首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
People often deviate from their individual Nash equilibrium strategy in game experiments based on the prisoner’s dilemma (PD) game and the public goods game (PGG), whereas conditional cooperation, or conformity, is supported by the data from these experiments. In a complicated environment with no obvious “dominant” strategy, conformists who choose the average strategy of the other players in their group could be able to avoid risk by guaranteeing their income will be close to the group average. In this paper, we study the repeated PD game and the repeated m-person PGG, where individuals’ strategies are restricted to the set of conforming strategies. We define a conforming strategy by two parameters, initial action in the game and the influence of the other players’ choices in the previous round. We are particularly interested in the tit-for-tat (TFT) strategy, which is the well-known conforming strategy in theoretical and empirical studies. In both the PD game and the PGG, TFT can prevent the invasion of non-cooperative strategy if the expected number of rounds exceeds a critical value. The stability analysis of adaptive dynamics shows that conformity in general promotes the evolution of cooperation, and that a regime of cooperation can be established in an AllD population through TFT-like strategies. These results provide insight into the emergence of cooperation in social dilemma games.  相似文献   

2.
Parrondo’s games were first constructed using a simple tossing scenario, which demonstrates the following paradoxical situation: in sequences of games, a winning expectation may be obtained by playing the games in a random order, although each game (game A or game B) in the sequence may result in losing when played individually. The available Parrondo’s games based on the spatial niche (the neighboring environment) are applied in the regular networks. The neighbors of each node are the same in the regular graphs, whereas they are different in the complex networks. Here, Parrondo’s model based on complex networks is proposed, and a structure of game B applied in arbitrary topologies is constructed. The results confirm that Parrondo’s paradox occurs. Moreover, the size of the region of the parameter space that elicits Parrondo’s paradox depends on the heterogeneity of the degree distributions of the networks. The higher heterogeneity yields a larger region of the parameter space where the strong paradox occurs. In addition, we use scale-free networks to show that the network size has no significant influence on the region of the parameter space where the strong or weak Parrondo’s paradox occurs. The region of the parameter space where the strong Parrondo’s paradox occurs reduces slightly when the average degree of the network increases.  相似文献   

3.
This study aimed to analyse the influence of different contextual factors (i.e., defensive style and game outcome) on basketball players’ external load during games-based drills using ultrawideband (UWB) technology. Fourteen male professional basketball players belonging to an elite reserve Spanish club (ACB) participated in this study. The games-based drills consisted of one bout of 10 min played 5vs5 in which players were instructed to use man-to-man defence (MMD) and/or zone defence (ZD). In addition, the final game outcome (i.e., winning or losing) of the game-based drill was registered. External load variables per minute were recorded: total distance covered, distance covered in different speed zones, distance covered while accelerating and decelerating, maximum speed, steps, jumps and player load. A two-way ANOVA with the Tukey post hoc test was used to assess the impact of defensive style and final game outcome and the interaction of both factors on the external load encountered by basketball players. No meaningful differences (unclear) were found in the external loads between playing with MMD and with ZD and between winning and losing teams except for greater distance at high-speed running (18.0–24.0 km·h-1) in winning teams (p < 0.05, ES = 0.68, moderate). A significant interaction between defensive style and final game outcome was found for high decelerations (> -2 m·s-2) (p = 0.041; ES = 0.70) and jumps (p = 0.037; ES = 0.68). These results could potentially help coaching staff in prescribing an appropriate workload during basketball-specific game-based drills, and ultimately enhance the match performance.  相似文献   

4.
In the past decade, computational methods have been shown to be well suited to unraveling the complex web of metabolic reactions in biological systems. Methods based on flux–balance analysis (FBA) and bi‐level optimization have been used to great effect in aiding metabolic engineering. These methods predict the result of genetic manipulations and allow for the best set of manipulations to be found computationally. Bi‐level FBA is, however, limited in applicability because the required computational time and resources scale poorly as the size of the metabolic system and the number of genetic manipulations increase. To overcome these limitations, we have developed Genetic Design through Local Search (GDLS), a scalable, heuristic, algorithmic method that employs an approach based on local search with multiple search paths, which results in effective, low‐complexity search of the space of genetic manipulations. Thus, GDLS is able to find genetic designs with greater in silico production of desired metabolites than can feasibly be found using a globally optimal search and performs favorably in comparison with heuristic searches based on evolutionary algorithms and simulated annealing.  相似文献   

5.
In competitive situations, individuals need to adjust their behavioral strategy dynamically in response to their opponent’s behavior. In the present study, we investigated the neural basis of how individuals adjust their strategy during a simple, competitive game of matching pennies. We used entropy as a behavioral index of randomness in decision-making, because maximizing randomness is thought to be an optimal strategy in the game, according to game theory. While undergoing functional magnetic resonance imaging (fMRI), subjects played matching pennies with either a human or computer opponent in each block, although in reality they played the game with the same computer algorithm under both conditions. The winning rate of each block was also manipulated. Both the opponent (human or computer), and the winning rate, independently affected subjects’ block-wise entropy during the game. The fMRI results revealed that activity in the bilateral anterior insula was positively correlated with subjects’ (not opponent’s) behavioral entropy during the game, which indicates that during an interpersonal competitive game, the anterior insula tracked how uncertain subjects’ behavior was, rather than how uncertain subjects felt their opponent''s behavior was. Our results suggest that intuitive or automatic processes based on somatic markers may be a key to optimally adjusting behavioral strategies in competitive situations.  相似文献   

6.
Various social contexts can be depicted as games of strategic interactions on networks, where an individual’s welfare depends on both her and her partners’ actions. Whereas much attention has been devoted to Bayes-Nash equilibria in such games, here we look at strategic interactions from an evolutionary perspective. To this end, we present the results of a numerical simulations program for these games, which allows us to find out whether Nash equilibria are accessible by adaptation of player strategies, and in general to identify the attractors of the evolution. Simulations allow us to go beyond a global characterization of the cooperativeness at equilibrium and probe into individual behavior. We find that when players imitate each other, evolution does not reach Nash equilibria and, worse, leads to very unfavorable states in terms of welfare. On the contrary, when players update their behavior rationally, they self-organize into a rich variety of Nash equilibria, where individual behavior and payoffs are shaped by the nature of the game, the social network’s structure and the players’ position within the network. Our results allow to assess the validity of mean-field approaches we use to describe the dynamics of these games. Interestingly, our dynamically-found equilibria generally do not coincide with (but show qualitatively the same features of) those resulting from theoretical predictions in the context of one-shot games under incomplete information.  相似文献   

7.
Many real-life decisions in complex and changing environments are guided by the decision maker’s beliefs, such as her perceived control over decision outcomes (i.e., agency), leading to phenomena like the “illusion of control”. However, the neural mechanisms underlying the “agency” effect on belief-based decisions are not well understood. Using functional imaging and a card guessing game, we revealed that the agency manipulation (i.e., either asking the subjects (SG) or the computer (CG) to guess the location of the winning card) not only affected the size of subjects’ bets, but also their “world model” regarding the outcome dependency. Functional imaging results revealed that the decision-related activation in the lateral and medial prefrontal cortex (PFC) was significantly modulated by agency and previous outcome. Specifically, these PFC regions showed stronger activation when subjects made decisions after losses than after wins under the CG condition, but the pattern was reversed under the SG condition. Furthermore, subjects with high external attribution of negative events were more affected by agency at the behavioral and neural levels. These results suggest that the prefrontal decision-making system can be modulated by abstract beliefs, and are thus vulnerable to factors such as false agency and attribution.  相似文献   

8.
One of the primary aims of synthetic biology is to (re)design metabolic pathways towards the production of desired chemicals. The fast pace of developments in molecular biology increasingly makes it possible to experimentally redesign existing pathways and implement de novo ones in microbes or using in vitro platforms. For such experimental studies, the bottleneck is shifting from implementation of pathways towards their initial design. Here, we present an online tool called ‘Metabolic Tinker’, which aims to guide the design of synthetic metabolic pathways between any two desired compounds. Given two user-defined ‘target’ and ‘source’ compounds, Metabolic Tinker searches for thermodynamically feasible paths in the entire known metabolic universe using a tailored heuristic search strategy. Compared with similar graph-based search tools, Metabolic Tinker returns a larger number of possible paths owing to its broad search base and fast heuristic, and provides for the first time thermodynamic feasibility information for the discovered paths. Metabolic Tinker is available as a web service at http://osslab.ex.ac.uk/tinker.aspx. The same website also provides the source code for Metabolic Tinker, allowing it to be developed further or run on personal machines for specific applications.  相似文献   

9.
We explore a new method for identifying leaders and followers, LF, in repeated games by analyzing an experimental, repeated (50 rounds) game where Row player shifts the payoff between small and large values–a type of “investor” and Column player determines who gets the payoff–a type of “manager”. We found that i) the Investor (Row) most often is a leading player and the manager (Column) a follower. The longer the Investor leads the game, the higher is both player’s payoff. Surprisingly however, it is always the Manager that achieves the largest payoff. ii) The game has an efficient cooperative strategy where the players alternate in receiving a high payoff, but the players never identify, or accept, that strategy. iii) Under the assumption that the information used by the players is closely associated with the leader- follower sequence, and that information is available before the player’s decisions are made, the players switched LF- strategy primarily as a function of information on the Investor’s investment and moves and secondly as a function of the Manager’s payoff.  相似文献   

10.
Individuals with Asperger’s Disorder (ASP) have difficulties in social reciprocity and in providing appropriate cooperative behavior. The Prisoner’s Dilemma (PD) is a well-known model in game theory that illustrates the paradoxical disposition of interaction between two individuals with opposing interests, and may be a useful tool in the diagnosis of ASP in early childhood. In this study, we investigated the cognitive characteristics of ASP by using a modified PD game. The subjects were 29 individuals with ASP and 28 age- and IQ-matched controls. In the PD game, each of two players has two cards: card 1 represents cooperation and card 2 betrayal. The score each player obtains is decided according to a 2 x 2 payoff matrix and depends on the combination of their selections. The P-score (“P” for punishment) is defined as the score that is given when they both select betrayal. Comparing the two groups, the mean P-score at the end of the game and the mean total score were significantly higher in the ASP group, while the rate of selection of cooperative choice in both groups did not differ significantly. The classification of the shape of the graph according to fluctuation of the P-score revealed that in the ASP group only 2 cases (6.9%) showed continuous decrease of P-score compared to 8 control cases (28.6%) demonstrating similar results. However, the reasons were thought to be different: ASP subjects presumably selected card 2 because of a preference for the number itself, whereas control subjects preferentially chose this card to enhance their chance of winning the competition. It is often difficult to diagnose ASP in the young especially when they lack the distinctive clinical features of ASD in early childhood. Given the limited number of objective tools to evaluate the cognitive characteristics of ASP subjects, the PD game might be a useful diagnostic support tool for ASP.  相似文献   

11.
Florian Naudet and co-authors propose a pathway involving registered criteria for evaluation and approval of new drugs.

Publisher’s note: This Perspective is one of the two winning Essays of the “Reimagine biomedical research for a healthier future” Essay challenge, launched by the Health Research Alliance in partnership with PLOS. This publication is coordinated with that of the other winning Essay in PLOS Biology. The competition was intended to spark a discussion around the future of biomedical research; publication does not imply endorsement from HRA or PLOS.
  相似文献   

12.
In a cyber war game where a network is fully distributed and characterized by resource constraints and high dynamics, attackers or defenders often face a situation that may require optimal strategies to win the game with minimum effort. Given the system goal states of attackers and defenders, we study what strategies attackers or defenders can take to reach their respective system goal state (i.e., winning system state) with minimum resource consumption. However, due to the dynamics of a network caused by a node’s mobility, failure or its resource depletion over time or action(s), this optimization problem becomes NP-complete. We propose two heuristic strategies in a greedy manner based on a node’s two characteristics: resource level and influence based on k-hop reachability. We analyze complexity and optimality of each algorithm compared to optimal solutions for a small-scale static network. Further, we conduct a comprehensive experimental study for a large-scale temporal network to investigate best strategies, given a different environmental setting of network temporality and density. We demonstrate the performance of each strategy under various scenarios of attacker/defender strategies in terms of win probability, resource consumption, and system vulnerability.  相似文献   

13.
Player tracking data represents a revolutionary new data source for basketball analysis, in which essentially every aspect of a player’s performance is tracked and can be analyzed numerically. We suggest a way by which this data set, when coupled with a network-style model of the offense that relates players’ skills to the team’s success at running different plays, can be used to automatically learn players’ skills and predict the performance of untested 5-man lineups in a way that accounts for the interaction between players’ respective skill sets. After developing a general analysis procedure, we present as an example a specific implementation of our method using a simplified network model. While player tracking data is not yet available in the public domain, we evaluate our model using simulated data and show that player skills can be accurately inferred by a simple statistical inference scheme. Finally, we use the model to analyze games from the 2011 playoff series between the Memphis Grizzlies and the Oklahoma City Thunder and we show that, even with a very limited data set, the model can consistently describe a player’s interactions with a given lineup based only on his performance with a different lineup.  相似文献   

14.
Small-sided games (SSGs) are often used in soccer to produce acute physiological and physical responses, while a tactical/technical stimulus is also employed. However, due to some limitations of SSGs, researchers have been testing this method combined with running-based training methods. This systematic review was conducted to assess the effects of combined SSG and running-based methods on soccer players’ acute responses and adaptations after training interventions. A systematic review of Web of Science, PubMed, Cochrane Library, Scopus, and SPORTDiscus databases was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The database search initially identified 782 titles. From those, five articles were deemed eligible for the systematic review. The five included studies presented data from training load, reporting inconsistent greater values in combined SSG and running-based methods when compared to SSG-only formats. Considering the adaptations, studies comparing combined SSG and running-based methods with SSG-only methods revealed inconsistent differences in terms of the effects on aerobic performance and sprinting. Combining SSG and running-based methods can increase the acute mechanical load and high-intense running stimuli in players when compared to interventions that use only SSGs. However, the adaptations promoted by both methods are similar, and the differences are unclear. The order of combination (SSG and running-based method) does not seem to impact players’ adaptations; however, the frequency of sessions did have a meaningful impact.  相似文献   

15.
Determinants of cooperation include ingroup vs. outgroup membership, and individual traits, such as prosociality and trust. We investigated whether these factors can be overridden by beliefs about people’s trust. We manipulated the information players received about each other’s level of general trust, “high” or “low”. These levels were either measured (Experiment 1) or just arbitrarily assigned labels (Experiment 2). Players’ choices whether to cooperate or defect in a stag hunt (or an assurance game)—where it is mutually beneficial to cooperate, but costly if the partner should fail to do so—were strongly predicted by what they were told about the other player’s trust label, as well as by what they were told that the other player was told about their own label. Our findings demonstrate the importance for cooperation in a risky coordination game of both first- and second-order beliefs about how much people trust each other. This supports the idea that institutions can influence cooperation simply by influencing beliefs.  相似文献   

16.
The EGF-induced MAP kinase cascade is one of the most important and best characterized networks in intracellular signalling. It has a vital role in the development and maturation of living organisms. However, when deregulated, it is involved in the onset of a number of diseases. Based on a computational model describing a “surface” and an “internalized” parallel route, we use systems biology techniques to characterize aspects of the network’s functional organization. We examine the re-organization of protein groups from low to high external stimulation, define functional groups of proteins within the network, determine the parameter best encoding for input intensity and predict the effect of protein removal to the system’s output response. Extensive functional re-organization of proteins is observed in the lower end of stimulus concentrations. As we move to higher concentrations the variability is less pronounced. 6 functional groups have emerged from a consensus clustering approach, reflecting different dynamical aspects of the network. Mutual information investigation revealed that the maximum activation rate of the two output proteins best encodes for stimulus intensity. Removal of each protein of the network resulted in a range of graded effects, from complete silencing to intense activation. Our results provide a new “vista” of the EGF-induced MAP kinase cascade, from the perspective of complex self-organizing systems. Functional grouping of the proteins reveals an organizational scheme contrasting the current understanding of modular topology. The six identified groups may provide the means to experimentally follow the dynamics of this complex network. Also, the vulnerability analysis approach may be used for the development of novel therapeutic targets in the context of personalized medicine.  相似文献   

17.
One of the most complex issues in the cloud computing environment is the problem of resource allocation so that, on one hand, the cloud provider expects the most profitability and, on the other hand, users also expect to have the best resources at their disposal considering the budget constraints and time. In most previous work conducted, heuristic and evolutionary approaches have been used to solve this problem. Nevertheless, since the nature of this environment is based on economic methods, using such methods can decrease response time and reducing the complexity of the problem. In this paper, an auction-based method is proposed which determines the auction winner by applying game theory mechanism and holding a repetitive game with incomplete information in a non-cooperative environment. In this method, users calculate suitable price bid with their objective function during several round and repetitions and send it to the auctioneer; and the auctioneer chooses the winning player based the suggested utility function. In the proposed method, the end point of the game is the Nash equilibrium point where players are no longer inclined to alter their bid for that resource and the final bid also satisfies the auctioneer’s utility function. To prove the response space convexity, the Lagrange method is used and the proposed model is simulated in the cloudsim and the results are compared with previous work. At the end, it is concluded that this method converges to a response in a shorter time, provides the lowest service level agreement violations and the most utility to the provider.  相似文献   

18.
From cooking a meal to finding a route to a destination, many real life decisions can be decomposed into a hierarchy of sub-decisions. In a hierarchy, choosing which decision to think about requires planning over a potentially vast space of possible decision sequences. To gain insight into how people decide what to decide on, we studied a novel task that combines perceptual decision making, active sensing and hierarchical and counterfactual reasoning. Human participants had to find a target hidden at the lowest level of a decision tree. They could solicit information from the different nodes of the decision tree to gather noisy evidence about the target’s location. Feedback was given only after errors at the leaf nodes and provided ambiguous evidence about the cause of the error. Despite the complexity of task (with 107 latent states) participants were able to plan efficiently in the task. A computational model of this process identified a small number of heuristics of low computational complexity that accounted for human behavior. These heuristics include making categorical decisions at the branching points of the decision tree rather than carrying forward entire probability distributions, discarding sensory evidence deemed unreliable to make a choice, and using choice confidence to infer the cause of the error after an initial plan failed. Plans based on probabilistic inference or myopic sampling norms could not capture participants’ behavior. Our results show that it is possible to identify hallmarks of heuristic planning with sensing in human behavior and that the use of tasks of intermediate complexity helps identify the rules underlying human ability to reason over decision hierarchies.  相似文献   

19.
Fermat’s principle of least time states that light rays passing through different media follow the fastest (and not the most direct) path between two points, leading to refraction at medium borders. Humans intuitively employ this rule, e.g., when a lifeguard has to infer the fastest way to traverse both beach and water to reach a swimmer in need. Here, we tested whether foraging ants also follow Fermat’s principle when forced to travel on two surfaces that differentially affected the ants’ walking speed. Workers of the little fire ant, Wasmannia auropunctata, established “refracted” pheromone trails to a food source. These trails deviated from the most direct path, but were not different to paths predicted by Fermat’s principle. Our results demonstrate a new aspect of decentralized optimization and underline the versatility of the simple yet robust rules governing the self-organization of group-living animals.  相似文献   

20.
Parametric uncertainty is a particularly challenging and relevant aspect of systems analysis in domains such as systems biology where, both for inference and for assessing prediction uncertainties, it is essential to characterize the system behavior globally in the parameter space. However, current methods based on local approximations or on Monte-Carlo sampling cope only insufficiently with high-dimensional parameter spaces associated with complex network models. Here, we propose an alternative deterministic methodology that relies on sparse polynomial approximations. We propose a deterministic computational interpolation scheme which identifies most significant expansion coefficients adaptively. We present its performance in kinetic model equations from computational systems biology with several hundred parameters and state variables, leading to numerical approximations of the parametric solution on the entire parameter space. The scheme is based on adaptive Smolyak interpolation of the parametric solution at judiciously and adaptively chosen points in parameter space. As Monte-Carlo sampling, it is “non-intrusive” and well-suited for massively parallel implementation, but affords higher convergence rates. This opens up new avenues for large-scale dynamic network analysis by enabling scaling for many applications, including parameter estimation, uncertainty quantification, and systems design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号