首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Immunoglobulin A nephropathy (IgAN) is the commonest primary glomerulonephritis, and a major cause of end-stage renal disease; however, its pathogenesis requires elucidation. Here, a hub gene, FABP1, and signaling pathway, PPARα, were selected as key in IgAN pathogenesis by combined weighted gene correlation network analysis of clinical traits and identification of differentially expressed genes from three datasets. FABP1 and PPARα levels were lower in IgAN than control kidney, and linearly positively correlated with one another, while FABP1 levels were negatively correlated with urinary albumin-to-creatinine ratio, and GPX4 levels were significantly decreased in IgAN. In human mesangial cells (HMCs), PPARα and FABP1 levels were significantly decreased after Gd-IgA1 stimulation and mitochondria appeared structurally damaged, while reactive oxygen species (ROS) and malondialdehyde (MDA) were significantly increased, and glutathione and GPX4 decreased, relative to controls. GPX4 levels were decreased, and those of ACSL4 increased on siPPARα and siFABP1 siRNA treatment. In PPARα lentivirus-transfected HMCs stimulated by Gd-IgA1, ROS, MDA, and ACSL4 were decreased; glutathione and GPX4, and immunofluorescence colocalization of PPARα and GPX4, increased; and damaged mitochondria reduced. Hence, PPARα pathway downregulation can reduce FABP1 expression, affecting GPX4 and ACSL4 levels, causing HMC ferroptosis, and contributing to IgAN pathogenesis.  相似文献   

2.
3.
4.
Peroxisome proliferator–activated receptor delta (PPARδ) agonists have been shown to exert beneficial effects in liver disease and reduce total bile acid levels. The mechanism(s) whereby PPARδ agonism reduces bile acid levels are, however, unknown, and therefore the aim of the present study was to investigate the molecular pathways responsible for reducing bile acid synthesis in hepatocytes, following treatment with the selective PPARδ agonist, seladelpar. We show that administration of seladelpar to WT mice repressed the liver expression of cholesterol 7 alpha-hydroxylase (Cyp7a1), the rate-limiting enzyme for bile acid synthesis, and decreased plasma 7α-hydroxy-4-cholesten-3-one (C4), a freely diffusible metabolite downstream of Cyp7a1. In primary mouse hepatocytes, seladelpar significantly reduced the expression of Cyp7a1 independent of the nuclear bile acid receptor, Farnesoid X receptor. In addition, seladelpar upregulated fibroblast growth factor 21 (Fgf21) in mouse liver, serum, and in cultured hepatocytes. We demonstrate that recombinant Fgf21 protein activated the c-Jun N-terminal kinase (JNK) signaling pathway and repressed Cyp7a1 gene expression in primary hepatocytes. The suppressive effect of seladelpar on Cyp7a1 expression was blocked by a JNK inhibitor as well as in the absence of Fgf21, indicating that Fgf21 plays an indispensable role in PPARδ-mediated downregulation of Cyp7a1. Finally, reduction of CYP7A1 expression by seladelpar was confirmed in primary human hepatocytes. In conclusion, we show that seladelpar reduces bile acid synthesis via an FGF21-dependent mechanism that signals at least partially through JNK to repress CYP7A1.  相似文献   

5.
ObjectivesInduction of deactivation and apoptosis of hepatic stellate cells (HSCs) are principal therapeutic strategies for liver fibrosis. Krüppel‐like factor 14 (KLF14) regulates various biological processes, however, roles, mechanisms and implications of KLF14 in liver fibrosis are unknown.Materials and MethodsKLF14 expression was detected in human, rat and mouse fibrotic models, and its effects on HSCs were assessed. Chromatin immunoprecipitation assays were utilized to investigate the binding of KLF14 to peroxisome proliferator‐activated receptor γ (PPARγ) promoter, and the binding of enhancer of zeste homolog 2 (EZH2) to KLF14 promoter. In vivo, KLF14‐overexpressing adenovirus was injected via tail vein to thioacetamide (TAA)‐treated rats to investigate the role of KLF14 in liver fibrosis progression. EZH2 inhibitor EPZ‐6438 was utilized to treat TAA‐induced rat liver fibrosis.ResultsKLF14 expression was remarkably decreased in human, rat and mouse fibrotic liver tissues. Overexpression of KLF14 increased LD accumulation, inhibited HSCs activation, proliferation, migration and induced G2/M arrest and apoptosis. Mechanistically, KLF14 transactivated PPARγ promoter activity. Inhibition of PPARγ blocked the suppressive role of KLF14 overexpression in HSCs. Downregulation of KLF14 in activated HSCs was mediated by EZH2‐regulated histone H3 lysine 27 trimethylation. Adenovirus‐mediated KLF14 overexpression ameliorated TAA‐induced rat liver fibrosis in PPARγ‐dependent manner. Furthermore, EPZ‐6438 dramatically alleviated TAA‐induced rat liver fibrosis. Importantly, KLF14 expression was decreased in human with liver fibrosis, which was significantly correlated with EZH2 upregulation and PPARγ downregulation.ConclusionsKLF14 exerts a critical anti‐fibrotic role in liver fibrosis, and targeting the EZH2/KLF14/PPARγ axis might be a novel therapeutic strategy for liver fibrosis.  相似文献   

6.
Microglial M1 depolarization mediated prolonged inflammation contributing to brain injury in ischemic stroke. Our previous study revealed that Genistein-3′-sodium sulfonate (GSS) exerted neuroprotective effects in ischemic stroke. This study aimed to explore whether GSS protected against brain injury in ischemic stroke by regulating microglial M1 depolarization and its underlying mechanisms. We established transient middle cerebral artery occlusion and reperfusion (tMCAO) model in rats and used lipopolysaccharide (LPS)-stimulated BV2 microglial cells as in vitro model. Our results showed that GSS treatment significantly reduced the brain infarcted volume and improved the neurological function in tMCAO rats. Meanwhile, GSS treatment also dramatically reduced microglia M1 depolarization and IL-1β level, reversed α7nAChR expression, and inhibited the activation of NF-κB signaling in the ischemic penumbra brain regions. These effects of GSS were further verified in LPS-induced M1 depolarization of BV2 cells. Furthermore, pretreatment of α7nAChR inhibitor (α-BTX) significantly restrained the neuroprotective effect of GSS treatment in tMCAO rats. α-BTX also blunted the regulating effects of GSS on neuroinflammation, M1 depolarization and NF-κB signaling activation. This study demonstrates that GSS protects against brain injury in ischemic stroke by reducing microglia M1 depolarization to suppress neuroinflammation in peri-infarcted brain regions through upregulating α7nAChR and thereby inhibition of NF-κB signaling. Our findings uncover a potential molecular mechanism for GSS treatment in ischemic stroke.  相似文献   

7.
The intestinal epithelium is a rapid self-renewal and regenerated tissue of which the structural integrity is beneficial for maintaining health. The integrity of intestinal epithelium depends on the balance of cell proliferation, differentiation, migration, and the function of intestinal stem cells, which declines due to genetic defect or aging. Jwa participates in multiple cellular processes; it also responds to oxidative stress and repairs DNA damage. However, whether Jwa plays a role in maintaining the homeostasis of intestinal renewal and regeneration is not clear. In the present study, we firstly described that the deletion of Jwa disturbed the homeostasis of intestinal epithelial renewal and regeneration. Jwa deficiency promoted NOTCH1 degradation in the ERK/FBXW7-mediated ubiquitin-proteasome pathway, thus disturbing the PPARγ/STAT5 axis. These mechanisms might partially contribute to the reduction of intestinal stem cell function and alteration of intestinal epithelial cell lineage distribution, finally suppressing the renewal and regeneration of intestinal epithelium. Moreover, our results also revealed that Jwa was a novel putative aging related gene.  相似文献   

8.
XPF‐St7 (GLLSNVAGLLKQFAKGGVNAVLNPK) is an antimicrobial peptide isolated from Silurana tropicalis. We developed an α‐helical segment of XPF‐St7 termed as XPF2. Using the XPF2 as a framework, we increased the positive net charge of XPF2 by amino acid substitutions, and thus obtained two novel antimicrobial peptides XPF4 and XPF6. These were each fused with an ubiquitin tag and successfully expressed in Escherichia coli. This ubiquitin fusion system may present a viable alternative for industrial production of antimicrobial peptides. XPF4 and XPF6 showed much better overall antimicrobial activity against both Gram‐negative and Gram‐positive bacteria than XPF2. The therapeutic index of XPF4 and XPF6 was 5.6‐fold and 6.7‐fold of XPF2, respectively. Bacterial cell membrane permeabilization and genomic DNA interaction assays were utilized to explore the mechanism of action of XPF serial peptides. The results revealed that the target of these antimicrobial peptides was the bacterial cytoplasmic membrane. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
10.
11.
After a survey of the special role, which the amino acid proline plays in the chemistry of life, the cell‐penetrating properties of polycationic proline‐containing peptides are discussed, and the widely unknown discovery by the Giralt group (J. Am. Chem. Soc. 2002 , 124, 8876) is acknowledged, according to which fluorescein‐labeled tetradecaproline is slowly taken up by rat kidney cells (NRK‐49F). Here, we describe details of our previously mentioned (Chem. Biodiversity 2004 , 1, 1111) observation that a hexa‐β3‐Pro derivative penetrates fibroblast cells, and we present the results of an extensive investigation of oligo‐L ‐ and oligo‐D ‐α‐prolines, as well as of oligo‐β2h‐ and oligo‐β3h‐prolines without and with fluorescence labels ( 1 – 8 ; Fig. 1). Permeation through protein‐free phospholipid bilayers is detected with the nanoFAST biochip technology (Figs. 24). This methodology is applied for the first time for quantitative determination of translocation rates of cell‐penetrating peptides (CPPs) across lipid bilayers. Cell penetration is observed with mouse (3T3) and human foreskin fibroblasts (HFF; Figs. 5 and 68, resp.). The stabilities of oligoprolines in heparin‐stabilized human plasma increase with decreasing chain lengths (Figs. 911). Time‐ and solvent‐dependent CD spectra of most of the oligoprolines (Figs. 13 and 14) show changes that may be interpreted as arising from aggregation, and broadening of the NMR signals with time confirms this assumption.  相似文献   

12.
13.
The β chemokine known as 6-C-kine, secondary lymphoid-tissue chemokine (SLC), TCA4, or Exodus-2 (herein referred to as 6CK/SLC) can trigger rapid integrin-dependent arrest of lymphocytes rolling under physiological shear and is highly expressed by high endothelial venules, specialized vessels involved in lymphocyte homing from the blood into lymph nodes and Peyer's patches. We show that 6CK/SLC is an agonist for the lymphocyte chemoattractant receptor, CCR7 (EBI-1, BLR-2), previously described as a receptor for the related β chemokine MIP-3β (ELC or Exodus-3). Moreover, 6CK/SLC and MIP-3β attract the same major populations of circulating lymphocytes, including naive and memory T cells > B cells (but not natural killer cells); desensitization to MIP-3β inhibits lymphocyte chemotaxis to 6CK/SLC but not to the α chemokine SDF-1 (stromal cell–derived factor); and 6CK/SLC competes for MIP-3β binding to resting mouse lymphocytes. The findings suggest that the majority of circulating lymphocytes respond to 6CK/SLC and MIP-3β in large part through their common receptor CCR7 and that these molecules may be important mediators of physiological lymphocyte recirculation in vivo.  相似文献   

14.
The survival reduction after transplantation limited the clinical uses of stem cells so the current study explored preconditioning adipose-derived stem cells (ADMSCs) and all-trans retinoic acid (ATRA) effects on cisplatin that caused acute kidney injury (AKI). One hundred and fifty Sprague–Dawley male rats were distributed into five groups: control group; Cisplatin (CIS) group; CIS and ATRA group; CIS and ADMSC group, and CIS, ATRA, and ADMSCs group. Ten rats were euthanized after 3rd, 7th, and 11th days from CIS injection. Renal function, molecular studies, and histopathological analysis were studied. The preconditioning of ADMSCs with ATRA increased the viability of the cells which was reflected in the amelioration of kidney functions after CIS injection by the significant reduction of serum creatinine, microalbuminuria, as well as NO, and the significant rise of creatinine clearance, as well as SOD compared to the group of cisplatin. ATRA also supported ADMSCs by a significant down-regulation of caspase-3, il-6 and TGFβ1, and a significant up-regulation of HIF1, VEGF and CD31 compared to group of cisplatin which reversed the cisplatin effect. ATRA increased renoprotective properties of ADMSCs against cisplatin- induced AKI by reducing the apoptosis, inflammation, and stimulating angiogenesis.  相似文献   

15.
It has been suggested that there is a positive correlation between increased incidence of breast cancer and the presence of organochlorine residues such as DDT and HCH in breast tissues in the United States. To study possible biochemical links between these two parameters, we have examined the effect of o,p′-DDT, the most estrogenic congener of the DDT family of chemicals and β-HCH on protein phosphorylation activities in MCF-7, a line derived from human breast cancer cells. Both of these organochlorine chemicals were found to be potent activators of protein kinases. Among kinases activated, protein tyrosine kinases (PTK) appear to be most affected as judged by the antagonistic action of genistein, a class-specific PTK inhibitor. Moreover, these organochlorines were found to activate PTK even under cell-free conditions, indicating that they are likely to interact directly with the target protein tyrosine kinase. As a result of immunoprecipitation with specific antibodies, and testing on the action of these organochlorines, we could show that the major kinase activated by o,p′-DDT is c-Neu (= c-erbB2 product protein). The concentrations of these organochlorines required to activate c-Neu were extremely low (0.1–1 nM range), whereas an inactive analog p,p′-DDT showed no stimulatory property even at 100 nM. Such an action of these organochlorine compounds were not antagonized by the presence of 1 μM tamoxifen, indicating that it is not mediated through the estrogen receptor. In addition, their c-Neu activating actions were specifically antagonized by a c-Neu antibody known to interact with the extracellular domain of c-Neu only without affecting the EGF receptor. Moreover, these chemicals did not cause downregulation of the EGF receptor during the 72 hour test period. Together these data indicate that the action of these chemicals on c-Neu kinase is very specific. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 12: 83–92, 1998  相似文献   

16.
Obesity is directly associated with cancer, cardiovascular injury, hypertension, and type 2 diabetes. To date, Yamamoto identified that hot water extracts of edible Chrysanthemum (EC) induced cell size reduction, up‐regulation of adiponectin expression, and glucose absorption inhibition in 3T3‐L1 cells during adipocyte differentiation. Furthermore, EC showed antidiabetic effects such as improvement in insulin resistance and the down‐regulation of the blood glucose level and liver lipid content in type 2 diabetes model mice. In this study, we attempted to identify the antidiabetic components in EC. The methanol fraction from EC that showed relatively strong biological activity was purified by chromatography to obtain acacetin‐7‐O‐glucoside, apigenin‐7‐O‐glucoside, kaempferol‐7‐O‐glucoside, and naringenin‐7‐O‐glucoside. Among the isolated compounds and their aglycones, naringenin (NA) and naringenin‐7‐O‐glucoside (NAG) up‐regulated the intracellular accumulation of lipid and adiponectin‐secretion and down‐regulated the diameter of 3T3‐L1 cells during adipocyte differentiation. Because the PPARγ antagonist BADGE and PI3K/Akt inhibitors wortmannin and LY29004 inhibited the intracellular lipid accumulation by NA and NAG associated with adipogenesis, it was considered that NA and NAG showed the above‐mentioned activities via the activation of PPARγ as well as phosphorylation of the PI3K/Akt pathway.  相似文献   

17.
Integrins are transmembrane proteins linking the extracellular matrix or certain cell–cell contacts to the cytoskeleton. To study integrin–cytoskeleton interactions we wanted to relate talin–integrin interaction to integrin function in cell spreading and formation of focal adhesions. For talin-binding studies we used fusion proteins of glutathione S-transferase and the cytoplasmic domain of integrin β1 (GST-cytoβ1) expressed in bacteria. For functional studies chimeric integrins containing the extracellular and transmembrane parts of β3 linked to the cytoplasmic domain of β1 were expressed in CHO cells as a dimer with the αIIb subunit. Point mutations in the amino acid sequence N785PIY788 of β1 disrupted both the integrin–talin interaction and the ability of the integrin to mediate cell spreading. COOH-terminal truncation of β1 at the amino acid position 797 disrupted its ability to mediate cell spreading, whereas the disruption of talin binding required deletion of five more amino acids (truncation at position 792). A synthetic peptide from this region of β1 (W780DTGENPIYKSAV792) bound to purified talin and inhibited talin binding to GST-cytoβ1. The ability of the mutants to mediate focal adhesion formation or to codistribute to focal adhesions formed by other integrins correlated with their ability to mediate cell spreading. These results confirm the previous finding that a talin-binding site in the integrin β1 tail resides at or close to the central NPXY motif and suggest that the integrin–talin interaction is necessary but not sufficient for integrin-mediated cell spreading.  相似文献   

18.
19.
20.
Seventeen human melanoma cell (HMC) lines, both melanotic and amelanotic, were incubated in the continuous presence of a potent melanotropic peptide hormone analog, [Nle4,d -Phe7]α-MSH, for 72 hr with daily changes of medium. Only one cell line (HD, melanotic) consistently responded to the hormone analog by increased tyrosinase activity. Three (one melanotic, two amelanotic) of the HMC lines also failed to respond to the peptide by either increased or decreased enzyme activity when incubated continuously in the presence of the peptide for longer periods of time (6,15,27,43 days). The HD cell line, however, again responded with increasingly enhanced basal enzyme activity the longer the cells were incubated in the presence of the melanotropin. One amelanotic cell line (C8161) responded with enhanced enzyme activity when grown to confluency in the continuous presence of the peptide. Basal tyrosinase activity of the C8161 cell line may have increased as cell density in the flasks increased. These results suggest that under conditions of increased cell number, phenotypic expression of tyrosinase activity in so called “amelanotic” (tyrosinase-negative) cells is increased and can be enhanced further by stimulation with a melanotropic peptide. Under conditions of increased cell number, the presence of [Nle4,d -Phe7]α-MSH caused morphological differentiation (shape change); the cells became enlarged and very dendritic. The number of cells in monolayer (surface of the flask) and in the medium were drastically reduced in both melanotic and “amelanotic” cell lines incubated with [Nle4,d -Phe7]α-MSH. The data support other published reports that melanotropic peptides inhibit human melanoma cell growth (proliferation) in vitro, most likely through a cytostatic mechanism. [Nle4,d -Phe7]α-MSH also exhibited a prolonged (residual) inhibitory action on HD cell proliferation. In other words, inhibition of cell growth (proliferation) of the HMCs was evident even several days after removal of the melanotropic peptide from the incubation medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号