首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present here in silico studies on antiviral drug resistance due to a novel mutation of influenza A/H1N1 neuraminidase (NA) protein. Influenza A/H1N1 virus was responsible for a recent pandemic and is currently circulating among the seasonal influenza strains. M2 and NA are the two major viral proteins related to pathogenesis in humans and have been targeted for drug designing. Among them, NA is preferred because the ligand-binding site of NA is highly conserved between different strains of influenza virus. Different mutations of the NA active site residues leading to drug resistance or susceptibility of the virus were studied earlier. We report here a novel mutation (S247R) in the NA protein that was sequenced earlier from the nasopharyngeal swab from Sri Lanka and Thailand in the year 2009 and 2011, respectively. Another mutation (S247N) was already known to confer resistance to oseltamivir. We did a comparative study of these two mutations vis-a-vis the drug-sensitive wild type NA to understand the mechanism of drug resistance of S247N and to predict the probability of the novel S247R mutation to become resistant to the currently available drugs, oseltamivir and zanamivir. We performed molecular docking- and molecular dynamics-based analysis of both the mutant proteins and showed that mutation of S247R affects drug binding to the protein by positional displacement due to altered active site cavity architecture, which in turn reduces the affinity of the drug molecules to the NA active site. Our analysis shows that S247R may have high probability of being resistant.  相似文献   

2.
Antiviral resistance has turned into a world concern nowadays. Influenza A H1N1 emerged as a problem at the world level due to the neuraminidase (NA) mutations. The NA mutants conferred resistance to oseltamivir and zanamivir. Several efforts were conducted to develop better anti-influenza A H1N1 drugs. Our research group combined in silico methods to create a compound derived from oseltamivir to be tested in vitro against influenza A H1N1. Here we show the results of a new compound derived from oseltamivir but with specific chemical modifications, with significant affinity either on NA (in silico and in vitro assays) or HA (in silico) from influenza A H1N1 strain. We include docking and molecular dynamics (MD) simulations of the oseltamivir derivative at the binding site onto NA and HA of influenza A H1N1. Additionally, the biological experimental results show that oseltamivir derivative decreases the lytic-plaque formation on viral susceptibility assays, and it does not show cytotoxicity. Finally, oseltamivir derivative assayed on viral NA showed a concentration-dependent inhibition behavior at nM, depicting a high affinity of the compound for the enzyme, corroborated with the MD simulations results, placing our designed oseltamivir derivative as a potential antiviral against influenza A H1N1.  相似文献   

3.
If highly pathogenic H5N1 influenza viruses acquire affinity for human rather than avian respiratory epithelium, will their susceptibility to neuraminidase (NA) inhibitors (the likely first line of defense against an influenza pandemic) change as well? Adequate pandemic preparedness requires that this question be answered. We generated and tested 31 recombinants of A/Vietnam/1203/04 (H5N1) influenza virus carrying single, double, or triple mutations located within or near the receptor binding site in the hemagglutinin (HA) glycoprotein that alter H5 HA binding affinity or specificity. To gain insight into how combinations of HA and NA mutations can affect the sensitivity of H5N1 virus to NA inhibitors, we also rescued viruses carrying the HA changes together with the H274Y NA substitution, which was reported to confer resistance to the NA inhibitor oseltamivir. Twenty viruses were genetically stable. The triple N158S/Q226L/N248D HA mutation (which eliminates a glycosylation site at position 158) caused a switch from avian to human receptor specificity. In cultures of differentiated human airway epithelial (NHBE) cells, which provide an ex vivo model that recapitulates the receptors in the human respiratory tract, none of the HA-mutant recombinants showed reduced susceptibility to antiviral drugs (oseltamivir or zanamivir). This finding was consistent with the results of NA enzyme inhibition assay, which appears to predict influenza virus susceptibility in vivo. Therefore, acquisition of human-like receptor specificity does not affect susceptibility to NA inhibitors. Sequence analysis of the NA gene alone, rather than analysis of both the NA and HA genes, and phenotypic assays in NHBE cells are likely to adequately identify drug-resistant H5N1 variants isolated from humans during an outbreak.  相似文献   

4.
The recent occurrence of 2009 influenza A (H1N1) pandemic as well as others has raised concern of a far more dangerous outcome should this virus becomes resistant to current drug therapies. The number of clinical cases that are resistant to oseltamivir (Tamiflu®) is larger than the limited number of neuraminidase (NA) mutations (H275Y, N295S, and I223R) that have been identified at the active site and that are associated to oseltamivir resistance. In this study, we have performed a comparative analysis between a set of NAs that have the most representative mutations located outside the active site. The recently crystallized NA‐oseltamivir complex (PDB ID: 3NSS) was used as a wild‐type structure. After selecting the target NA sequences, their three‐dimensional (3D) structure was built using 3NSS as a template by homology modeling. The 3D NA models were refined by molecular dynamics (MD) simulations. The refined models were used to perform a docking study, using oseltamivir as a ligand. Furthermore, the docking results were refined by free‐energy analysis using the MM‐PBSA method. The analysis of the MD simulation results showed that the NA models reached convergence during the first 10 ns. Visual inspection and structural measures showed that the mutated NA active sites show structural variations. The docking and MM‐PBSA results from the complexes showed different binding modes and free energy values. These results suggest that distant mutations located outside the active site of NA affect its structure and could be considered to be a new source of resistance to oseltamivir, which agrees with reports in the clinical literature. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Influenza A (H5N1) virus is one of the world's greatest pandemic threats. Neuraminidase (NA) inhibitors, oseltamivir and zanamivir, prevent the spread of influenza, but drug‐resistant viruses have reduced their effectiveness. Resistance depends on the binding properties of NA‐drug complexes. Key residue mutations within the active site of NA glycoproteins diminish binding, thereby resulting in drug resistance. We performed molecular simulations and calculations to characterize the mechanisms of H5N1 influenza virus resistance to oseltamivir and predict potential drug‐resistant mutations. We examined two resistant NA mutations, H274Y and N294S, and one non‐drug‐resistant mutation, E119G. Six‐nanosecond unrestrained molecular dynamic simulations with explicit solvent were performed using NA‐oseltamivir complexes containing either NA wild‐type H5N1 virus or a variant. MM_PBSA techniques were then used to rank the binding free energies of these complexes. Detailed analyses indicated that conformational change of E276 in the Pocket 1 region of NA is a key source of drug resistance in the H274Y mutant but not in the N294S mutant.  相似文献   

6.
Currently, two neuraminidase (NA) inhibitors, oseltamivir and zanamivir, which must be administrated twice daily for 5 days for maximum therapeutic effect, are licensed for the treatment of influenza. However, oseltamivir-resistant mutants of seasonal H1N1 and highly pathogenic H5N1 avian influenza A viruses have emerged. Therefore, alternative antiviral agents are needed. Recently, a new neuraminidase inhibitor, R-125489, and its prodrug, CS-8958, have been developed. CS-8958 functions as a long-acting NA inhibitor in vivo (mice) and is efficacious against seasonal influenza strains following a single intranasal dose. Here, we tested the efficacy of this compound against H5N1 influenza viruses, which have spread across several continents and caused epidemics with high morbidity and mortality. We demonstrated that R-125489 interferes with the NA activity of H5N1 viruses, including oseltamivir-resistant and different clade strains. A single dose of CS-8958 (1,500 µg/kg) given to mice 2 h post-infection with H5N1 influenza viruses produced a higher survival rate than did continuous five-day administration of oseltamivir (50 mg/kg twice daily). Virus titers in lungs and brain were substantially lower in infected mice treated with a single dose of CS-8958 than in those treated with the five-day course of oseltamivir. CS-8958 was also highly efficacious against highly pathogenic H5N1 influenza virus and oseltamivir-resistant variants. A single dose of CS-8958 given seven days prior to virus infection also protected mice against H5N1 virus lethal infection. To evaluate the improved efficacy of CS-8958 over oseltamivir, the binding stability of R-125489 to various subtypes of influenza virus was assessed and compared with that of other NA inhibitors. We found that R-125489 bound to NA more tightly than did any other NA inhibitor tested. Our results indicate that CS-8958 is highly effective for the treatment and prophylaxis of infection with H5N1 influenza viruses, including oseltamivir-resistant mutants.  相似文献   

7.
The viral surface glycoprotein neuraminidase (NA) allows the influenza virus penetration and the egress of virions. NAs are classified as A, B, and C. Type-A NAs from influenza virus are subdivided into two phylogenetically distinct families, group-1 and group-2. NA inhibition by oseltamivir represents a therapeutic approach against the avian influenza virus H5N1. Here, structural bases for oseltamivir recognition by group-1 NA1, NA8 and group-2 NA9 are highlighted by the ScrewFit algorithm for quantitative structure comparison. Oseltamivir binding to NA1 and NA8 affects the geometry of Glu119 and of regions Arg130-Ser160, Val240-Gly260, and Asp330-Glu382, leading to multiple NA conformations. Additionally, although NA1 and NA9 share almost the same oseltamivir-bound final conformation, they show some relevant differences as suggested by the ScrewFit algorithm. These results indicate that the design of new NA inhibitors should take into account these family-specific effects induced on the whole structure of NAs.  相似文献   

8.
The neuraminidase (NA) of influenza virus is the target of anti-flu drugs oseltamivir and zanamivir. Clinical practices showed that oseltamivir was effective to treat the 2009-H1N1 influenza but failed to the 2006-H5N1 avian influenza. To perform an in-depth analysis on such a drug-resistance problem, the 2009-H1N1-NA structure was developed. To compare it with the crystal 2006-H5N1-NA structure as well as the 1918 influenza virus H1N1-NA structure, the multiple sequential and structural alignments were performed. It has been revealed that the hydrophobic residue Try347 in H5N1-NA does not match with the hydrophilic carboxyl group of oseltamivir as in the case of H1N1-NA. This may be the reason why H5N1 avian influenza virus is drug-resistant to oseltamivir. The finding provides useful insights for how to modify the existing drugs, such as oseltamivir and zanamivir, making them not only become more effective against H1N1 virus but also effective against H5N1 virus.  相似文献   

9.
Oseltamivir (Tamiflu) is the most accepted antiviral drug that targets the neuraminidase (NA) protein to inhibit the viral release from the host cell. Few H1N1 influenza strains with the H274Y mutation creates drug resistance to oseltamivir. In this study, we report that flavonoid cyanidin-3-sambubiocide (C3S) compound acts as a potential inhibitor against H274Y mutation. The drug resistance mechanism and inhibitory activity of C3S and oseltamivir against wild-type (WT) and H274Y mutant-type (MT) have been studied and compared based on the results of molecular docking, molecular dynamics, and quantum chemical methods. Oseltamivir has been found less binding affinity with MT. C3S has more binding affinity with WT and MT proteins. From the dynamical study, the 150th loop of the MT protein has found more deformation than WT. A single H274Y mutation induces the conformational changes in the 150th loop which leads to produce more resistance to oseltamivir. The 150th cavity is more attractive target for C3S to stop the conformational changes in the MT, than 430th cavity of NA protein. The C3S is stabilized with MT by more number of hydrogen bonds than oseltamivir. The electrostatic interaction energy shows a stronger C3S binding with MT and this compound may be more effective against oseltamivir-resistant virus strains.  相似文献   

10.
Influenza is one of the most common infections of the upper respiratory tract. Antiviral drugs that are currently used to treat influenza, such as oseltamivir and zanamivir, are neuraminidase (NA) inhibitors. However, the virus may develop resistance through single‐point mutations of NA. Antiviral resistance is currently monitored by a labelled enzymatic assay, which can be inconsistent because of the short half‐life of the labelled product and variations in the assay conditions. In this paper, we describe a label‐free surface plasmon resonance (SPR) assay for measuring the binding affinity of NA‐drug interactions. Wild‐type (WT) NA and a histidine 274 tyrosine (H274Y) mutant were expressed in High Five? (Trichoplusia ni) insect cells. A spacer molecule (1,6‐hexanediamine) was site‐specifically conjugated to the 7‐hydroxyl group of zanamivir, which is not involved in binding to NA, and the construct was immobilized onto a SPR sensor Chip to obtain a final immobilization response of 431 response units. Binding responses obtained for WT and H274Y mutant NAs were fitted to a simple Langmuir 1:1 model with drift to obtain the association (ka) and dissociation (kd) rate constants. The ratio between the binding affinities for the two isoforms was comparable to literature values obtained using labelled enzyme assays. Significant potential exists for an extension of this approach to test for drug resistance of further NA mutants against zanamivir and other antiviral drugs, perhaps paving the way for a reliable SPR biosensor assay that may replace labelled enzymatic assays. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The recent H1N1 influenza pandemic has attracted worldwide attention due to the high infection rate. Oseltamivir is a new class of anti-viral agent approved for the treatment and prevention of influenza infections. The principal target for this drug is a virus surface glycoprotein, neuraminidase (NA), which facilitates the release of nascent virus and thus spreads infection. Until recently, only a low prevalence of neuraminidase inhibitor (NAI) resistance (<1 %) had been detected in circulating viruses. However, there have been reports of significant numbers of A (H1N1) influenza strains with a N294S neuraminidase mutation that was highly resistant to the NAI, oseltamivir. Hence, in the present study, we highlight the effect of point mutation-induced oseltamivir resistance in H1N1 subtype neuraminidases by molecular simulation approach. The docking analysis reveals that mutation (N294S) significantly affects the binding affinity of oseltamivir with mutant type NA. This is mainly due to the decrease in the flexibility of binding site residues and the difference in prevalence of hydrogen bonds in the wild and mutant structures. This study throws light on the possible effects of drug-resistant mutations on the large functionally important collective motions in biological systems.  相似文献   

12.
With the recent introduction of neuraminidase (NA) inhibitors into clinical practice for the treatment of influenza virus infections, considerable attention has been focused on the potential for resistance development and cross-resistance between different agents from this class. A-315675 is a novel influenza virus NA inhibitor that has potent enzyme activity and is highly active in cell culture against a variety of strains of influenza A and B viruses. To further assess the therapeutic potential of this compound, in vitro resistance studies have been conducted and a comparative assessment has been made relative to oseltamivir carboxylate. The development of viral resistance to A-315675 was studied by in vitro serial passage of influenza A/N9 virus strains grown in MDCK cells in the presence of increasing concentrations of A-315675. Parallel passaging experiments were conducted with oseltamivir carboxylate, the active form of a currently marketed oral agent for the treatment of influenza virus infections. Passage experiments with A-315675 identified a variant at passage 8 that was 60-fold less susceptible to the compound. Sequencing of the viral population identified an E119D mutation in the NA gene, but no mutations were observed in the hemagglutinin (HA) gene. However, by passage 10 (2.56 microM A-315675), two mutations (R233K, S339P) in the HA gene appeared in addition to the E119D mutation in the NA gene, resulting in a 310-fold-lower susceptibility to A-315675. Further passaging at higher drug concentrations had no effect on the generation of further NA or HA mutations (20.5 microM A-315675). This P15 virus displayed 355-fold-lower susceptibility to A-315675 and >175-fold-lower susceptibility to zanamivir than did wild-type virus, but it retained a high degree of susceptibility to oseltamivir carboxylate. By comparison, virus variants recovered from passaging against oseltamivir carboxylate (passage 14) harbored an E119V mutation and displayed a 6,000-fold-lower susceptibility to oseltamivir carboxylate and a 175-fold-lower susceptibility to zanamivir than did wild-type virus. Interestingly, this mutant still retained susceptibility to A-315675 (42-fold loss). This suggests that cross-resistance between A-315675- and oseltamivir carboxylate-selected variants in vitro is minimal.  相似文献   

13.
Owing to its unique function to release the progeny virus particles from the surface of an infected cell, neuraminidase has drawn special attention for developing new drugs to treat influenza viruses. The 150-cavity that is adjacent to the active pocket of the group-1 neuraminidase (N1) renders the conformational change from ‘open’ form to ‘closed’ form when enzyme is binding with a ligand. Consequently, it would be a better strategy to design multi-binding-site inhibitors including X and R groups with proper shapes, sizes and electronic charges fitting into the active site. The NCI and ZINC fragment databases were screened for finding the optimal fragments with de novo design technique. By doing so, 24 derivatives of oseltamivir were obtained by linking the fragments at two different sites of the scaffold of oseltamivir. Molecular docking and dynamics showed that these compounds not only adopt more favourable conformation but also have stronger binding interaction with receptor. Most importantly, all compounds skilfully pass through the cleft (formed by Glu119 and Arg156) and fit into 150-cavity. Therefore, the selected 24 derivatives may become promising candidates for treating influenza virus; in addition, the findings reported here may at least provide useful insights and stimulate new strategy in this area.  相似文献   

14.
The constant risk of emerging new influenza virus strains that are resistant to established inhibitors like oseltamivir leaves influenza neuraminidase (NA) a prominent target for drug design. The inhibitory activity of several flavonoid derivatives was experimentally tested in comparison to oseltamivir for the NA expressed by the seasonal influenza virus strains A/California/7/09 (A(H1N1)pdm09), A/Perth/16/09 (A(H3N2)), and B/Brisbane/60/08. IC50 values of polyphenols confirmed moderate inhibition in the μM range. Structurally, the amount and site of glycosylation of tested flavonoids have no significant influence on their inhibitory potency. In a pharmacophore-based docking approach the structure–activity relationship was evaluated. Molecular dynamics simulations revealed highly flexible parts of the enzyme and the contribution of salt bridges to the structural stability of NA. The findings of this study elucidate the impact of flavonoids on viral neuraminidase activity and the analysis of their modes of action provide valuable information about the mechanism of NA inhibition.  相似文献   

15.
The surfactant collectins, surfactant proteins A and D (SP-A and D), and scavenger receptor-rich glycoprotein 340 (gp340) inhibit influenza A virus (IAV) in the following order of potency: SP-D>gp340>SP-A. SP-D binds in a calcium-dependent manner to carbohydrate attachments on the viral hemagglutinin (HA) and neuraminidase (NA). By contrast, gp340 and SP-A act like mucins in that they provide sialic acid ligands that bind to the viral HA. In this study, SP-D, SP-A, and gp340 showed cooperative antiviral interactions. These cooperative effects were most evident in viral aggregation but were also observed in at least some hemagglutination inhibition and viral neutralization assays. The mechanism of binding between gp340 and SP-D was further characterized using monoclonal antibodies. Although gp340 can bind to SP-D at a site distinct from the mannan-binding site, binding of gp340 to SP-D did not contribute to cooperative antiviral interactions. SP-D and mucin showed cooperative interactions, apparently dependent on NA inhibition by SP-D. The commercial NA inhibitor oseltamivir had a similar effect and also enhanced the neutralizing activity of SP-A and bronchoalveolar lavage fluid. Hence, oseltamivir collaborates with innate immune proteins in inhibiting the initial infection of epithelial cells.  相似文献   

16.
Oseltamivir (Tamiflu) is currently the frontline antiviral drug employed to fight the flu virus in infected individuals by inhibiting neuraminidase, a flu protein responsible for the release of newly synthesized virions. However, oseltamivir resistance has become a critical problem due to rapid mutation of the flu virus. Unfortunately, how mutations actually confer drug resistance is not well understood. In this study, we employ molecular dynamics (MD) and steered molecular dynamics (SMD) simulations, as well as graphics processing unit (GPU)-accelerated electrostatic mapping, to uncover the mechanism behind point mutation induced oseltamivir-resistance in both H5N1 “avian” and H1N1pdm “swine” flu N1-subtype neuraminidases. The simulations reveal an electrostatic binding funnel that plays a key role in directing oseltamivir into and out of its binding site on N1 neuraminidase. The binding pathway for oseltamivir suggests how mutations disrupt drug binding and how new drugs may circumvent the resistance mechanisms.  相似文献   

17.
Owing to its unique function in assisting the release of newly formed virus particles from the surface of an infected cell, neuraminidase, an antigenic glycoprotein enzyme, is a main target for drug design against influenza viruses. The group-1 neuraminidase of influenza virus possesses a 150-cavity, which is adjacent to the active pocket, and which renders conformational change from the ‘open’ form to the ‘closed’ form when the enzyme is binding with a ligand. Using AutoGrow evolutionary algorithm, one very unique fragment is screened out from the fragment databases by exploiting additional interactions with the 150-cavity. Subsequently, three derivatives were constructed by linking the unique fragment to oseltamivir at its three different sites. The three derivatives thus formed show much stronger inhibition power than oseltamivir, and hence may become excellent candidates for developing new and more powerful drugs for treating influenza. Or at the very least, the findings may stimulate new strategy or provide useful insights for working on the target vitally important to the health of human beings.  相似文献   

18.
The neuraminidase (NA) of the influenza virus is the target of antiviral drug, oseltamivir. Recently, cases were reported that influenza virus becoming resistant to oseltamivir, necessitating the development of new long-acting antiviral compounds. In this report, a novel class of lead molecule with potential NA inhibitory activity was identified using a combination of virtual screening (VS), molecular docking, and molecular dynamic approach. The PubChem database was used to perform the VS analysis by employing oseltamivir as query. Subsequently, the data reduction was carried out by employing molecular docking study. Furthermore, the screened lead molecules were analyzed with respect to the Lipinski rule of five, drug-likeness, toxicity profiles, and other physico-chemical properties of drugs by suitable software program. Final screening was carried out by normal mode analysis and molecular dynamic simulation approach. The result indicates that CID 25145634, deuterium-enriched oseltamivir, become a promising lead compound and be effective in treating oseltamivir sensitive as well as resistant influenza virus strains.  相似文献   

19.
The outbreak of avian influenza virus H5N1 has raised a global concern because of its high virulence and mutation rate. Although two classes of antiviral drugs, M2 ion channel protein inhibitors and neuraminidase inhibitors, are expected to be important in controlling the early stages of a potential pandemic. Different strains of influenza viruses have differing degrees of resistance against the antivirals. In order to analyze the detailed information on the viral resistance, molecular dynamics simulations were carried out for the neuraminidase (NA) complex with oseltamivir. The carboxylate of Glu276 of H252Y NA faces toward the O-ethyl-propyl group of oesltamivir, Glu276 of wild-type NA adopts a conformation pointing away from the oesltamivir. τ2 and τ3 torsional angles fluctuation of the oesltamivir are relatively high for the H252Y mutant NA complex. In addition, there are fewer hydrogen bonds between the oesltamivir and H252Y mutation NA. The results show that H252Y mutation NA has high resistance against the drug.  相似文献   

20.
Bouvier NM  Lowen AC  Palese P 《Journal of virology》2008,82(20):10052-10058
Influenza viruses resistant to the neuraminidase (NA) inhibitor oseltamivir arise under drug selection pressure both in vitro and in vivo. Several mutations in the active site of the viral NA are known to confer relative resistance to oseltamivir, and influenza viruses with certain oseltamivir resistance mutations have been shown to transmit efficiently among cocaged ferrets. However, it is not known whether NA mutations alter aerosol transmission of drug-resistant influenza virus. Here, we demonstrate that recombinant human influenza A/H3N2 viruses without and with oseltamivir resistance mutations (in which NA carries the mutation E119V or the double mutations E119V I222V) have similar in ovo growth kinetics and infectivity in guinea pigs. These viruses also transmit efficiently by the contact route among cocaged guinea pigs, as in the ferret model. However, in an aerosol transmission model, in which guinea pigs are caged separately, the oseltamivir-resistant viruses transmit poorly or not at all; in contrast, the oseltamivir-sensitive virus transmits efficiently even in the absence of direct contact. The present results suggest that oseltamivir resistance mutations reduce aerosol transmission of influenza virus, which could have implications for public health measures taken in the event of an influenza pandemic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号