首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homogeneous rabbit liver phosphorylase phosphatase (Brandt, H., Capulong, Z. L., and Lee, E. Y. C. (1975) J. Biol. Chem. 250, 8038-8044) also dephosphorylates glycogen synthase b. During purification, phosphorylase phosphatase and glycogen synthase phosphatase co-purified with a constant ratio of activities. The two activities co-migrated on disc gel electrophoresis. Both substrates competed with each other for the phosphatase, and both phosphatase activities were inhibited by lysine ethyl ester. It is concluded that liver phosphorylase phosphatase and glycogen synthase phosphatase have a common identity and that coordinate regulation of the phosphatase-catalyzed activation of glycogen synthase and inactivation of phosphorylase occurs in vivo. This provides a parallel and opposing mechanism to that mediated by adenosine 3':5'-monophosphate-dependent protein kinase, which coordinately inactivates glycogen synthase and, via phosphorylase kinase, activates phosphorylase. Maximal glycogen synthase phosphatase activity was observed near neutrality. Mg2+ and glucose-6-P activated the glycogen synthase phosphatase reaction and this activation was pH-dependent. The Km for glycogen synthase b was 0.12 muM.  相似文献   

2.
Summary Glycogen phosphorylase of pupal fat body of the silkmoth,Hyalophora cecropia, and its activation by different stimuli have been studied. Spectrophotometric assay in the direction of glycogenolysis, used in most of the experiments, indicated higher amounts of phosphorylasea than assay by release of Pi from glucose-1-phosphate; both assays, however, estimated changes in proportion of phosphorylasea equally. TheK ms for Pi were estimated as 5 mM for phosphorylasea in the absence of AMP and 18 mM for phosphorylaseb with 2 mM AMP.When diapausing pupae were held at 4°C, fat body phosphorylase was quickly activated by conversion to thea form up to about 50% of the total, and then declined again after 30 days, when glycerol had accumulated in the hemolymph. Cold activation in vivo was quickly reversed at 25°C. Removal of the brain did not prevent cold activation. After storage at 15°C, sensitivity to cold activation was diminished. Locusts and crickets also showed activation of phosphorylase after chilling.Exposure of fat body to air, transfer to Ringer solution, or physical agitation, caused activation of phosphorylase which is classed as shock activation. After about 1 h incubation in Ringer at 25°C, this effect reversed spontaneously. Activation also occurred in fat body in vitro after transfer to 0°C (cold activation), and was reversed at 25°C. The previously reported inhibition of activation by glycerol, however, could not be consistently reproduced.In fat body homogenates, phosphorylaseb was converted to phosphorylasea by incubation with ATP and Mg2+, which indicates activity of phosphorylase kinase. In preparations treated with Sephadex G-25 and then incubated, the reverse conversion took place, which was inhibited by fluoride, and indicates activity of phosphorylase phosphatase.Cyclic AMP added to fat body in vitro, or theophylline either in vivo or in vitro, stimulated the activation of phosphorylase. In fat body in vitro, shock activation was paralleled by elevation of tissue cyclic AMP, whereas cold activation was not. Cyclic GMP did not stimulate activation, and showed no significant changes in tissue levels.It is concluded that the conversion of silkmoth pupal fat body phosphorylaseb to phosphorylasea can be stimulated by a shock-initiated mechanism involving cyclic AMP and a distinct cold-initiated mechanism independent of cyclic AMP.Abbreviations DTT dithiothreitol - cyclic AMP 3,5-cyclic adenosine monophosphate - cyclic GMP 3,5-cyclic guanosine monophosphate - P i inorganic phosphate This investigation was begun in the Department of Biology, Yale University, New Haven, Connecticut, USA  相似文献   

3.
Immunoaffinity purified pp60v-src was found to activate the MgATP-dependent protein phosphatase in the presence of MgATP. Although preliminary evidence suggested that phosphorylation of the inhibitor-2 subunit on tyrosine residues was responsible for the activation, preincubation of the pp60v-src preparation at 41°C resulted in a rapid loss of its protein kinase activities towards both casein and inhibitor-2 while its ability to activate the protein phosphatase complex was relatively insensitive to this treatment. This result demonstrated that pp60v-src was not responsible for activation of the MgATP-dependent protein phosphatase. A protein kinase activity which phosphorylated glycogen synthase on serine residues was detected in the pp60v-src preparation. The protein kinase was active in the presence of inhibitors of phosphorylase kinase, glycogen synthase kinase 5/casein kinase II, and cAMP-dependent protein kinase. It is, therefore, likely that activation of the MgATP-dependent protein phosphatase resulted from the presence of a glycogen synthase kinase 3 like activity in the pp60v-src preparation. Our results illustrate the importance of applying multiple criteria to link the phosphorylation of a protein with an observed change in its activity.  相似文献   

4.
The pistachio twig borer, Kermania pistaciella Amsel (Lepidoptera: Tineidae), a key pest of pistachio trees, is a monovoltine pest living inside the feeding tunnel of pistachio twigs for almost 10 months in a year and overwinters there as last instar larvae. In this study, we measured some physiological parameters of overwintering field collected larvae of the pest. There were no changes in trehalose, glucose, and myo-inositol contents, but there were differences in the levels of total simple sugar and glycogen during overwintering. Total sugar content at the beginning of overwintering (October) was at the lowest level (24.13 mg/g body weight) and reached to the highest level (55.22 mg/g fresh body weight) in November whereas glycogen content was at the highest level (44.05 mg/g fresh body weight) in October and decreased to 18.42 mg/g fresh body weight in November. Decrease in lipid content during the overwintering period was not significant. The highest and lowest levels of protein content were recorded in January and February, respectively. Supercooling points (SCP) of the overwintering larvae were stable and low (ranged between ?17.80 and ?25.10°C) throughout the cold season and no larva survived after SCP determination. The lowest cold hardiness (60 and 0.0% survival following exposure to ?10 and ?20°C/24 h, respectively) was observed for in November-collected larvae. Overwintering larvae of the pistachio twig borer rely mostly on maintaining the high supercooling capacity throughout the overwintering to avoid freezing of their body fluid.  相似文献   

5.
Changes in the activity of over 20 enzymes of intermediary metabolism in 15°C or ?4°C acclimated goldenrod gall moth (Epiblema scudderiana) and gall fly (Eurosta solidaginis) larvae were measured. Increased activities of glyco-genolytic and hexose monophosphate shunt enzymes in cold-acclimated Epiblema scudderiana suggest a role for coarse control in the conversion of glycogen reserves into glycerol cryoprotectant synthesis. In Eurosta solidaginis, high glycogen phosphorylase activity with decreased activities of glycolytic enzymes may account in part for the temperature-dependent switch from glycerol to sorbitol synthesis in these larvae upon cold acclimation. Isoelectric focusing analyses of five enzymes in overwintering Epiblema scudderiana revealed transient mid-winter changes in the isoelectric points of phosphofructokinase and pyruvate kinase, suggesting seasonal changes in the phosphorylation state of these enzymes. A distinct developmental pattern of aldolase isozymes suggests a role for a new isozyme during overwintering or upon spring emergence. Regulation of metabolism by changes in enzyme activities is indicated for both larvae. © 1995 Wiley-Liss, Inc.  相似文献   

6.
1. Livers from gsd/gsd rats, which do not express phosphorylase kinase activity, also contain much less particulate type-1 protein phosphatases. In comparison with normal Wistar rats, the glycogen/microsomal fraction contained 75% less glycogen-synthase phosphatase and 60% less phosphorylase phosphatase activity. This was largely due to a lower amount of the type-1 catalytic subunit in the particulate fraction. In the cytosol, the synthase phosphatase activity was also 50% lower, but the phosphorylase phosphatase activity was equal. 2. Both Wistar rats and gsd/gsd rats responded to an intravenous injection of insulin plus glucose with an acute increase (by 30-40%) in the phosphorylase phosphatase activity in the liver cytosol. In contrast, administration of glucagon or vasopressin provoked a rapid fall (by about 25%) in the cytosolic phosphorylase phosphatase activity in Wistar rats, but no change occurred in gsd/gsd rats. 3. Phosphorylase kinase was partially purified from liver and subsequently activated. Addition of a physiological amount of the activated enzyme to a liver cytosol from Wistar rats decreased the V of the phosphorylase phosphatase reaction by half, whereas the non-activated kinase had no effect. The kinase preparations did not change the activity of glycogen-synthase phosphatase, which does not respond to glucagon or vasopressin. Furthermore, the phosphorylase phosphatase activity was not affected by addition of physiological concentrations of homogeneous phosphorylase kinase from skeletal muscle (activated or non-activated). 4. It appears therefore that phosphorylase kinase plays an essential role in the transduction of the effect of glucagon and vasopressin to phosphorylase phosphatase. However, this inhibitory effect either is specific for the hepatic phosphorylase kinase, or is mediated by an unidentified protein that is a specific substrate of phosphorylase kinase.  相似文献   

7.
Rabbit muscle nonactivated phosphorylase kinase (EC 2.7.1.38) is converted to thiophosphate-activated phosphorylase kinase by cyclic AMP dependent protein kinase, Mg2+ and ATP-gamma-S/adenosine-5'-O-(s-thiotriphosphate)/. The formation of thiophosphate-activated phosphorylase kinase wal also observed in the protein-glycogen complex from skeletal muscle. This new form of kinase is resistant to the action of phosphatase and behaves as a competitive inhibitor in the dephosphorylation of phosphorylase alpha by phosphorylase phosphatase (Ki = 0.04 mg per ml). The fact that the inhibitory effect of thiophosphate-activated phosphorylase kinase is 3 times higher than in the case of nonactivated kinase, may explain the transient inhibition of phosphorylase phosphatase in the protein-glycogen complex. The use of activated (phosphorylated) phosphorylase kinase supports this assumption since it causes a delay in the dephosphorylation of phosphorylase alpha, i.e. the conversion of phosphorylase alpha into beta could start only after the dephosphorylation of activated phosphorylase kinase.  相似文献   

8.
Abstract The responses of overwintering larvae of the pine needle gall midge Thecodiplosis japonensis Uchida et Inouye to rapid cold hardening and cold acclimation were studied. A rapid cold hardening response is found in the 3rd instar larvae of T. japonensis. When overwintering larvae are transferred directly from 27°C to ‐ 15°C for 3 h, there is only 17.9% survival, whereas exposure to 4°C for 2 h prior to transfer to ‐ 15°C increases survival to 40.0%. The acquired cold tolerance is transient and is rapidly lost (after 15 min at 27°C). Rapid cold hardening is more effective in maintaining larval survival than cold acclimation. Different mechanisms are suggested to regulate the insect's cold hardiness under rapid cold hardening and cold acclimation.  相似文献   

9.
Cyclic-AMP-dependent protein kinase catalyses the activation of phosphorylase kinase and the phosphorylation of two serine residues on the alpha subunit and beta subunit of phosphorylase kinase [Cohen, P., Watson, D.C. and Dixon, G.H. (1975)]. The dephosphorylation of phosphorylase kinase has been shown to be catalysed by two distinct enzymes, termed alpha-phosphorylase kinase phosphatase and beta-phosphorylase kinase phosphatase. These two enzymes show essentially absolute specificity towards the alpha and beta subunits respectively. The two phosphatases copurified through ethanol fractionation, DEAE-cellulose chromatography and ammonium sulphate precipitation, but were separated from each other by a gel filtration on Sephadex G-200. alpha-Phosphorylase kinase phosphatase was purified 500-fold from the ethanol precipitation step, and beta-phosphorylase kinase phosphatase 320-fold. The molecular weights estimated by gel filtration were 170--180 000 for alpha-phosphorylase kinase phosphatase and 75--80 000 for beta-phosphorylase kinase phosphatase. Since the activity of phosphorylase kinase correlates with the state of phosphorylation of the beta subunit (Cohen, P. (1974)), beta-phosphorylase kinase phosphatase is the enzyme which reverses the activation of phosphorylase kinase. alpha-Phosphorylase kinase phosphatase is an enzyme activity that has not been recognised previously. Since the role of the alpha-subunit phosphorylation is to stimulate the rate of dephosphorylation of the beta subunit (Cohen, P. (1974)), alpha-phosphorylase kinase phosphatase can be regarded as the enzyme which inhibits the reversal of the activation of phosphorylase kinase. The implications of these findings for the hormonal control of phosphorylase kinase activity by multisite phosphorylation are discussed.  相似文献   

10.
The Chinese white pine beetle, Dendroctonus armandi Tsai & Li (Coleoptera: Curculionidae, Scolytinae), is considered the most destructive forest pest in the Qinling and Bashan Mountains of China. In recent years, winter temperature has dropped in these regions, and extremely low temperatures are hard to survive for insects. Cold hardiness becomes a crucial strategy because temperature change often leads to fluctuations in insect abundance, and the metabolism rate is a key index of resistance to cold in overwintering insects. Therefore, we investigated the relationship between the change in respiratory rate and the activity of metabolism-related mitochondrial enzymes in D. armandi larvae under cold conditions. We found that the respiratory rate decreased, and it was matched with the activity of glutamate dehydrogenase, aconitase, and lipase during overwintering. Among the various test times under cold conditions, the respiratory rate also decreased with decreasing temperature and increased under very low temperatures. At all cold stress periods, glutamate dehydrogenase and lipase showed increased activity at higher temperatures and decreased activity under lower temperatures, but the activity of NAD-malic enzyme, NADP-malic enzyme, mitochondrial isocitrate dehydrogenase, and aconitase were contrary. Under all low temperatures, the activity of enzymes – except for NADP-malic enzyme, glutamate dehydrogenase, and lipase – increased in short-term cold stress and decreased in long-term cold stress at 4, 0, −4, −6, −8, and −10 °C. However, at −2 °C, the activity of enzymes showed a decreasing trend in short-term treatments and an increasing trend in long-term treatments, except for mitochondrial isocitrate dehydrogenase. The results not only improve our understanding of the metabolic mechanism of cold adaptation in D. armandi, but also provide an important experimental basis for further study and biological pest control.  相似文献   

11.
This study was initiated to determine whether glycogen phosphorylase activation was defective in hearts of alloxan diabetic rats. When hearts were perfused by gravity flow for 1 to 10 min with various concentrations of epinephrine, activation of glycogen phosphorylase in the diabetic was significantly greater at every time and epinephrine concentration than that seen in the normal. Cyclic AMP accumulation and protein kinase activation by epinephrine in the diabetic were not appreciably different or were lower than the normal responses to the hormone. The effects of epinephrine on cAMP and protein kinase were blocked in both normal and diabetic hearts by propranolol. While the beta blocker prevented phosphorylase activation in the normal hearts, it did not block phosphorylase activation by epinephrine in the diabetic hearts. Likewise, the alpha agonist phenylephrine activated phosphorylase in the diabetic but not in the normal hearts. While glucagon produced the same phosphorylase hypersensitivity in diabetic hearts, the cAMP and protein kinase responses were not altered by diabetes. Phosphorylase phosphatase activity was found to be unaltered by either epinephrine or diabetes, whereas phosphorylase kinase activation by epinephrine in the diabetic was double the normal response. These data are consistent with a diabetes-related unmasking of an alpha effect on cardiac phosphorylase activation and an unexplained increase in the sensitivity of phosphorylase kinase activation by protein kinase.  相似文献   

12.
The common pistachio psylla, Agonoscena pistaciae Burckhardt & Lauterer (Hemiptera: Psyllidae), is known as the key pest of pistachio orchards in Iran. This pest passes the winter as adults. In this study, energy allocation changes in relation to ambient temperature were investigated in field-collected adults by measuring total body sugar, trehalose, glucose, sorbitol, myoinositol, glycogen, lipid, and protein contents. Glycogen content decreased with decrease in ambient temperature. The decrease in glycogen content was proportional to the increase in total body sugar, trehalose, myoinositol, and sorbitol contents. In January, with mean ambient temperature of 5.4°C, glycogen content was at the lowest level, whereas total body sugar, trehalose, glucose, and sorbitol were at the highest level. Total body sugar, trehalose, myoinositol, and sorbitol contents increased as temperature decreased from 22.7°C in October to 5.4°C in January. In conclusion, low molecular weight carbohydrates and polyols may play a role in winter survival and adaptation to cold of the common pistachio psylla by providing the required cryoprotection. Also, overwintering adults of the common pistachio psylla may store energy in the form of lipid for later utilization during the overwintering.  相似文献   

13.
Glycogen phosphorylase from swine adipose tissue was purified nearly 700-fold using ethanol precipitation, DEAE-cellulose adsorption, AMP-agarose affinity chromatography, and agarose gel filtration. The purified enzyme migrated as one major and several minor components during polyacrylamide gel electrophoresis. Activity was associated with the major component and at least one of the minor components. The molecular weight of the disaggregated, reduced, and alkylated enzyme, estimated by polyacrylamide gel electrophoresis performed in the presence of sodium dodecyl sulfate, was 90,000. Stability of the purified enzyme was considerably increased in the presence of AMP. The isoelectric pH of the enzyme in crude homogenates was 6.3. The sedimentation coefficient of the purified enzyme (7.9 S) and that in crude homogenates (7.3 S) was determined by sucrose density gradient sedimentation. Optimal pH for activity was between pH 6.5 and 7.1. Apparent Km values for glycogen and inorganic phosphate were 0.9 mg/ml and 6.6 mM, respectively. The Ka for AMP was 0.21 mM. Enzyme activity was increased by K2SO4, KF, KCl, and MgCl2 and decreased by NaCl, Na2SO4, D-glucose, and ATP. Inhibition by glucose was noncompetitive with the activator AMP; inhibition by ATP was partially competitive with AMP. The purified enzyme was activated by incubation with skeletal muscle phosphorylase kinase. Enzyme in crude homogenates was activated by the addition of MgCl2 and ATP; activation was not blocked by addition of protein kinase inhibitor, suggesting that phosphorylase kinase in homogenates of swine adipose tissue is present largely in an activated form. Deactivation of phosphorylase a by phosphorylase phosphatase was studied using enzyme purified approximately 200-fold from swine adipose tissue by ethanol precipitation, DEAE-cellulose chromatography, and gel filtration. The Km of the adipose tissue phosphatase for skeletal muscle phosphorylase a was 6 muM. The purified swine adipose tissue phosphorylase, labeled with 32-P, was inactivated and dephosphorylated by the adipose tissue phosphatase. Dephosphorylation of both skeletal muscle and adipose tissue substrates was inhibited by AMP and glucose reversed this inhibition. Several lines of evidence suggest that AMP inhibition was due to an action on the substrate rather than on the enzyme. We have previously reported that the system for phosphorylase activation in rat fat cells differs in some important characteristics from that in skeletal muscle. However, both swine fat phosphorylase and phosphorylase phosphatase have major properties very similar to those described for the enzymes from skeletal muscle.  相似文献   

14.
Protein phosphorylation and dephosphorylation are involved in regulation of cell growth. We tested the hypothesis that the growth inhibitory effect of transforming growth factor beta 1 (TGF-beta 1) involves activation of protein phosphatases. Exposure of human keratinocytes in culture to 400 pM TGF-beta 1 for 48 h led to 80% inhibition of DNA synthesis as measured by nuclear labeling. Incubation of cultured keratinocytes with 400 pM TGF-beta 1 rapidly activated (within 30 min) protein serine/threonine phosphatase, measured using phosphorylase as a substrate. Based on several criteria, including neutralization of activity with specific antibodies and inhibitor-2, TGF-beta 1-activated phosphorylase phosphatase was identified as protein phosphatase 1. TGF-beta 1 did not have rapid effects on protein serine/threonine phosphatase activity (type 2A) measured with histone phosphorylated by protein kinase C or on protein tyrosine phosphatase activity. However, protein tyrosine phosphatase was activated at 48 h, coincident with growth arrest. Differentiation, induced by the combination of TGF-beta 1 plus calcium or by serum, was not accompanied by further serine/threonine or tyrosine phosphatase activation. We conclude that induction of growth arrest in keratinocytes by TGF-beta 1 involves acute activation of protein phosphatase 1, while activation of protein tyrosine phosphatase may represent an additional mechanism for maintaining cells in a growth-arrested state.  相似文献   

15.
This investigation examined the influence of soil moisture and associated parameters on the cold hardiness of the Colorado potato beetle (Leptinotarsa decemlineata Say), a temperate-zone species that overwinters in terrestrial burrows. The body mass and water content of adult beetles kept in sand at 4 °C varied over a 16-week period of diapause according to the substratum's moisture content. Changes in body water content, in turn, influenced the crystallization temperature (range −3.3 to −18.4 °C; n = 417), indicating that environmental moisture indirectly determined supercooling capacity, a measure of physiological cold hardiness. Beetles held in dry sand readily tolerated a 24-h exposure to temperatures ranging from 0° to −5 °C, but those chilled in sand containing as little as 1.7% water (dry mass) had elevated mortality. Thus, burrowing in dry soils not only promotes supercooling via its effect on water balance, but may also inhibit inoculative freezing. Mortality of beetles exposed to −5 °C for 24 h was lower in substrates composed of sand, clay and/or peat (36–52%) than in pure silica sand (78%) having an identical water content (17.0% dry mass). In addition to moisture, the texture, structure, water potential, and other physico-chemical attributes of soil may strongly influence the cold hardiness and overwintering survival of burrowing insects. Accepted: 10 September 1996  相似文献   

16.
  1. Spring phenological synchrony can be important for tree-insect interactions. Depending on the magnitude and direction of phenological shifts, overwintering insects could be affected in many ways, for example, facing starvation or having to contend with increased chemical or physical defences of host trees. If temperature has different influences on the phenology of trees and insects, climate change can alter spring phenological synchrony.
  2. In this experiment, we exposed tamarack seedlings and larch case bearer larvae from Minnesota, USA, to a variety of chilling and forcing temperatures and measured spring phenology (twig bud break and larval activation). We additionally measured case bearer performance on seedlings that were exposed to different forcing × chilling levels, tracking larval survivorship to adulthood.
  3. Warmer forcing enhanced larval activation and bud break, but larval development slowed down past 21°C. Higher chilling temperatures accelerated bud break, but the effect was inconclusive for larvae. There was no chilling × forcing interaction for either species. Spring activity accelerated more quickly with increases in temperature for larvae than for seedlings, resulting in increased phenological synchrony at warmer temperatures. Activation rates for overwintering larvae were highest at 27°C, while survivorship to adulthood following spring activation was highest at 21°C. At temperatures at or beyond 27°C, no larvae reached adulthood.
  4. Warmer winters and springs will likely initially increase spring synchrony between tamarack and larch case bearer, exposing larvae to younger, potentially more nutritious foliage, but extremely warm spring temperatures may decrease survivorship of larvae to adulthood.
  相似文献   

17.
18.
The survival of insects during diapause may be affected by overwintering temperature and other environmental stress, such as anthropogenic habitat degradation. We experimentally studied the effects of overwintering temperature (+1 and +7°C) and commercial forest clear-cutting on the overwintering survival of the forest-dwelling wood ant Formica aquilonia. We found that both the higher overwintering temperature and clear-cutting lowered the overwintering survival and body fat resources of Formica aquilonia. The survival and body fat resources were highest in lower temperature treatment forest nests and lowest in higher temperature treatment clear-cut nests. The overall survival of ants increased with higher body fat resources. It is possible that both forest clear-cutting and higher winter temperature due to possible climate warming may increase the wintertime mortality of wood ants and other forest-dwelling ants.  相似文献   

19.
Thin layer chromatography separation of 80% ethanol extracts of adult Elatobium abietinum revealed the presence of the polyhydric alcohol mannitol in aphids overwintering outdoors but not in aphids kept permanently indoors at 15°C. After 3 days at 15°C no traces of mannitol were left in overwintering aphids. Mean freezing temperatures of outdoor, unfed instar I nymphs were about 4°C lower than those of unfed instar I nymphs produced at 15°C. Mean freezing temperatures of overwintering adults were considerably higher than those of unfed instar I nymphs and showed no changes associated with time at 15°C following transference indoors. Similarly, mean freezing temperatures of Sitka spruce needles transferred to 15°C did not change. It was concluded that, although freezing was mainly avoided by supercooling, the presence of mannitol lowered the true freezing temperature of aphid haemolymph and, consequently, the actual freezing temperatures of nymphs produced under cold conditions. However, the considerable increase in freezing point temperatures caused by imbibition of plant sap masked these acclimatisation changes in feeding aphids.  相似文献   

20.
Cicadulina bipunctata was originally distributed in tropical and subtropical regions of the Old World. This leafhopper recently expanded its distribution area to southern parts of temperate Japan. In this study, factors affecting the overwintering ability of C. bipunctata were examined. A series of laboratory experiments revealed that cold acclimation at 15 °C for 7 days enhanced the cold tolerance of C. bipunctata to the same level as an overwintering population, adult females were more tolerant of cold temperature than adult males, and survival of acclimated adult females was highly dependent on temperature from −5 to 5 °C and exposure duration to the temperature. The temperature of crystallization of adult females was approximately −19 °C but temperatures in southern temperate Japan rarely dropped below −10 °C in the winter, indicating that overwintering C. bipunctata adults in temperate Japan are not killed by freezing injury but by indirect chilling injury caused by long-term exposure to moderately low temperatures. An overwintering generation of C. bipunctata had extremely low overwinter survival (<1%) in temperate Japan; however, based on winter temperature ranges, there are additional areas amenable to expansion of C. bipunctata in temperate Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号