首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus fastidiosus, which requires uric acid or allantoin, grows and sporulates on a simple medium containing 59.5 mM uric acid, 5.7 mM K2HPO4, and 2% agar in distilled water. Seventy to ninety percent sporulation was achieved in 96 h. Spores obtained on this medium do not need a heat shock prior to germination. The necessary germination conditions for this organism are 30 C, phosphate or this(hydroxymethyl)aminomethane buffer at pH 7.0, and 5.95 mM uric acid. Sporulation occurred earlier (48 h) and with higher frequency (greater than 99%) when Mn2+ was added to the growth medium. However, these spores germinated only after heat activation (70 C, 30 min). The effectiveness of heat activation was directly dependent upon the concentration of Mn2+ in the growth medium; 10−5 M Mn2+ was the minimal concentration for the effect. This phenomenon was not found upon addition of Ca2+, Mg2+, Fe2+, Zn2+, or Cu2+ to the medium. The Mn2+ content of the spores depended upon the concentration of Mn2+ in the sporulation medium. There was a significant difference in heat resistance between spores harvested from unsupplemented medium and those harvested from medium supplemented with 5 × 10−5 M Mn2+. A D85 C value of 6.5 min was determined with the former, whereas the latter had a value of 17.0 min. Very little change in either Ca2+ or dipicolinic acid content was detected in spores harvested from various Mn2+-supplemented media. Thus Mn2+ may play a role in the inducement of the heat-shock requirement and the formation of spores with increased heat resistance.  相似文献   

2.
At some time during sporulation development, cells of Bacillus subtilis develop a commitment to continue sporulation even after addition of or dilution into a fresh nutrient. The extent of commitment was measured by the titer of spores produced at the time at which the original culture sporulated maximally. Since newly formed spores of B. subtilis soon germinate in the replenished medium, the measurement of their titer, especially of heat-resistant spores, gave low values. This problem was avoided by the germination-delaying effect of methyl anthranilate (1 mM) when added together with the fresh nutrients. In a given culture, the titer of committed cells was then independent of the method by which it was measured, i.e., by the phase-bright, octanol-resistant, or heat-resistant spore titer. The time of commitment depended on the type of nutrient added. Commitment occurred earlor casein hydrolysate. The rates at which non-metabolizable amino acid analogues or the 14C from an amino acid mixture were taken up by the cells increased toward the end of growth and later declined. This decline occurred slowly and was only weakly correlated with the commitment time of an analogous amino acid.  相似文献   

3.
Spores of Clostridium perfringens possess high heat resistance, and when these spores germinate and return to active growth, they can cause gastrointestinal disease. Work with Bacillus subtilis has shown that the spore's dipicolinic acid (DPA) level can markedly influence both spore germination and resistance and that the proteins encoded by the spoVA operon are essential for DPA uptake by the developing spore during sporulation. We now find that proteins encoded by the spoVA operon are also essential for the uptake of Ca(2+) and DPA into the developing spore during C. perfringens sporulation. Spores of a spoVA mutant had little, if any, Ca(2+) and DPA, and their core water content was approximately twofold higher than that of wild-type spores. These DPA-less spores did not germinate spontaneously, as DPA-less B. subtilis spores do. Indeed, wild-type and spoVA C. perfringens spores germinated similarly with a mixture of l-asparagine and KCl (AK), KCl alone, or a 1:1 chelate of Ca(2+) and DPA (Ca-DPA). However, the viability of C. perfringens spoVA spores was 20-fold lower than the viability of wild-type spores. Decoated wild-type and spoVA spores exhibited little, if any, germination with AK, KCl, or exogenous Ca-DPA, and their colony-forming efficiency was 10(3)- to 10(4)-fold lower than that of intact spores. However, lysozyme treatment rescued these decoated spores. Although the levels of DNA-protective alpha/beta-type, small, acid-soluble spore proteins in spoVA spores were similar to those in wild-type spores, spoVA spores exhibited markedly lower resistance to moist heat, formaldehyde, HCl, hydrogen peroxide, nitrous acid, and UV radiation than wild-type spores did. In sum, these results suggest the following. (i) SpoVA proteins are essential for Ca-DPA uptake by developing spores during C. perfringens sporulation. (ii) SpoVA proteins and Ca-DPA release are not required for C. perfringens spore germination. (iii) A low spore core water content is essential for full resistance of C. perfringens spores to moist heat, UV radiation, and chemicals.  相似文献   

4.
Murein (peptidoglycan) components are able to rescue sporulation in certain sporulation-defective mutants of Myxococcus xanthus. N-Acetylglucosamine, N-acetylmuramic acid, diaminopimelic acid, and D-alanine each increase the number of spores produced by SpoC mutants. When all four components are included they have a synergistic effect, raising the number of spores produced by SpoC mutants to the wild-type level. Murein-rescued spores are resistant to heat and sonic oscillation and germinate when plated on a nutrient-rich medium. They appear to be identical to fruiting body spores in their ultrastructure, in their protein composition, and in their resistance to boiling sodium dodecyl sulfate. Murein rescue of sporulation, like fruiting body sporulation, requires high cell density, a low nutrient level, and a solid surface.  相似文献   

5.
Phosphate uptake in sporulating cultures of Saccharomyces cerevisiae has been found to occur approximately 2 h after the transfer to sporulation medium. Early ribonucleic acid synthesis begins at approximately 4 h and continues to 8 h. Incorporation of phosphate into acid-extractable precursor pools parallels phosphate uptake. In triple-labeling experiments it was observed that the breakdown of vegetatively synthesized ribonucleic acid is not a significant source of precursors for ribonucleic acid synthesis during sporulation. The majority of the ribonucleic acid made in a 10-min period during sporulation does not migrate on gels with precursor or mature ribosomal ribonucleic acid.  相似文献   

6.
This work was undertaken to obtain information on levels of metabolism in dormant spores of Bacillus species incubated for weeks at physiological temperatures. Spores of Bacillus megaterium and Bacillus subtilis strains were harvested shortly after release from sporangia and incubated under various conditions, and dormant spore metabolism was monitored by 31P nuclear magnetic resonance (NMR) analysis of molecules including 3-phosphoglyceric acid (3PGA) and ribonucleotides. Incubation for up to 30 days at 4, 37, or 50°C in water, at 37 or 50°C in buffer to raise the spore core pH from ∼ 6.3 to 7.8, or at 4°C in spent sporulation medium caused no significant changes in ribonucleotide or 3PGA levels. Stage I germinated spores of Bacillus megaterium that had slightly increased core water content and a core pH of 7.8 also did not degrade 3PGA and accumulated no ribonucleotides, including ATP, during incubation for 8 days at 37°C in buffered saline. In contrast, spores incubated for up to 30 days at 37 or 50°C in spent sporulation medium degraded significant amounts of 3PGA and accumulated ribonucleotides, indicative of RNA degradation, and these processes were increased in B. megaterium spores with a core pH of ∼7.8. However, no ATP was accumulated in these spores. These data indicate that spores of Bacillus species stored in water or buffer at low or high temperatures exhibited minimal, if any, metabolism of endogenous compounds, even when the spore core pH was 7.8 and core water content was increased somewhat. However, there was some metabolism in spores stored in spent sporulation medium.  相似文献   

7.
A new medium, designated TMYGP broth, was developed that allowed the honeybee pathogen Bacillus larvae NRRL B-3650 to produce up to 5 × 108 spores per ml of culture (microscopic count). This species normally sporulates poorly, if at all, in artificial broth media. An aeration rate lower than that normally used to cultivate other Bacillus species was required for sporulation. During the exponential growth phase, acids were produced by catabolism of yeast extract components, causing a decrease in pH of the medium. Thereafter, the pH began to increase, probably because of derepression of the citric acid cycle and consumption of the acids. Only after this time did usage of glucose from the medium occur. Thus, glucose usage seems to be regulated by catabolite repression. The presence of glucose was needed for one or more of the later events of sporulation. Of many substances tested, only gluconic acid and glucosamine partially substituted for glucose as a requirement for sporulation. Pyruvate was also required for good sporulation. It was metabolized during the late-exponential phase of growth.  相似文献   

8.
Asexual sporangiospores of Mucor racemosus produced on a minimal sporulation medium (M spores) germinated only if glucose, mannose or a complex substrate such as peptone, yeast extract or Casamino acids was present. Once germinated, growth was supported by a wide range of substrates including amino acids, carbohydrates or organic acids. Sporangiospores produced on a nutritionally complex sporulation medium (C-spores) germinated on a wide range of carbon sources. C-spore phenotype was pleiotropic in that sporangiospores capable of germinating on cellobiose could always germinate on glutamate or xylose; but C-spores capable of germinating on xylose or glutamate did not always germinate on cellobiose. There was a hierarchy of substrates capable of initiating germination with glucose = mannose greater than xylose greater than glutamate greater than cellobiose. C-spores also differed from M-spores by initiating germination in the presence of the non-metabolizable glucose analogue 3-O-methylglucose. These results suggest that at least two sporangiospore phenotypes are produced depending upon the concentration and type of ingredients present in the sporulation medium.  相似文献   

9.
A chemically defined medium in combination with an airlift fermentor system was used to study the growth and sporulation of Bacillus cereus ATCC 14579. The medium contained six amino acids and lactate as the main carbon sources. The amino acids were depleted during exponential growth, while lactate was metabolized mainly during stationary phase. Two concentrations of glutamate were used: high (20 mM; YLHG) and low (2.5 mM; YLLG). Under both conditions, sporulation was complete and synchronous. Sporulation started and was completed while significant amounts of carbon and nitrogen sources were still present in the medium, indicating that starvation was not the trigger for sporulation. Analysis of amino acids and NH4+ in the culture supernatant showed that most of the nitrogen assimilated by the bacteria was taken up during sporulation. The consumption of glutamate depended on the initial concentration; in YLLG, all of the glutamate was used early during exponential growth, while in YLHG, almost all of the glutamate was used during sporulation. In YLLG, but not in YLHG, NH4+ was taken up by the cells during sporulation. The total amount of nitrogen used by the bacteria in YLLG was less than that used by the bacteria in YLHG, although a significant amount of NH4+ was present in the medium throughout sporulation. Despite these differences, growth and temporal expression of key sigma factors involved in sporulation were parallel, indicating that the genetic time frames of sporulation were similar under both conditions. Nevertheless, in YLHG, dipicolinic acid production started later and the spores were released from the mother cells much later than in YLLG. Notably, spores had a higher heat resistance when obtained after growth in YLHG than when obtained after growth in YLLG, and the spores germinated more rapidly and completely in response to inosine, l-alanine, and a combination of these two germinants.  相似文献   

10.
Sporulation of Streptomyces venezuelae in submerged cultures   总被引:2,自引:0,他引:2  
Shaken cultures of Streptomyces venezuelae ISP5230 in minimal medium with galactose and ammonium sulphate as carbon and nitrogen sources, respectively, showed extensive sporulation after 72 h incubation at 37 degrees C. The spores formed in these cultures resembled aerial spores in their characteristics. The ability of the spores to withstand lysozyme treatment was used to monitor the progress of sporulation in cultures and to determine the physiological requirements for sporulation. In media containing ammonium sulphate as the nitrogen source, galactose was the best of six carbon sources tested. With galactose S. venezuelae ISP5230 sporulated when supplied with any of several nitrogen sources; however, an excess of nitrogen source was inhibitory. In cultures containing galactose and ammonium sulphate, sporulation was suppressed by a peptone supplement. The onset of sporulation was accompanied by a drop in intracellular GTP content. When decoyinine, an inhibitor of GMP synthase, was added to a medium containing starch and ammonium sulphate, a slight increase in sporulation was seen after 2 d. The suppression of sporulation by peptone in liquid or agar cultures was not reversed by addition of decoyinine. A hypersporulating mutant of S. venezuelae ISP5230 was altered in its ability to assimilate sugars. In cultures containing glucose the mutant sporulated more profusely than did the wild-type and did not acidify the medium to the same extent. However, the suppressive effect of glucose on sporulation was not merely a secondary result of acid accumulation.  相似文献   

11.
The kinetics of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein synthesis as well as protein breakdown during sporulation by Clostridium perfringens were determined. Maximum levels of DNA and net RNA synthesis occurred 3 and 2 h, respectively, after inoculation of sporulation medium. The rate of RNA synthesis decreased as sporulation progressed. Deoxyadenosine increased uptake of [14C]uracil and [14C]thymine but depressed the level of sporulation and the formation of heat-resistant spores when added at concentrations above 100 mug/ml. Unlike Bacillus species, net protein synthesis, which was sensitive to chloramphenicol inhibition, continued during sporulation. The rate of protein breakdown during vegetative growth was 1%/h. During sporulation this rate increased to 4.7%/h. When added to sporulation medium at 0 time chloramphenicol reduced protein breakdown to 1%/h. If added at 3 h the rate decreased to 2.1%/h. The role of proteases in this process is discussed.  相似文献   

12.
Short exposures of Bacillus spores to nutrient germinants can commit spores to germinate when germinants are removed or their binding to the spores'' nutrient germinant receptors (GRs) is inhibited. Bacillus subtilis spores were exposed to germinants for various periods, followed by germinant removal to prevent further commitment. Release of spore dipicolinic acid (DPA) was then measured by differential interference contrast microscopy to monitor germination of multiple individual spores, and spores did not release DPA after 1 to 2 min of germinant exposure until ∼7 min after germinant removal. With longer germinant exposures, percentages of committed spores with times for completion of DPA release (Trelease) greater than the time of germinant removal (Tb) increased, while the time TlagTb, where Tlag represents the time when rapid DPA release began, was decreased but rapid DPA release times (ΔTrelease = TreleaseTlag) were increased; Factors affecting average Trelease values and the percentages of committed spores were germinant exposure time, germinant concentration, sporulation conditions, and spore heat activation, as previously shown for commitment of spore populations. Surprisingly, germination of spores given a 2nd short germinant exposure 30 to 45 min after a 1st exposure of the same duration was significantly higher than after the 1st exposure, but the number of spores that germinated in the 2nd germinant exposure decreased as the interval between germinant exposures increased up to 12 h. The latter results indicate that spores have some memory, albeit transient, of their previous exposure to nutrient germinants.  相似文献   

13.
The inactivation ofClostridium perfringens NCTC 8239 spores at 95° and 105° C, as determined by colony formation on an agar base containing lysozyme (BASE + lysozyme), was influenced by the initial pH of the sporulation medium. In the pH range of 7.0–8.5, established by the addition of each of several biological buffers or carbonate buffer to Duncan-Strong (DS) medium, increased pH resulted in formation of spores with greater resistance to inactivation at elevated temperatures. An increase of pH from 8.5 to 9.0 resulted in increased resistance of spores formed in DS-carbonate but not DS-TAPS (N-tris[hydroxymethyl]methyl-3-aminopropanesulfonic acid) medium. Resistance to spore injury, as determined by reduced recovery on BASE compared with BASE + lysozyme, was not increased for spores formed in media with higher pH's. As the pH of the medium increased, cell growth and number of spores formed were decreased, but the percentage of sporulation was apparently not affected.  相似文献   

14.
Resting spores (hypnospores) of Chaetoceros diadema (Ehrenberg) Gran, Chaetoceros vanheurckii Gran, and Chaetoceros didymus Ehrenberg were collected from a large plastic enclosure moored in Saanich Inlet, B.C., Canada. The effects of combinations of temperature and irradiance on the germination of these resting spores were investigated. Nutrient uptake, carbon fixation, and changes in the photosynthetic capacity of the germinating spores were also examined. Resting spores germinated optimally at combinations of temperature and irradiance similar to those in the environment during sporulation. They did not germinate at irradiances 1.3 μEin m?2 s?1 or temperatures >25.3° C. Nitrate, phosphate and silicate were taken up after the resting spores had germinated and resumed vegetative growth. Chlorophyll a fluorescence in vivo, and the DCMU-induced increase in in vivo fluorescence also increased after the resting spores had germinated. Resting spores began to fix carbon as soon as they were placed in light. Spores remained viable for at least 645 d. The length of time between first exposure to light and germination did not change during this period; however, the percentage of viable resting spores decreased markedly. None of the Chaetoceros spores germinated after 737 d of storage at 2–4° C in darkness.  相似文献   

15.
A study was conducted to quantify the ability of entrapped, monoxenically produced spores of an arbuscular mycorrhizal fungus to germinate and reproduce the fungal life cycle after cryopreservation. No germination was obtained after incubation of entrapped spores in glycerol and mannitol and subsequent cryopreservation at −70 °C, regardless of the concentration of cryoprotectants and duration of incubation. Incubation for 1 d in 0.5 M sucrose, and for 1 and 2 d in 0.5 M trehalose, led to spore germination after cryopreservation at −70 °C. Lower cryopreservation temperatures were tested with entrapped spores incubated for 1 d in 0.5 M trehalose. The highest germination rate, estimated by the percentage of potentially infective beads (%PIB), was obtained at −100 °C. A %PIB of 95% (water agar medium) to 100% (Strullu–Romand medium) was obtained at this temperature. Thereafter, %PIB rapidly decreased at −140 and −180 °C. Heavy sporulation and high internal root colonization were obtained after re-association of the entrapped spores, incubated for 1 d in 0.5 M trehalose and subsequently cryopreserved at −100 °C, with transformed carrot roots. This demonstrates the ability of entrapped spores to reproduce the fungal life cycle following cold treatment.  相似文献   

16.
During the early stages of sporulation in Saccharomyces cerevisiae, the pH of the acetate sporulation medium rises to values of 8.0 or higher. Associated with this rise in pH is a reduced cell permeability to certain precursors of ribonucleic acid (RNA), deoxyribonucleic acid or protein. Uptake of adenine, alanine, and leucine was optimal at pH 5.6 to 6.0, but sporulation was inhibited when the sporulation medium was buffered below pH 7.0. Cellular impermeability can be largely overcome by adjusting the acetate sporulation medium to pH 6.0 for optimal uptake of 14 C-adenine during short pulses without any apparent effect on sporulation. Sporulating cells pulse-labeled 20 min at pH 6.0 incorporated 40 times more 14C-adenine into RNA than sporulating cells pulse-labeled at pH 8.0. This increased incorporation can be attributed to a 100-fold increase in labeled adenosine triphosphate in cells pulse-labeled at pH 6.0 where maximum uptake occurs.  相似文献   

17.
AIMS: To study the effect of acid shock in sporulation on the production of acid-shock proteins, and on the heat resistance and germination characteristics of the spores formed subsequently. METHODS AND RESULTS: Bacillus subtilis wild-type (SASP-alpha+beta+) and mutant (SASP-alpha-beta-) cells in 2 x SG medium at 30 degrees C were acid-shocked with HCl (pH 4, 4.3, 5 and 6 against a control pH of 6.2) for 30 min, 1 h into sporulation. The D85-value of B. subtilis wild-type (but not mutant) spores formed from sporulating cells acid-shocked at pH 5 increased from 46.5 min to 78.8 min, and there was also an increase in the resistance of wild-type acid-shocked spores at both 90 degrees C and 95 degrees C. ALA- or AGFK-initiated germination of pH 5-shocked spores was the same as that of non-acid-shocked spores. Two-dimensional gel electrophoresis showed only one novel acid-shock protein, identified as a vegetative catalase 1 (KatA), which appeared 30 min after acid shock but was lost later in sporulation. CONCLUSIONS: Acid shock at pH 5 increased the heat resistance of spores subsequently formed in B. subtilis wild type. The catalase, KatA, was induced by acid shock early in sporulation, but since it was degraded later in sporulation, it appears to act to increase heat resistance by altering spore structure. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first proteomic study of acid shock in sporulating B. subtilis cells. The increasing spore heat resistance produced by acid shock may have significance for the heat resistance of spores formed in the food industry.  相似文献   

18.
The likelihood that uric acid was the only compound capable of triggering germination of Bacillus fastidiosus spores was reinforced by the finding that ureidoglycollic acid, urea, NH4Cl, 2,8-dihydroxypurine and a combination of L-alanine and O-carbamoyl-D-serine were ineffective as germinants. Uric acid-triggered germination of B. fastidiosus was prevented by a range of inhibitors that also inhibited uricase activity in dormant spore extracts. O2 uptake during germination started immediately after addition of uric acid, possibly as a consequence of the oxidation of uric acid by the enzyme uricase. Germination showed a dependence on uric acid concentration, with a relatively high Km (4-5 mM). During the first 10 min of germination of heat-activated spores there was no detectable change in the number of spore-cortex reducing groups, indicating that selective cortex hydrolysis is not involved in the trigger mechanism of germination of B. fastidiosus. On the basis of the results, a model is proposed in which re-initiation of uricase activity is the mechanism by which B. fastidiosus spores are triggered to emerge from the dormant state.  相似文献   

19.
A brief exposure to iodine vapour was used to screen for mutants of the yeast Saccharomyces cerevisiae affected in development. Besides obtaining a large number of asporogenous mutants, two novel mutations were identified that permitted germination of spores to occur in conditions (sporulation medium) in which the wild-type would not germinate. These two mutations were named gdr1 and gdr2 for germination derepressed. Both alter nutritional control of germination, but not the kinetics of germination in glucose-containing medium.  相似文献   

20.
Spores of Bacillus subtilis lacking all germinant receptors germinate >500-fold slower than wild-type spores in nutrients and were not induced to germinate by a pressure of 100 MPa. However, a pressure of 550 MPa induced germination of spores lacking all germinant receptors as well as of receptorless spores lacking either of the two lytic enzymes essential for cortex hydrolysis during germination. Complete germination of spores either lacking both cortex-lytic enzymes or with a cortex not attacked by these enzymes was not induced by a pressure of 550 MPa, but treatment of these mutant spores with this pressure caused the release of dipicolinic acid. These data suggest the following conclusions: (i) a pressure of 100 MPa induces spore germination by activating the germinant receptors; and (ii) a pressure of 550 MPa opens channels for release of dipicolinic acid from the spore core, which leads to the later steps in spore germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号