neoVTX β-subunit with the reported VTX β-subunit is 90%, being lower than that with the SNTX β-subunit.  相似文献   

19.
Cytochrome b5 (cyt b5) is an amphipathic membrane-bound heme protein found in the endoplasmic reticulum of eukaryotes. It consists of three domains, an N-terminal cytosolic, hydrophilic domain containing the heme, a short flexible linker and an α-helical membrane-spanning domain. This study investigated whether there are specific side chain helix–helix packing interactions between the COOH-terminal membrane anchor of cyt b5 and cytochrome P450 (cyt P450) 2B4 in a purified reconstituted system. Alanine was inserted at six positions in the membrane anchor of cyt b5. Insertion of alanine into an α-helix causes all amino acids at its carboxyl terminus to be rotated by 100°. The ability of the alanine insertion mutants of cyt b5 to bind to cyt P450 2B4 was similar to that of the wild-type protein as was the ability of the mutant cyts b5 to stimulate the metabolism of the anesthetic, methoxyflurane. These results demonstrate that the C-terminal hydrophobic α-helix of cyt b5 does not interact with cyt P450 2B4 through a specific stereochemical fit of amino acid side chains, but rather through nonspecific interactions.  相似文献   

20.
Structure of the three-chain unit of the bovine epidermal keratin filament   总被引:23,自引:0,他引:23  
The characteristic α-type X-ray diffraction pattern displayed by bovine epidermal keratin filaments can be ascribed to the presence of segments of triple-chain coiled coil α-helix in the repeating three-chain unit of the filaments.Limited proteolysis of filaments polymerized in vitro or a citrate-soluble protein derived from them with crystalline trypsin releases two types of α-helix-enriched particles which provide information on the structure of the three-chain unit. The smaller, particle 2, of molecular weight 42,500, α-helix content of 92% and dimensions of 180 Å × 20 Å, consists of three chains aligned side-by-side that presumably form a coiled coil. The high yields of particle 2 allow the conclusion that all of the α-helix of the epidermal keratin filament is present in the form of these discrete three-chain α-helical segments. The larger, particle 1, recovered during the earlier stages of digestion has a molecular weight of 100,000 to 110,000, α-helix content of 75%, average dimensions of 400 Å × 20 Å and also consists of three chains aligned side-by-side. It contains two α-helical segments corresponding to particle 2 which are located at the amino -terminal and carboxyl-terminal ends and are separated by a region of non-helix. Particle 1 contains all of the α-helix and therefore is the major portion of the three-chain unit of the keratin filament. The products resulting from reaction of intact filament subunits with N-bromosuccinimide suggest that particle 1 is formed during digestion by removal of regions of non-helix from each end of this unit.The structure of the three-chain unit of the bovine epidermal keratin filament may thus be viewed as three polypeptide subunits aligned side-by-side with two discrete coiled coil α-helical segments interspersed with regions of non-helix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号