首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lake Michigan mottled sculpin respond to a chemically-inert vibrating sphere (a dipole source) with an initial orientation towards the source followed by a step-wise progression towards and final strike at the source. An analysis of videotape recordings of this behavior indicate that although pathways to the source varied, they tended to be influenced by the fish's position at signal onset. Fish heading toward the source at signal onset approached the source in an indirect fashion by either (a) keeping the source to one side in a smoothly arching path to the source or (b) alternating between keeping the source to the left and to the right. When the source was to the side of the fish at the time of stimulus onset, fish tended to approach the source in a more direct path. Most (79%) initial orienting responses placed the fish within 45° of the source, but response angles were not strongly correlated with initial source angle. Most (83%) unsuccessful strikes (misses) occurred when the source was directly in front of the fish (± 20°) and source angles associated with misses were significantly smaller than source angles associated with successful strikes. Approach strategies used by mottled sculpin in finding dipole sources appear to include (1) moving in a direction that increases the pressure difference along the head while keeping it consistently low (between 1 and 10 Pa) across the head, (2) narrowing the fish-to-source gap with each successive step in the pathway, (3) keeping the source lateralized (on average, 30° to one or the other side of the head) and (4) avoiding approach positions that are perpendicular to the flow line or that place the fish in the pressure null area of the dipole field. These results are consistent with the hypothesis that spatial excitation patterns along the lateral line system play a major role in encoding both source direction and distance. Accepted: 23 October 1996  相似文献   

2.
A general derivation of the binding potential   总被引:1,自引:0,他引:1  
  相似文献   

3.
In this paper we aimed at studying brain structures involved in intermodal attention and memory processes. This was accomplished by dipole modeling of the difference waves of event-related potentials recorded during the performance of verbal tasks and in the control condition. The models were constructed independently from each other for six difference waves obtained by subtracting different experimental conditions. The majority of equivalent sources were located in temporal and frontal areas. The differences in the evoked activity observed between task conditions in the interval from 450 to 850 ms are mainly related to variations in the activity of the hippocampus and adjacent structures.  相似文献   

4.
5.
The Wiener filtration of average evoked potentials supplies the estimate of evoked response with the least square error. However, this error is dependent on the choice of interstimulating intervals. This dependence was not considered in hitherto applications of the Wiener filter. In this paper the Wiener filter with respect to the concrete choice of interstimulating intervals is derived.  相似文献   

6.
Extracellular, single unit recording techniques were used to measure the responses of posterior lateral line nerve fibers to a 50-Hz dipole source that slowly changed its location along the length of the fish. The flow-field equations for a dipole source were used to model the pressure gradient pattern and thus, the expected excitation pattern along a linear array of lateral line receptor organs for different source locations. Finally, excitation patterns were similarly modeled along the left and right side of the fish's head for actual steps taken by sculpin in approach pathways to the 50-Hz dipole source. Spatial histograms of posterior lateral line nerve fiber responses to different locations of the dipole source could be predicted from pressure gradient patterns modeled from the flow-field equations, confirming that the modeling approach applied to behavioral results was a good predictor of excitation patterns likely to be encoded by the lateral line periphery. An examination of how modeled excitation patterns changed from one position to the next in typical approach pathways and how patterns differed between positions from which successful and unsuccessful strikes were launched suggests that approach and strike strategies can indeed be explained by the information available in excitation patterns. In particular, changes in the spatial distribution of pressure gradient directions (polarities), available only when the source is lateral (as opposed to directly in front of the fish), appear to enhance the ability of sculpin to determine source distance. Without such information, misses are more likely to occur and successful strikes are more likely to be launched from short distances only. Accepted: 23 October 1996  相似文献   

7.
D A Stenger  K V Kaler    S W Hui 《Biophysical journal》1991,59(5):1074-1084
The contributions of pulse-induced dipole-dipole interaction to the total pressure acting normal to the membranes of closely positioned pronase treated human erythrocytes during electrofusion was calculated. The total pressure was modeled as the sum of pressures arising from membrane potential and dipole-dipole attraction opposed by interbilayer repulsion. The dipole-dipole interaction was derived from the experimentally obtained cell polarizability. The threshold electric field amplitude necessary for fusion of pronase-treated human erythrocytes was experimentally obtained at various combinations of pulse duration, frequency, and the conductivity of the external medium. The theoretical values of the critical electric field amplitude compared favorably to the experimentally obtained threshold field amplitudes. Fusion by dc pulses may be primarily attributed to attainment of sufficiently high membrane potentials. However, with decreasing external conductivity and increasing sinusoidal pulse frequency (100 kHz-2.5 MHz), the induced dipole-dipole interactions provide the principal driving force for membrane failure leading to fusion.  相似文献   

8.
Ocular vestibular evoked myogenic potentials (oVEMPs) are a recently described clinical measure of the vestibulo-ocular reflex. Studies demonstrating differences in frequency tuning between air-conducted and bone-conducted (BC) oVEMPs suggest a separate vestibular (otolith) origin for each stimulus modality. In this study, 10 healthy subjects were stimulated with BC stimuli using a hand-held minishaker. Frequencies were tested in the range of 50-1,000 Hz using both a constant-force and constant-acceleration method. Subjects were stimulated at the mastoid process and the forehead. For constant-force stimulation at both sites, maximum acceleration occurred around 100 Hz, in differing axes. Both forms of stimulation had low-frequency peaks of oVEMP amplitudes (constant force: mastoid, 80-150 Hz; forehead, 50-125 Hz; constant acceleration: mastoid, 100-200 Hz; forehead, 80-150 Hz), for both sites of application, despite differences in the magnitude and direction of evoked head acceleration. For mastoid stimulation, ocular responses changed from out of phase to in phase for 400 Hz and above. Our results demonstrate that BC stimuli show tuning around 100 Hz, independent of stimulus site, that is not due to skull properties. The findings are consistent with an effect on a receptor with a resonance around 100 Hz, most likely the utricle.  相似文献   

9.
To test the hypothesis that spatial excitation patterns along the lateral-line system underlie source localization, we videotaped the orientation behavior of blinded mottled sculpin in response to a small dipole source (50-Hz vibrating sphere) before and after unilateral denervation of the lateral line system on different body regions (head, trunk and head + trunk). Approach pathways were qualitatively similar to those followed by normal intact animals. Abnormal behavior (turning in circles) was not observed. However, the frequency with which fish placed their intact side facing the source increased by 12–89%, depending on the denervation site. The angular accuracy of orientation decreased by 20° to 60° (100% to 370% change) depending on source location and region of lateral line denervated. Deficits tended to be site-specific. For example, unilaterally denervating lateral-line organs on the head resulted in less accurate orienting responses when the source was located on the denervated side of the head, but not on the opposite side of the head or on either side of the trunk. Site-specific deficits and the absence of abnormal approach pathways argue that animals are relying on a point-by-point spatial representation of source location along the sensory surface rather than computations based on bilateral comparisons. Accepted: 28 May 1998  相似文献   

10.
Rabbits that have been exposed to the natural cycles of day and night exhibit marked diurnal changes in the shape of their Visual Evoked Potential in constant environmental conditions. The results of exposure to artificial 24 hr light-dark cycles strongly suggest that it is the regular alternation of daylight and darkness which acts as the synchronizing "Zeitgeber" for the V.E.P. rhythm which exists after exposure to the natural cycles of day and night. It would seem further that the V.E.P. changes reflect a square-wave like rhythm in the sensitivity of the visual system to photic stimuli, in which the sensitivity is much higher at night than in the day-time. The probable importance of the diurnal V.E.P. rhythm for the occurrence of daily fluctuations in behaviour is discussed.  相似文献   

11.
No comparative study about somatosensory evoked potentials (SEP) on different rat strains has been done yet. It is evident that comparative SEP studies are important since different rat strains have different physiological properties. We aimed to compare early latency SEP values from stimulation of sciatic nerve in Wistar (Wr) and Sprague-Dawley (SDr) rats which are frequently used rat strains in experimental studies. In Wr group, the mean of first far field potential (Ff1) latency was shorter and the mean Ff1 amplitude was lower than that of Sprague-Dawley rat group. Mean cortical potential latency in Wr group was longer than that of SDr group while amplitude was not different. Central conduction time (CCT) in Wistar rat group was found to be longer than that of SDr group. Shorter Ff1 latency in Wr group implies that afferent volley reaches cervical posterior fasciculus from sciatic nerve earlier than SDr group while longer CP latency implies that afferent volley reaches cortex later than SDr group. Similarity between the latencies of lumbar potentials implies that peripheral conduction velocity has no effect on the difference of Ff1 latencies.  相似文献   

12.
Experimental assays analyzing visual evoked potential (VEP) changes during an acute alcoholic intoxication were carried out in two groups of cats: One with continuous ethanol (0.06 g/kg.min) i.v. perfusion. Another one with a naloxone (400 micrograms/kg) i.v. injection 10 min before ethylic perfusion. Naloxone potentiates alcohol effects on VEP parameters, and on the appearance of isoelectric postpotential and flat VEP.  相似文献   

13.
Two earliest components of visual evoked potentials (N85 and P130) which were related with substitution of stimuli for those identical in spectra but different in brightness were detected in rabbits. This finding suggests an analogy between the N85 and P139 in rabbits and N87 and P120 in humans.  相似文献   

14.
In acute experiments on cats evoked potentials (EP) of the orbital cortex were recorded and the electrogenesis and functional purpose of individual components of associative responses (AR) were investigated. It was concluded that the initial negative fluctuation of the AR arises as a consequence of the physical propagation of potentials from the projection somatosensory cortex and the second, positive, component and the following negative component are the result of arrival of an afferent volley into the orbital cortex via specific thalamic nuclei. These two components are due to activation of neurons of the orbital cortex. The afterdischarge, which appears sometimes, develops under the effect of impulses arriving from nonspecific thalamic nuclei. It is shown that during the second, positive, phase of the AR, primarily afferent neurons are activated, and during the negative phase, efferent neurons of the orbital cortex. The afterdischarge, which complicates the negative phase of the AR, is due to inhibition of afferent neurons.N. I. Pirogov Medical Institute, Vinnitsa. Translated from Neirofiziologiya, Vol. 2, No. 4, pp. 384–390, July–August, 1970.  相似文献   

15.
The vestibular evoked myogenic potential (VEMP) can be modeled (scaling factors aside) as a convolution of the motor unit action potential (MUAP) of a representative motor unit, h(t), with the temporal modulation of the MUAP rate of all contributing motor units, r(t). Accordingly, the variance modulation associated with the VEMP can be modeled as a convolution of r(t) with the square of h(t). To get a deeper theoretical understanding of the VEMP phenomenon, a specific realization of this general model is investigated here. Both r(t) and h(t) were derived from a Gaussian probability density function (in the latter case taking the first derivative). The resulting model turned out to be simple enough to be evaluated analytically in the time and in the frequency domain, while still being realistic enough to account for the basic aspects of the VEMP generation. Perhaps the most significant conclusion of this study is that, in the case of noisy data, it may be difficult to falsify the hypothesis of a rate modulation of infinitesimal duration. Thus, certain aspects of the data (particularly the peak amplitudes) can be interpreted using a short-modulation approximation rather than the general model. The importance of this realization arises from the fact that the approximation offers an exceptionally simple and convenient way for a model-based interpretation of experimental data, whereas any attempt to use the general model for that purpose would result in an ill-posed inverse problem that is far from easy to solve.  相似文献   

16.
17.
Using phase response curves and averaging theory, we derive phase oscillator models for the lamprey central pattern generator from two biophysically-based segmental models. The first one relies on network dynamics within a segment to produce the rhythm, while the second contains bursting cells. We study intersegmental coordination and show that the former class of models shows more robust behavior over the animal's range of swimming frequencies. The network-based model can also easily produce approximately constant phase lags along the spinal cord, as observed experimentally. Precise control of phase lags in the network-based model is obtained by varying the relative strengths of its six different connection types with distance in a phase model with separate coupling functions for each connection type. The phase model also describes the effect of randomized connections, accurately predicting how quickly random network-based models approach the determinisitic model as the number of connections increases.  相似文献   

18.
19.
Nonlinear interactions in the human visual system were studied using visual evoked potentials (VEPs). In one experiment (superimposed condition), all segments of a dartboard pattern were contrast reversed in time by a sum of two sinusoidal signals. In a second experiment (lateral condition), segments in some regions of the dartboard pattern were contrast reversed by a single sinusoid of one frequency, while segments in other (contiguous) regions of the pattern were contrast reversed by a single sinusoid of another frequency. An identical set of ten frequency pairs was used in each experiment. The frequency pairs were chosen such that the difference between frequencies in each pair was 2 Hz. Amplitudes and phases of the sum and difference frequency components of the VEP (intermodulation terms) were retrieved by Fourier analysis and served as measures of nonlinear interactions. The use of input pairs with a fixed separation in frequency enabled the estimation of the temporal characteristics of the visual pathways prior to a second linear stage. The use of superimposed and lateral conditions revealed antagonistic contributions to the VEP, possibly reflecting direct-through excitatory and lateral inhibitory pathways, respectively.Supported by grants from the U.S. National Eye Institute, the Esther A. and Joseph Klingenstein Fund, and the Harry Frank Guggenheim Foundation  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号