首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
2.
Endocytosis regulates the plasma membrane protein landscape in response to environmental cues. In yeast, the endocytosis of transporters depends on their ubiquitylation by the Nedd4-like ubiquitin ligase Rsp5, but how extracellular signals trigger this ubiquitylation is unknown. Various carbon source transporters are known to be ubiquitylated and endocytosed when glucose-starved cells are exposed to glucose. We show that this required the conserved arrestin-related protein Rod1/Art4, which was activated in response to glucose addition. Indeed, Rod1 was a direct target of the glucose signaling pathway composed of the AMPK homologue Snf1 and the PP1 phosphatase Glc7/Reg1. Glucose promoted Rod1 dephosphorylation and its subsequent release from a phospho-dependent interaction with 14-3-3 proteins. Consequently, this allowed Rod1 ubiquitylation by Rsp5, which was a prerequisite for transporter endocytosis. This paper therefore demonstrates that the arrestin-related protein Rod1 relays glucose signaling to transporter endocytosis and provides the first molecular insights into the nutrient-induced activation of an arrestin-related protein through a switch in post-translational modifications.  相似文献   

3.
4.
The Snf1/AMP-activated protein kinase (AMPK) family is important for metabolic regulation and is highly conserved from yeast to mammals. The upstream kinases are also functionally conserved, and the AMPK kinases LKB1 and Ca2+/calmodulin-dependent protein kinase kinase activate Snf1 in mutant yeast cells lacking the native Snf1-activating kinases, Sak1, Tos3, and Elm1. Here, we exploited the yeast genetic system to identify members of the mammalian AMPK kinase family by their function as Snf1-activating kinases. A mouse embryo cDNA library in a yeast expression vector was used to transform sak1Delta tos3Delta elm1Delta yeast cells. Selection for a Snf+ growth phenotype yielded cDNA plasmids expressing LKB1, Ca2+/calmodulin-dependent protein kinase kinase, and transforming growth factor-beta-activated kinase (TAK1), a member of the mitogen-activated protein kinase kinase kinase family. We present genetic and biochemical evidence that TAK1 activates Snf1 protein kinase in vivo and in vitro. We further show that recombinant TAK1, fused to the activation domain of its binding partner TAB1, phosphorylates Thr-172 in the activation loop of the AMPK catalytic domain. Finally, expression of TAK1 and TAB1 in HeLa cells or treatment of cells with cytokines stimulated phosphorylation of Thr-172 of AMPK. These findings indicate that TAK1 is a functional member of the Snf1/AMPK kinase family and support TAK1 as a candidate for an authentic AMPK kinase in mammalian cells.  相似文献   

5.
6.
In the yeast Saccharomyces cerevisiae, the Snf1 protein kinase of the Snf1/AMP-activated protein kinase (AMPK) family regulates a wide range of responses to stress caused by glucose deprivation. The stress signal is relayed via upregulation of Snf1, which depends on phosphorylation of its activation loop Thr210 residue by upstream kinases. Although Snf1 is also required for coping with various stresses unrelated to glucose deprivation, some evidence suggests a role for low-level basal activity of unphosphorylated Snf1, rather than a specific signaling function. We previously found that Snf1 is required for diploid pseudohyphal differentiation, a developmental response to nitrogen limitation. Here, we present evidence that Snf1 is directly involved in nitrogen signaling. First, genetic analyses suggest that pseudohyphal differentiation depends on the stimulatory phosphorylation of Snf1 at Thr210. Second, immunochemical data indicate that nitrogen limitation improves Thr210 phosphorylation. Analyses of pseudohyphal differentiation in cells with catalytically inactive and hyperactive Snf1 support the role of Snf1 activity. Finally, we show that Snf1 is negatively regulated by the rapamycin-sensitive TOR kinase which plays essential roles in signaling nitrogen and amino acid availability. This and other evidence implicate Snf1 in the integration of signals regarding nitrogen and carbon stress. TOR and Snf1/AMPK are highly conserved in evolution, and their novel functional interaction in yeast suggests similar mechanisms in other eukaryotes.  相似文献   

7.
The Snf1/AMP-activated protein kinase (AMPK) family is important for metabolic regulation in response to stress. In the yeast Saccharomyces cerevisiae, the Snf1 kinase cascade comprises three Snf1-activating kinases, Pak1, Tos3, and Elm1. The only established mammalian AMPK kinase is LKB1. We show that LKB1 functions heterologously in yeast. In pak1Delta tos3Delta elm1Delta cells, LKB1 activated Snf1 catalytic activity and conferred a Snf(+) growth phenotype. Coexpression of STRADalpha and MO25alpha, which form a complex with LKB1, enhanced LKB1 function. Thus, the Snf1/AMPK kinase cascade is functionally conserved between yeast and mammals. Ca(2+)/calmodulin-dependent kinase kinase (CaMKK) shows more sequence similarity to Pak1, Tos3, and Elm1 than does LKB1. When expressed in pak1Delta tos3Delta elm1Delta cells, CaMKKalpha activated Snf1 catalytic activity, restored the Snf(+) phenotype, and also phosphorylated the activation loop threonine of Snf1 in vitro. These findings indicate that CaMKKalpha is a functional member of the Snf1/AMPK kinase family and support CaMKKalpha as a likely candidate for an AMPK kinase in mammalian cells. Analysis of the function of these heterologous kinases in yeast provided insight into the regulation of Snf1. When activated by LKB1 or CaMKKalpha, Snf1 activity was significantly inhibited by glucose, suggesting that a mechanism independent of the activating kinases can mediate glucose signaling in yeast. Finally, this analysis provided evidence that Pak1 functions in another capacity, besides activating Snf1, to regulate the nuclear enrichment of Snf1 protein kinase in response to carbon stress.  相似文献   

8.
Snf1 protein kinase regulates responses to glucose limitation and other stresses. Snf1 activation requires phosphorylation of its T-loop threonine by partially redundant upstream kinases (Sak1, Tos3, and Elm1). Under favorable conditions, Snf1 is turned off by Reg1-Glc7 protein phosphatase. The reg1 mutation causes increased Snf1 activation and slow growth. To identify new components of the Snf1 pathway, we searched for mutations that, like snf1, suppress reg1 for the slow-growth phenotype. In addition to mutations in genes encoding known pathway components (SNF1, SNF4, and SAK1), we recovered "fast" mutations, designated fst1 and fst2. Unusual morphology of the mutants in the Σ1278b strains employed here helped us identify fst1 and fst2 as mutations in the RasGAP genes IRA1 and IRA2. Cells lacking Ira1, Ira2, or Bcy1, the negative regulatory subunit of cyclic AMP (cAMP)-dependent protein kinase A (PKA), exhibited reduced Snf1 pathway activation. Conversely, Snf1 activation was elevated in cells lacking the Gpr1 sugar receptor, which contributes to PKA signaling. We show that the Snf1-activating kinase Sak1 is phosphorylated in vivo on a conserved serine (Ser1074) within an ideal PKA motif. However, this phosphorylation alone appears to play only a modest role in regulation, and Sak1 is not the only relevant target of the PKA pathway. Collectively, our results suggest that PKA, which integrates multiple regulatory inputs, could contribute to Snf1 regulation under various conditions via a complex mechanism. Our results also support the view that, like its mammalian counterpart, AMP-activated protein kinase (AMPK), yeast Snf1 participates in metabolic checkpoint control that coordinates growth with nutrient availability.  相似文献   

9.
Previous studies have proposed that caffeine-induced activation of glucose transport in skeletal muscle is independent of AMP-activated protein kinase (AMPK) because alpha-AMPK Thr172 phosphorylation was not increased by caffeine. However, our previous studies, as well as the present, show that AMPK phosphorylation measured in whole muscle lysate is not a good indicator of AMPK activation in rodent skeletal muscle. In lysates from incubated rat soleus muscle, a predominant model in previous caffeine-studies, both acetyl-CoA carboxylase-beta (ACCbeta) Ser221 and immunoprecipitated alpha(1)-AMPK activity increased with caffeine incubation, without changes in AMPK phosphorylation or immunoprecipitated alpha(2)-AMPK activity. This pattern was also observed in mouse soleus muscle, where only ACCbeta and alpha(1)-AMPK phosphorylation were increased following caffeine treatment. Preincubation with the selective CaMKK inhibitor STO-609 (5 microM), the CaM-competitive inhibitor KN-93 (10 microM), or the SR Ca(2+) release blocking agent dantrolene (10 microM) all inhibited ACCbeta phosphorylation and alpha(1)-AMPK phosphorylation, suggesting that SR Ca(2+) release may work through a CaMKK-AMPK pathway. Caffeine-stimulated 2-deoxyglucose (2DG) uptake reflected the AMPK activation pattern, being increased with caffeine and inhibited by STO-609, KN-93, or dantrolene. The inhibition of 2DG uptake is likely causally linked to AMPK activation, since muscle-specific expression of a kinase-dead AMPK construct greatly reduced caffeine-stimulated 2DG uptake in mouse soleus. We conclude that a SR Ca(2+)-activated CaMKK may control alpha(1)-AMPK activation and be necessary for caffeine-stimulated glucose uptake in mouse soleus muscle.  相似文献   

10.
Diabetic db/db mice exhibit profound insulin resistance in vivo, but the specific degree of cardiac insensitivity to insulin has not been assessed. Therefore, the effect of insulin on cardiomyocytes from db/db hearts was assessed by measuring two metabolic responses (deoxyglucose uptake and fatty acid oxidation) and the phosphorylation of two enzymes in the insulin-signaling cascade [Akt and AMP-activated protein kinase (AMPK)]. Maximal insulin-stimulated deoxyglucose transport was reduced to 58 and 40% of control in cardiomyocytes from db/db mice at two ages (6 and 12 wk). Insulin-stimulated deoxyglucose uptake was also reduced in myocytes from transgenic db/db mice overexpressing the insulin-sensitive glucose transporter (db/db-hGLUT4). Treatment of db/db mice for 1 wk with an insulin-sensitizing peroxisome proliferator-activated receptor-gamma agonist (COOH) completely normalized insulin-stimulated deoxyglucose uptake. Insulin had no direct effect on palmitate oxidation by either control or db/db cardiomyocytes, but the combination of insulin and glucose reduced palmitate oxidation, likely an indirect effect secondary to increased glucose uptake. Insulin had no effect on AMPK phosphorylation from either control or db/db cardiomyocytes. Insulin increased the phosphorylation of Akt in all cardiomyocyte preparations (control, db/db, COOH-treated db/db) to the same extent. Thus insulin has selective metabolic actions in mouse cardiomyocytes; deoxyglucose uptake and Akt phosphorylation are increased, but fatty acid oxidation and AMPK phosphorylation are unchanged. Insulin resistance in db/db cardiomyocytes is manifested by reduced insulin-stimulated deoxyglucose uptake.  相似文献   

11.
Saccharomyces cerevisiae Snf1 is a member of the conserved Snf1/AMP-activated protein kinase (Snf1/AMPK) family involved in regulating responses to energy limitation, which is detected by mechanisms that include sensing adenine nucleotides. Mitochondrial voltage-dependent anion channel (VDAC) proteins, also known as mitochondrial porins, are conserved in eukaryotes from yeast to humans and play key roles in mediating mitochondrial outer membrane permeability to small metabolites, including ATP, ADP, and AMP. We previously recovered the yeast mitochondrial porin Por1 (yVDAC1) from a two-hybrid screen for Snf1-interacting proteins. Here, we present evidence that Snf1 interacts with Por1 and its homolog Por2 (yVDAC2). Cells lacking Por1 and Por2, but not respiratory-deficient rho0 cells lacking the mitochondrial genome, exhibit reduced Snf1 activation loop phosphorylation in response to glucose limitation. Thus, Por1 and Por2 contribute to the positive control of Snf1 protein kinase. Physical proximity to the VDAC proteins and mitochondrial surface could facilitate Snf1''s ability to sense energy limitation.  相似文献   

12.
Hypoglycemia and neuroglucopenia stimulate AMP-activated protein kinase (AMPK) activity in the hypothalamus and this plays an important role in the counterregulatory responses, i.e. increased food intake and secretion of glucagon, corticosterone and catecholamines. Several upstream kinases that activate AMPK have been identified including Ca(2+)/Calmodulin-dependent protein kinase kinase (CaMKK), which is highly expressed in neurons. However, the involvement of CaMKK in neuroglucopenia-induced activation of AMPK in the hypothalamus has not been tested. To determine whether neuroglucopenia-induced AMPK activation is mediated by CaMKK, we tested whether STO-609 (STO), a CaMKK inhibitor, would block the effects of 2-deoxy-D-glucose (2DG)-induced neuroglucopenia both ex vivo on brain sections and in vivo. Preincubation of rat brain sections with STO blocked KCl-induced α1 and α2-AMPK activation but did not affect AMPK activation by 2DG in the medio-basal hypothalamus. To confirm these findings in vivo, STO was pre-administrated intracerebroventricularly (ICV) in rats 30 min before 2DG ICV injection (40 μmol) to induce neuroglucopenia. 2DG-induced neuroglucopenia lead to a significant increase in glycemia and food intake compared to saline-injected control rats. ICV pre-administration of STO (5, 20 or 50 nmol) did not affect 2DG-induced hyperglycemia and food intake. Importantly, activation of hypothalamic α1 and α2-AMPK by 2DG was not affected by ICV pre-administration of STO. In conclusion, activation of hypothalamic AMPK by 2DG-induced neuroglucopenia is not mediated by CaMKK.  相似文献   

13.
The skeletal muscle cells are one of the main sites of glucose uptake through glucose transporter 4 (GLUT4) in response to insulin. In muscle cells, 5' adenosine monophosphate-activated protein kinase (AMPK) is known as another GLUT4 translocation promoter. Natural compounds that activate AMPK have a possibility to overcome insulin resistance in the diabetic state. Piceatannol is a natural analog and a metabolite of resveratrol, a known AMPK activator. In this study, we investigate the in vitro effect of piceatannol on glucose uptake, AMPK phosphorylation and GLUT4 translocation to plasma membrane in L6 myocytes, and its in vivo effect on blood glucose levels in type 2 diabetic model db/db mice. Piceatannol was found to promote glucose uptake, AMPK phosphorylation and GLUT4 translocation by Western blotting analyses in L6 myotubes under a condition of insulin absence. Promotion by piceatannol of glucose uptake as well as GLUT4 translocation to plasma membrane by immunocytochemistry was also demonstrated in L6 myoblasts transfected with a glut4 cDNA-coding vector. Piceatannol suppressed the rises in blood glucose levels at early stages and improved the impaired glucose tolerance at late stages in db/db mice. These in vitro and in vivo findings suggest that piceatannol may be preventive and remedial for type 2 diabetes and become an antidiabetic phytochemical.  相似文献   

14.
Protein quality control mechanisms, required for normal cellular functioning, encompass multiple functions related to protein production and maintenance. However, the existence of communication between proteostasis and metabolic networks and its underlying mechanisms remain elusive. Here, we report that enhanced chaperone activity and consequent improved proteostasis are sensed by TORC1 via the activity of Hsp82. Chaperone enrichment decreases the level of Hsp82, which deactivates TORC1 and leads to activation of Snf1/AMPK, regardless of glucose availability. This mechanism culminates in the extension of yeast replicative lifespan (RLS) that is fully reliant on both TORC1 deactivation and Snf1/AMPK activation. Specifically, we identify oxygen consumption increase as the downstream effect of Snf1 activation responsible for the entire RLS extension. Our results set a novel paradigm for the role of proteostasis in aging: modulation of the misfolded protein level can affect cellular metabolic features as well as mitochondrial activity and consequently modify lifespan. The described mechanism is expected to open new avenues for research of aging and age‐related diseases.  相似文献   

15.
The protein kinase Snf1/AMPK plays a central role in carbon and energy homeostasis in yeasts and higher eukaryotes. To work out which aspects of the Snf1-controlled regulatory network are conserved in evolution, the Snf1 requirement in galactose metabolism was analyzed in the yeast Kluyveromyces lactis. Whereas galactose induction was only delayed, K. lactis snf1 mutants failed to accumulate the lactose/galactose H+ symporter Lac12p in the plasma membran,e as indicated by Lac12-green fluorescent protein fusions. In contrast to wild-type cells, the fusion protein was mostly intracellular in the mutant. Growth on galactose and galactose uptake could be restored by the KHT3 gene, which encodes a new transporter of the HXT subfamily of major facilitators These findings indicate a new role of Snf1p in regulation of sugar transport in K. lactis.  相似文献   

16.
Highly conserved among eukaryotic cells, the AMP‐activated kinase (AMPK) is a central regulator of carbon metabolism. To map the complete network of interactions around AMPK in yeast (Snf1) and to evaluate the role of its regulatory subunit Snf4, we measured global mRNA, protein and metabolite levels in wild type, Δsnf1, Δsnf4, and Δsnf1Δsnf4 knockout strains. Using four newly developed computational tools, including novel DOGMA sub‐network analysis, we showed the benefits of three‐level ome‐data integration to uncover the global Snf1 kinase role in yeast. We for the first time identified Snf1's global regulation on gene and protein expression levels, and showed that yeast Snf1 has a far more extensive function in controlling energy metabolism than reported earlier. Additionally, we identified complementary roles of Snf1 and Snf4. Similar to the function of AMPK in humans, our findings showed that Snf1 is a low‐energy checkpoint and that yeast can be used more extensively as a model system for studying the molecular mechanisms underlying the global regulation of AMPK in mammals, failure of which leads to metabolic diseases.  相似文献   

17.
The SNF1/AMP-activated protein kinase (AMPK) family is required for adaptation to metabolic stress and energy homeostasis. The gamma subunit of AMPK binds AMP and ATP, and mutations that affect binding cause human disease. We have here addressed the role of the Snf4 (gamma) subunit in regulating SNF1 protein kinase in response to glucose availability in Saccharomyces cerevisiae. Previous studies of mutant cells lacking Snf4 suggested that Snf4 counteracts autoinhibition by the C-terminal sequence of the Snf1 catalytic subunit but is dispensable for glucose regulation, and AMP does not activate SNF1 in vitro. We first introduced substitutions at sites that, in AMPK, contribute to nucleotide binding and regulation. Mutations at several sites relieved glucose inhibition of SNF1, as judged by catalytic activity, phosphorylation of the activation-loop Thr-210, and growth assays, although analogs of the severe human mutations R531G/Q had little effect. We further showed that alterations of Snf4 residues that interact with the glycogen-binding domain (GBD) of the beta subunit strongly relieved glucose inhibition. Finally, substitutions in the GBD of the Gal83 beta subunit that are predicted to disrupt interactions with Snf4 and also complete deletion of the GBD similarly relieved glucose inhibition of SNF1. Analysis of mutant cells lacking glycogen synthase showed that regulation of SNF1 is normal in the absence of glycogen. These findings reveal novel roles for Snf4 and the GBD in regulation of SNF1.  相似文献   

18.
The AMPK/Snf1 kinase has a central role in carbon metabolism homeostasis in Saccharomyces cerevisiae. In this study, we show that Snf1 activity, which requires phosphorylation of the Thr210 residue, is needed for protection against selenite toxicity. Such protection involves the Elm1 kinase, which acts upstream of Snf1 to activate it. Basal Snf1 activity is sufficient for the defense against selenite, although Snf1 Thr210 phosphorylation levels become increased at advanced treatment times, probably by inhibition of the Snf1 dephosphorylation function of the Reg1 phosphatase. Contrary to glucose deprivation, Snf1 remains cytosolic during selenite treatment, and the protective function of the kinase does not require its known nuclear effectors. Upon selenite treatment, a null snf1 mutant displays higher levels of oxidized versus reduced glutathione compared to wild type cells, and its hypersensitivity to the agent is rescued by overexpression of the glutathione reductase gene GLR1. In the presence of agents such as diethyl maleate or diamide, which cause alterations in glutathione redox homeostasis by increasing the levels of oxidized glutathione, yeast cells also require Snf1 in an Elm1-dependent manner for growth. These observations demonstrate a role of Snf1 to protect yeast cells in situations where glutathione-dependent redox homeostasis is altered to a more oxidant intracellular environment and associates AMPK to responses against oxidative stress.  相似文献   

19.
Capsaicin has been reported to regulate blood glucose levels and to ameliorate insulin resistance in obese mice. This study demonstrates that capsaicin increases glucose uptake directly by activating AMP-activated protein kinase (AMPK) in C2C12 muscle cells, which manifested as an attenuation of glucose uptake when compound C, an AMPK inhibitor, was co-administered with capsaicin. However, the insulin signaling molecules insulin receptor substrate-1 (IRS-1) and Akt were not affected by capsaicin. Additional results showed that p38 mitogen-activated protein kinase (MAPK) is also involved in capsaicin-induced glucose transport downstream of AMPK because capsaicin increased p38 MAPK phosphorylation significantly and its specific inhibitor SB203580 inhibited capsaicin-mediated glucose uptake. Treatment with an AMPK inhibitor reduced p38 MAPK phosphorylation, but the p38 MAPK inhibitor had no effect on AMPK. Capsaicin stimulated ROS generation in C2C12 muscle cells, and when ROS were captured using the nonspecific antioxidant NAC, the increase in both capsaicin-induced AMPK phosphorylation and capsaicin-induced glucose uptake was attenuated, suggesting that ROS function as an upstream activator of AMPK. Taken together, these results suggest that capsaicin, independent of insulin, increases glucose uptake via ROS generation and consequent AMPK and p38 MAPK activations.  相似文献   

20.
We describe the interplay between three sensory protein kinases in yeast: AMP-regulated kinase (AMPK, or SNF1 in yeast), PAS kinase 1 (Psk1 in yeast), and the target of rapamycin complex 1 (TORC1). This signaling cascade occurs through the SNF1-dependent phosphorylation and activation of Psk1, which phosphorylates and activates poly(A)- binding protein binding protein 1 (Pbp1), which then inhibits TORC1 through sequestration at stress granules. The SNF1-dependent phosphorylation of Psk1 appears to be direct, in that Snf1 is necessary and sufficient for Psk1 activation by alternate carbon sources, is required for altered Psk1 protein mobility, is able to phosphorylate Psk1 in vitro, and binds Psk1 via its substrate-targeting subunit Gal83. Evidence for the direct phosphorylation and activation of Pbp1 by Psk1 is also provided by in vitro and in vivo kinase assays, including the reduction of Pbp1 localization at distinct cytoplasmic foci and subsequent rescue of TORC1 inhibition in PAS kinase–deficient yeast. In support of this signaling cascade, Snf1-deficient cells display increased TORC1 activity, whereas cells containing hyperactive Snf1 display a PAS kinase–dependent decrease in TORC1 activity. This interplay between yeast SNF1, Psk1, and TORC1 allows for proper glucose allocation during nutrient depletion, reducing cell growth and proliferation when energy is low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号