首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《FEBS letters》1986,201(1):151-157
Light-induced Fourier transform infrared (FTIR) difference spectroscopy has been applied for the first time to primary reactions in green plant photosynthesis. Photooxidation of the primary electron donor (P700) in photosystem I-enriched particles as well as in thylakoids, and photoreduction of the pheophytin (Pheo) intermediary electron acceptor in photosystem II-enriched particles, have led to reproducible difference spectra. In the spectral range investigated (between 1800 and 1000 cm−1) several bands are tentatively attributed to changes in intensity and position of the keto and ester carbonyl vibrations of the chlorophyll or Pheo molecule(s) involved. For some of these groups, possible interpretations in terms of changes of their environment or type of bonding to the protein are given. The intensity of the differential features in the amide I and amide II spectral region allows the exclusion of the eventuality of large protein conformational changes occurring upon primary charge separation.  相似文献   

2.
To investigate the local structure that causes the differences in molecular properties between rod and cone visual pigments, we have measured the difference infrared spectra between chicken green and its photoproduct at 77 K and compared them with those from bovine and chicken rhodopsins. In contrast to the similarity of the vibrational bands of the chromophore, those of the protein part were notably different between chicken green and the rhodopsins. Like the rhodopsins, chicken green has an aspartic acid at position 83 (D83) but exhibited no signals due to the protonated carboxyl of D83 in the C=O stretching region, suggesting that the molecular contact between D83 and G120 through water molecule evidenced in bovine rhodopsin is absent in chicken green. A pair of positive and negative bands due to the peptide backbone (amide I) was prominent in chicken green, while the rhodopsins exhibited only small bands in this region. Furthermore, chicken green exhibited characteristic paired bands around 1480 cm(-1), which were identified as the imide bands of P189 using site-directed mutagenesis. P189, situated in the putative second extracellular loop, is conserved in all the known cone visual pigments but not in rhodopsins. Thus, some region of the second extracellular loop including P189 is situated near the chromophore and changes its environment upon formation of the batho-intermediate. The results noted above indicate that differences in the protein parts between chicken green and the rhodopsins alter the changes seen in the protein upon photoisomerization of the chromophore. Some of these changes appear to be the pathway from the chromophore to cytoplasmic surface of the pigment and thus could affect the activation process of transducin.  相似文献   

3.
Circular dichroism (CD) spectra of photosystem I (PSI) complexes of the cyanobacteria Thermosynechococcus elongatus, Arthrospira platensis and Synechocystis sp. PCC 6803 were studied. CD spectra of dark-adapted PSI trimers and monomers, measured at 77 K, show common bands at 669–670(+), 673(+), 680(−), 683–685(−), 696–697(−), 702(−) and 711(−) nm. The intensities of these bands are species specific. In addition, bands at 683–685(−) and 673(+) nm differ in intensity for trimeric and monomeric PSI complexes. CD difference spectra (P700+–P700) of PSI complexes at 283 K exhibit conservative bands at 701(−) and 691(+) nm due to changes in resonance interaction of chlorophylls in the reaction center upon oxidation of P700. Additional bands are observed at 671(−), 678(+), 685(−), 693(−) nm and in the region 720–725 nm those intensities correlate with intensities of analogous bands of antenna chlorophylls in dark-adapted CD spectra. It is suggested that the variability of CD difference spectra of PSI complexes is determined by changes in resonance interaction of reaction center chlorophylls with closely located antenna chlorophylls.  相似文献   

4.
Pig kidney Na+,K+-ATPase was studied by means of reaction-induced infrared difference spectroscopy. The reaction from E1Na3+ to an E2P state was initiated by photolysis of P3-1-(2-nitrophenyl)ethyl ATP (NPE caged ATP) in samples that contained 3 mM free Mg2+ and 130 mM NaCl at pH 7.5. Release of ATP from caged ATP produced highly detailed infrared difference spectra indicating structural changes of the Na+,K+-ATPase. The observed transient state of the enzyme accumulated within seconds after ATP release and decayed on a timescale of minutes at 15°C. Several controls ensured that the observed difference signals were due to structural changes of the Na+,K+-ATPase. Samples that additionally contained 20 mM KCl showed similar spectra but less intense difference bands. The absorbance changes observed in the amide I region, reflecting conformational changes of the protein backbone, corresponded to only 0.3% of the maximum absorbance. Thus the net change of secondary structure was concluded to be very small, which is in line with movement of rigid protein segments during the catalytic cycle. Despite their small amplitude, the amide I signals unambiguously reveal the involvement of several secondary structure elements in the conformational change. Similarities and dissimilarities to corresponding spectra of the Ca2+-ATPase and H+,K+-ATPase are discussed, and suggest characteristic bands for the E1 and E2 conformations at 1641 and 1661 cm−1, respectively, for αβ heterodimeric ATPases. The spectra further indicate the participation of protonated carboxyl groups or lipid carbonyl groups in the reaction from E1Na3+ to an E2P state. A negative band at 1730 cm−1 is in line with the presence of a protonated Asp or Glu residue that coordinates Na+ in E1Na3+. Infrared signals were also detected in the absorption regions of ionized carboxyl groups.  相似文献   

5.
Proteins display a broad peak in 250–300 nm region of their UV spectrum containing multiple overlapping bands arising from the aromatic rings of phenylalanine, tyrosine, and tryptophan residues. Employing high resolution 2nd derivative absorbance spectroscopy, these overlapping absorption bands can be highly resolved and therefore provide a very sensitive measure of changes in the local microenvironment of the aromatic side chains. This has traditionally been used to detect both subtle and dramatic (i.e., unfolding) conformational alterations of proteins. Herein, we show that plots of the temperature dependent 2nd derivative peak positions of aromatic residues have measurable slopes before protein unfolding and that these slopes are sensitive to the dielectric properties of the surrounding microenvironment. We further demonstrate that these slopes correlate with hydration of the buried aromatic residues in protein cores and can therefore be used as qualitative probes of protein dynamics.  相似文献   

6.
Acaryochloris marina is an oxygen-evolving organism that utilizes chlorophyll-d for light induced photochemistry. In photosystem I particles from Acaryochloris marina, the primary electron donor is called P740, and it is thought that P740 consist of two chlorophyll-d molecules. (P740+-P740) FTIR difference spectra have been produced, and vibrational features that are specific to chlorophyll-d (and not chlorophyll-a) were observed, supporting the idea that P740 consists chlorophyll-d molecules. Although bands in the (P740+-P740) FTIR difference spectra were assigned specifically to chlorophyll-d, how these bands shifted, and how their intensities changed, upon cation formation was never considered. Without this information it is difficult to draw unambiguous conclusions from the FTIR difference spectra. To gain a more detailed understanding of cation induced shifting of bands associated with vibrational modes of P740 we have used density functional theory to calculate the vibrational properties of a chlorophyll-d model in the neutral, cation and anion states. These calculations are shown to be of considerable use in interpreting bands in (P740+-P740) FTIR difference spectra. Our calculations predict that the 31 formyl C–H mode of chlorophyll-d upshifts/downshifts upon cation/anion formation, respectively. The mode intensity also decreases/increases upon cation/anion formation, respectively. The cation induced bandshift of the 31 formyl C–H mode of chlorophyll-d is also strongly dependant on the dielectric environment of the chlorophyll-d molecules. With this new knowledge we reassess the interpretation of bands that were assigned to 31 formyl C–H modes of chlorophyll-d in (P740+-P740) FTIR difference spectra. Considering our calculations in combination with (P740+-P740) FTIR DS we find that the most likely conclusions are that P740 is a dimeric Chl-d species, in an environment of low effective dielectric constant (∼2–8). In the P740+ state, charge is asymmetrically distributed over the two Chl-d pigments in a roughly 60:40 ratio. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Time-resolved (P700+A1? – P700A1) FTIR difference spectra have been obtained using photosystem I (PSI) particles with several different quinones incorporated into the A1 protein binding site. Difference spectra were obtained for PSI with unlabeled and 18O labeled phylloquinone (2-methyl-3-phytyl-1,4-naphthoquinone) and 2-methyl-1,4-naphthaquinone (2MNQ) incorporated, and for PSI with unlabeled 2,3-dimethyl-1,4-naphthoquinone (DMNQ) incorporated. (18O – 16O), (2MNQ – PhQ) and (DMNQ – PhQ) FTIR double difference spectra were constructed from the difference spectra. These double difference spectra allow one to more easily distinguish protein and pigment bands in convoluted difference spectra. To further aid in the interpretation of the difference spectra, particularly the spectra associated with the semiquinones, we have used two-layer ONIOM methods to calculate corresponding difference and double difference spectra. In all cases, the experimental and calculated double difference spectra are in excellent agreement. In previous two and three-layer ONIOM calculations it was not possible to adequately simulate multiple difference and double difference spectra. So, the computational approach outlined here is an improvement over previous calculations. It is shown that the calculated spectra can vary depending on the details of the molecular model that is used. Specifically, a molecular model that includes several water molecules that are near the incorporated semiquinones is required.  相似文献   

8.
Yamanari T  Kimura Y  Mizusawa N  Ishii A  Ono TA 《Biochemistry》2004,43(23):7479-7490
Flash-induced Fourier transform infrared (FTIR) difference spectra for the four-step S-state cycle and the effects of global (15)N- and (13)C-isotope labeling on the difference spectra were examined for the first time in the mid- to low-frequency (1200-800 cm(-1)) as well as the mid-frequency (1700-1200 cm(-1)) regions using photosystem (PS) II core particles from cyanobacterium Synechocystis sp. PCC 6803. The difference spectra clearly exhibited the characteristic vibrational features for each transition during the S-state cycling. It is likely that the bands that change their sign and intensity with the S-state advances reflect the changes of the amino acid residues and protein matrices that have functional and/or structural roles within the oxygen-evolving complex (OEC). Except for some minor differences, the trends of S-state dependence in the 1700-1200 cm(-1) frequency spectra of the PS II cores from Synechocystis were comparable to that of spinach, indicating that the structural changes of the polypeptide backbones and amino acid side chains that occur during the oxygen evolution are inherently identical between cyanobacteria and higher plants. Upon (13)C-labeling, most of the bands, including amide I and II modes and carboxylate stretching modes, showed downward shifts; in contrast, (15)N-labeling induced isotopic shifts that were predominantly observed in the amide II region. In the mid- to low-frequency region, several bands in the 1200-1140 cm(-1) region were attributable to the nitrogen- and/or carbon-containing group(s) that are closely related to the oxygen evolution process. Specifically, the putative histidine ligand exhibited a band at 1113 cm(-1) which was affected by both (15)N- and (13)C-labeling and showed distinct S-state dependency. The light-induced bands in the 900-800 cm(-1) region were downshifted only by (13)C-labeling, whereas the bands in the 1000-900 cm(-1) region were affected by both (15)N- and (13)C-labeling. Several modes in the mid- to low-frequency spectra were induced by the change in protonation state of the buffer molecules accompanied by S-state transitions. Our studies on the light-induced spectrum showed that contributions from the redox changes of Q(A) and the non-heme iron at the acceptor side and Y(D) were minimal. It was, therefore, suggested that the observed bands in the 1000-800 cm(-1) region include the modes of the amino acid side chains that are coupled to the oxidation of the Mn cluster. S-state-dependent changes were observed in some of the bands.  相似文献   

9.
Iwaki M  Puustinen A  Wikström M  Rich PR 《Biochemistry》2003,42(29):8809-8817
The structures of P(M) and F intermediates of bovine and Paracoccus denitrificans cytochrome c oxidase were investigated by perfusion-induced attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. Transitions from the "fast" oxidized state to the P(M) or F states were initiated by perfusion with buffer containing either CO/oxygen or H(2)O(2). Intermediates were quantitated by simultaneous monitoring of visible absorption changes in the protein film. For both bovine and P. denitrificans oxidase, the major features of the IR difference spectrum of P(M) were similar when produced by CO/oxygen or by H(2)O(2) treatments. These IR difference spectra were distinctly different from the IR difference spectrum of F that formed with extended treatment with H(2)O(2). Some IR bands could be assigned tentatively to perturbations of heme a(3) ring modes and substituents, and these perturbations were greater in P(M) than in F. Other bands could be assigned to surrounding protein changes. Strong perturbation of the environment of a carboxylic acid, most likely E-242 (bovine numbering), occurred in P(M) and relaxed back in F. A second redox-sensitive carboxylic acid was also perturbed in the bovine P(M) intermediate. Further consistent signatures of P(M) in both oxidases that were absent in F were strong negative bands at 1547 and 1313 cm(-1) in bovine oxidase (1542 and 1314 cm(-1) in P. denitrificans) and a positive band at approximately 1519 cm(-1). From comparison with available IR data on model compounds, it is suggested that these reflect changes in the covalent tyrosine-histidine ligand to Cu(B). These findings are discussed in relation to the oxidase catalytic cycle.  相似文献   

10.
We examine the structural changes during the primary photoreaction in blue-absorbing proteorhodopsin (BPR), a light-driven retinylidene proton pump, using low-temperature FTIR difference spectroscopy. Comparison of the light-induced BPR difference spectrum recorded at 80 K to that of green-absorbing proteorhodopsin (GPR) reveals that there are several differences in the BPR and GPR primary photoreactions despite the similar structure of the retinal chromophore and all-trans --> 13-cis isomerization. Strong bands near 1700 cm(-1) assigned previously to a change in hydrogen bonding of Asn230 in GPR are still present in BPR. However, additional bands in the same region are assigned on the basis of site-directed mutagenesis to changes occurring in Gln105. In the amide II region, bands are assigned on the basis of total (15)N labeling to structural changes of the protein backbone, although no such bands were previously observed for GPR. A band at 3642 cm(-1) in BPR, assigned to the OH stretching mode of a water molecule on the basis of H2(18)O substitution, appears at a different frequency than a band at 3626 cm(-1) previously assigned to a water molecule in GPR. However, the substitution of Gln105 for Leu105 in BPR leads to the appearance of both bands at 3642 and 3626 cm(-1), indicating the waters assigned in BPR and GPR exist in separate distinct locations and can coexist in the GPR-like Q105L mutant of BPR. These results indicate that there exist significant differences in the conformational changes occurring in these two types proteorhodopsin during the initial photoreaction despite their similar chromophore structures, which might reflect a different arrangement of water in the active site as well as substitution of a hydrophilic for hydrophobic residue at residue 105.  相似文献   

11.
Bacteriorhodopsin (BR) is an integral membrane protein, which functions as a light-driven proton pump in Halobacterium salinarum. We report evidence that one or more methionine residues undergo a structural change during the BR→M portion of the BR photocycle. Selenomethionine was incorporated into BR using a cell-free protein translation system containing an amino acid mixture with selenomethionine substituted for methionine. BR→M FTIR difference spectra recorded for unlabeled and selenomethionine-labeled cell-free expressed BR closely resemble the spectra of in vivo expressed BR. However, reproducible changes occur in two regions near 1284 and 900 cm−1 due to selenomethionine incorporation. Isotope labeled tyrosine was also co-incorporated with selenomethionine in order to confirm these assignments. Based on recent x-ray crystallographic studies, likely methionines which give rise to the FTIR difference bands are Met-118 and Met-145, which are located inside the retinal binding pocket and in a position to constrain the motion of retinal during photoisomerization. The assignment of methionine bands in the FTIR difference spectrum of BR provides a means to study methionine-chromophore interaction under physiological conditions. More generally, combining cell-free incorporations of selenomethionine into proteins with FTIR difference spectroscopy provides a useful method for investigating the role of methionines in protein structure and function.  相似文献   

12.
Structural studies of retinochrome, and its photoproduct, lumiretinochrome, were done by Fourier transform infrared difference spectroscopy. The absorption bands in the carbonyl stretching region which shift in D2O show the changes in the protein part during the photoreaction. Strong absorption bands in the finger-print region show that the all-trans-retinal chromophore in retinochrome isomerizes to the 11-cis-retinal chromophore in lumiretinochrome upon illumination with yellow-green light at 83K.  相似文献   

13.
Resonance Raman spectra have been recorded from ferri-cytochromec bound to phospholipid vesicles composed of dimyristoyl phosphatidylglycerol (DMPG), dioleoyl phosphatidylglycerol (DOPG) or dioleoyl phosphatidylglycerol-dioleoyl phasphatidylcholine (DOPG-OPC) (70 : 30 mole/mole). Lipid binding induces very significant conformational changes in the protein molecule. The resonance Raman spectra differ in their content of bands originating from two different conformational species, I and II, of the protein, and from two different spin and coordination states of the heme in conformation II. Data of sufficiently high precision were obtained that the spectra of the individual species could be quantitated by a constraint interative fitting routine using single Lorentzian profiles. In the high frequency, or marker band region (1200 to 1700 cm−1), the frequencies, half widths and relative intensities of the individual bands could be estimated from previous surface enhanced resonance Raman measurements on cytochromec adsorbed on a silver electrode. These were then further optimized to yield both the spectral parameters and relative contents of the different species. In the low frequency, or finger-print, region (200 to 800 cm−1), the spectral parameters of the individual species were obtained from difference spectra derived by sequential subtraction between the spectra of ferri-cytochromec in the three different lipid systems, using the relative proportions of the species derived from the marker band region. These parameters were then subsequently refined by iterative optimization. The optimized spectral parameters in both frequency regions for the six-coordinated low spin states I and II, and for the five-coordinated high spin state II are presented. The proportion of state II, in which hence the heme crevice assumes an open structure, and of the five-coordinated high spin configuration, is found to increase on binding ferri cytochromec to negatively charged lipid vesicles. The extent of this conformational change increases in the order: DOPG-DOPC<DOPG<DMPG, with a parallel decrease of the proportion of the conformational state I, whose structure is similar to that of the uncomplexed ferri-cytochrome c in solution. Similar conformational changes are found for ferro-cytochromec compared to those obtained with the oxidized species on binding to lipids. The present work is essential for studies which seek to analyze, in any detailed fashion, the conformational transitions in the heme protein which take place in response to changes in the lipid environment.  相似文献   

14.
D D Schlereth  W M?ntele 《Biochemistry》1992,31(33):7494-7502
Using suitable surface-modified electrodes, we have developed an electrochemical system which allows a reversible heterogeneous electron transfer at high (approximately 5 mM) protein concentrations between the electrode and myoglobin or hemoglobin in an optically transparent thin-layer electrochemical (OTTLE) cell. With this cell, which is transparent from 190 to 10,000 nm, we have been able to obtain electrochemically-induced Fourier-transform infrared (FTIR) difference spectra of both proteins. Clean protein difference spectra between the redox states were obtained because of the absence of redox mediators in the protein solution. The reduced-minus-oxidized difference spectra are characteristic for each protein and arise from redox-sensitive heme modes as well as from polypeptide backbone and amino acid side chain conformational changes concomitant with the redox transition. The amplitudes of the difference bands, however, are small as compared to the total amide I absorbance, and correspond to approximately 1% (4%) of the reduced-minus-oxidized difference absorbance in the Soret region of myoglobin (hemoglobin) and to less than 0.1% of the total amide I absorbance. Some of the bands in the 1560-1490-cm-1 spectral regions could be assigned to side-chain vibrational modes of aromatic amino acids. In the conformationally sensitive spectral region between 1680 and 1630 cm-1, bands could be attributed to peptide C = O modes because of their small (2-5 cm-1) shift in 2H2O. A similar assignment could be achieved for amide II modes because of their strong shift in 2H2O.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Iwaki M  Puustinen A  Wikström M  Rich PR 《Biochemistry》2004,43(45):14370-14378
The structure of the P(M) intermediate of Paracoccus denitrificans cytochrome c oxidase was investigated by perfusion-induced attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. Transitions from the oxidized to P(M) state were initiated by perfusion with CO/oxygen buffer, and the extent of conversion was quantitated by simultaneously monitoring visible absorption changes. In prior work, tentative assignments of bands were proposed for heme a(3), a change in the environment of the protonated state of a carboxylic acid, and a covalently linked histidine-tyrosine ligand to Cu(B) that has been found in the catalytic site. In this work, reduced minus oxidized difference spectra at pH 6.5 and 9.0 and P(M) minus oxidized difference spectra at pH 9.0 were compared in unlabeled, universally (15)N-labeled, and tyrosine-ring-d(4)-labeled proteins to improve these assignments. In the reduced minus oxidized difference spectrum, (15)N labeling resulted in large changes in the amide II region and a 9 cm(-1) downshift in a 1105 cm(-1) trough that is attributed to histidine. In contrast, changes induced by tyrosine-ring-d(4) labeling were barely detectable where the isotope-sensitive bands are expected. Both isotope substitutions had large effects on P(M) minus oxidized difference spectra. A prominent trough at 1542 cm(-1) was shifted to 1527 cm(-1) with (15)N labeling, and its magnitude was diminished with the appearance of a 1438 cm(-1) trough with tyrosine-ring-d(4) labeling. Both isotope substitutions also had large effects on a 1314 cm(-1) trough in the same spectra. These shifts indicate that the bands are linked to both a nitrogenous compound and a tyrosine, the most obvious candidate being the covalent histidine-tyrosine ligand of Cu(B). Comparison with model material data suggests that the tyrosine hydroxyl group is protonated when the binuclear center is oxidized but deprotonated in the P(M) intermediate. Positive bands at 1519 and 1570 cm(-1) were replaced with bands at 1504 and 1556 cm(-1), respectively, with tyrosine-ring-d(4) labeling, are characteristic of upsilon(7a)(C-O) and upsilon(C-C) bands of neutral phenolic radicals, and most likely reflect the formation of the neutral radical state of the histidine-tyrosine ligand in P(M).  相似文献   

16.
Fourier transform infrared spectroscopy was used to analyze the chromophore structure in the parent states Pr and Pfr of plant phytochrome phyA and the respective photoproducts lumi-R and lumi-F. The spectra were obtained from phyA adducts assembled with either uniformly or selectively isotope-labeled phytochromobilin and phycocyanobilin. The interpretation of the experimental spectra is based on the spectra of chromophore models calculated by density functional theory. Global 13C-labeling of the tetrapyrrole allows for the discrimination between chromophore and protein bands in the Fourier transform infrared difference spectra. All infrared difference spectra display a prominent difference band attributable to a stretching mode with large contributions from the methine bridge between the inner pyrrole rings (B-C stretching). Due to mode coupling, frequencies and isotopic shifts of this mode suggest that the Pr chromophore may adopt a distorted ZZZssa or ZZZasa geometry with a twisted A-B methine bridge. The transition to lumi-R is associated with only minor changes of the amide I bands indicating limited protein structural changes during the isomerization site of the C-D methine bridge. Major protein structural changes occur upon the transition to Pfr in which the chromophore adopts a ZZEssa or ZZEasa-like state. In addition, specific interactions with the protein alter the structure of the B-C methine bridge as concluded from the substantial downshift of the respective stretching mode. These interactions are removed during the photoreaction to lumi-F (ZZEZZZ), which involves only small protein structural changes.  相似文献   

17.
Hiroki Makita  Gary Hastings 《BBA》2018,1859(11):1199-1206
Time-resolved step-scan FTIR difference spectroscopy has been used to study photosystem I (PSI) with plastoquinone-9 (PQ) and two other benzoquinones (2,6-dimethyl-1,4-benzoquinone and 2,3,5,6-tetrachloro-1,4-benzoquinone) incorporated into the A1 binding site. By subtracting a (P700+A1????P700A1) FTIR difference spectrum for PSI with the native phylloquinone (PhQ) incorporated from corresponding spectra for PSI with different benzoquinones (BQs) incorporated, FTIR double difference spectra are produced, that display bands associated with vibrational modes of the quinones, without interference from features associated with protein vibrational modes.Molecular models for BQs involved in asymmetric hydrogen bonding were constructed and used in vibrational mode frequency calculations. The calculated data were used to aid in the interpretation and assignment of bands in the experimental spectra. We show that the calculations capture the general trends found in the experimental spectra.By comparing four different FTIR double difference spectra we are able to verify unambiguously bands associated with phyllosemiquinone in PSI at 1495 and 1415?cm?1. We also resolve a previously unrecognized band of phyllosemiquinone at 1476?cm?1 that calculations suggest is due in part to a C4??O stretching mode.For PSI with PQ incorporated, calculations and experiment taken together indicate that the C1??O and C4??O vibrational modes of the semiquinone give rise to bands at 1487 and 1444?cm?1, respectively. This is very distinct compared to PSI with PhQ incorporated.From the calculated and experimental spectra, we show that it is possible to distinguish between two possible orientations of PQ in the A1 protein binding site.  相似文献   

18.
The tailspike protein P22 recognizes an octasaccharide derived from the O-antigen polysaccharide of Salmonella enteritidis in a shallow groove and molecular docking successfully identifies this binding region on the protein surface. Analysis by 2D 1H,1H-T-ROESY and transferred NOESY NMR experiments indicate that the bound octasaccharide ligand has a conformation similar to that observed in solution. The results from a saturation transfer difference NMR experiment show that a large number of protons in the octasaccharide are in close contact with the protein as a result of binding. A comparison of the crystal structure of the complex and a molecular dynamics simulation of the octasaccharide with explicit water molecules suggest that only minor conformational changes are needed upon binding to the tailspike protein.  相似文献   

19.
《BBA》1985,810(1):33-48
We have examined the temperature dependence of the rate of electron transfer to ubiquinone from the bacteriopheophytin (BPh) that serves as an initial electron acceptor (I) in reaction centers of Rhodopseudomonas sphaeroides. The kinetics were measured from the decay of the 665-nm absorption band of the reduced BPh (BPh or I) and from the recovery of the BPh band at 545 nm, following excitation of reaction centers in polyvinyl alcohol films with 30-ps flashes. The measured time constant decreases from 229 ± 25 ps at 295 K to 97 ± 8 ps near 100 K and then remains constant down to 5 K. The temperature dependence of the kinetics can be rationalized on the assumption that the reaction results in changes in the frequencies of numerous low-energy nuclear (vibrational) modes of the electron carriers and/or the protein. The kinetics measured in the absorption bands near 765 and 795 nm show essentially the same temperature dependence as those measured at 545 or 665 nm, but the time constants vary with detection wavelength. The time constant measured in the 795-nm region (70 ± 10 ps at 5 and 76 K) is shorter than that seen in the absorption bands of the BPh; the time constant measured at 758 nm is longer. Time constants measured with reaction centers in solution at 288 K also vary with the detection wavelength. These results can be explained on the assumption that the absorption changes measured at some wavelengths reflect nuclear relaxations rather than electron transfer. The absorption changes at 795 nm probably reflect a relaxation of the bacteriochlorophyll molecules that are near neighbors of the BPh and the primary electron donor (P). Those near 530 and 755 nm probably are due to the second BPh molecule, which does not appear to undergo oxidation or reduction.  相似文献   

20.
Changes in the amide bands in Fourier transform infrared spectra of proteins are generally attributed to alterations in protein secondary structure. In this study spectra of five different globular proteins were compared in the solid and solution states recorded with several sampling techniques. Spectral differences for each protein were observed between the various sampling techniques and physical states, which could not all be explained by a change in protein secondary structure. For example, lyophilization in the absence of lyoprotectants caused spectral changes that could (partially) have been caused by the removal of hydrating water molecules rather than secondary structural changes. Moreover, attenuated total reflectance spectra of proteins in H2O were not directly comparable to transmission spectra due to the anomalous dispersion effect. Our study also revealed that the amide I, II, and III bands differ in their sensitivities to changes in protein conformation: For example, strong bands in the region 1620-1630 and 1685-1695 cm(-1) were seen in the amide I region of aggregated protein spectra. Surprisingly, absorbance of such magnitudes was not observed in the amide II and III region. It appears, therefore, that only the amide I can be used to distinguish between intra- and intermolecular beta-sheet formation. Considering the differing sensitivity of the different amide modes to structural changes, it is advisable to utilize not only the amide I band, but also the amide II and III bands, to determine changes in protein secondary structure. Finally, it is important to realize that changes in these bands may not always correspond to secondary structural changes of the proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号