首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is increasing recognition of the clinical importance of endogenous nitric oxide synthase inhibitors in critical illness. This has highlighted the need for an accurate high performance liquid chromatography (HPLC) method for detection of asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) in small volumes of blood. Here, the validation of an accurate, precise HPLC method for the determination of ADMA, SDMA, homoarginine and arginine concentrations in plasma is described. Solid phase extraction is followed by derivatisation with AccQ-Fluor™ and reversed phase separation on a Gemini-NX column at pH 9. Simultaneous detection by both UV–vis and fluorescence detectors affords extra validation. This solid phase extraction method gives absolute recoveries of more than 85% for ADMA and SDMA and relative recoveries of 102% for ADMA and 101% for SDMA. The intra-assay relative standard deviations are 2.1% and 2.3% for ADMA and SDMA, respectively, with inter-assay relative standard deviations of 2.7% and 3.1%, respectively. Advantages of this method include improved recovery of all analytes using isopropanol in the solid phase extraction; sharp, well-resolved chromatographic peaks using a high pH mobile phase; a non-endogenous internal standard, n-propyl l-arginine; and accurate and precise determination of methylated arginine concentrations from only 100 μL of plasma.  相似文献   

2.
We hypothesise that asymmetric and symmetric dimethylarginine (ADMA, SDMA) are released in cerebrospinal fluid (CSF) due to ischemia-induced proteolysis and that CSF dimethylarginines are related to stroke severity. ADMA and SDMA were measured in CSF of 88 patients with ischemic stroke or TIA within 24 h after stroke onset (mean 8.6 h) and in 24 controls. Stroke severity was assessed by the National Institutes of Health Stroke Scale (NIHSS) score at admission. Outcome was evaluated by institutionalization due to stroke and the modified Rankin scale. Dimethylarginine levels were higher in patients with stroke than in TIA patients, who had higher levels than controls and correlated with the NIHSS. Logistic regression analysis confirmed that dimethylarginines were independently associated with stroke severity. The SDMA/ADMA ratio did not differ significantly between controls and stroke patients. CSF dimethylarginine levels are increased in hyperacute ischemic stroke and are associated with stroke severity. R. Brouns is a research assistant of the Fund for Scientific research Flanders (FWO-Vlaanderen).  相似文献   

3.
Asymmetric dimethylarginine (ADMA) is an emerging cardiovascular risk factor. Its increased levels have been hypothesized to be a cause of endothelial dysfunction in pathological conditions such as hypertension, dyslipidemia, renal failure, hyperglycemia, and hyperhomocysteinemia. It acts as a potent competitive inhibitor of nitric oxide synthase. Methods using ortho-phthaldialdehyde (OPA) as derivatization reagent are widely performed in HPLC determination of ADMA, but they produce derivatives whose fluorescence rapidly decreases during time. Moreover, these methods do not allow a clear separation of ADMA from its stereoisomer symmetric dimethylarginine (SDMA). Our work describes a new method to determine ADMA, SDMA, and arginine that uses, as derivatizing reagent, naphthalene-2,3-dicarboxaldehyde (NDA). Chromatograms with low background, showing a complete separation of ADMA and SDMA, are obtained. NDA derivatives are considerably more stable than the OPA derivatives. The calibration curves of ADMA and SDMA are linear within the range of 0.01-16.0 microM. Coefficients of variation are less than 1.7% for within day and less then 2.3% for day to day. Absolute mean recoveries from supplemented samples are between 100 and 104%. These characteristics make this method reliable and easily manageable for large routine analyses.  相似文献   

4.
L-Arginine (Arg) and its methylated metabolites play a major role in the synthesis of the cell signaling molecule nitric oxide (NO). Arg serves as a substrate for the enzyme NO synthase (NOS), which produces NO, whereas monomethylarginine (L-NMMA) and asymmetric dimethylarginine (ADMA) act as competitive inhibitors of NOS. Symmetric dimethylarginine (SDMA) has virtually no inhibitory effect on NOS activity, but shares the pathway for cell entry and transport with Arg and ADMA. Accurate and reliable quantification of these substances in various biological fluids is essential for scientific research in this field. In this review, chromatographic-mass spectrometric methods for Arg and its methylated metabolites ADMA and SDMA are discussed. Mass spectrometric detection provides an intrinsic higher selectivity than detection by means of UV absorbance or fluorescence. Taking advantage of the high selectivity, approaches involving mass spectrometric detection require less laborious sample preparation and produce reliable results. A consensus emerges that the concentration values in plasma of young healthy volunteers are about 65 microM for Arg, 0.4 microM for ADMA and 0.5 microM for SDMA.  相似文献   

5.

Background

Mechanisms linking chronic kidney disease (CKD) and adverse outcomes in acute coronary syndromes (ACS) are not fully understood. Among potential key players, reduced nitric oxide (NO) synthesis due to its endogenous inhibitors, asymmetric (ADMA) and symmetric (SDMA) dimethylarginine could be involved. We measured plasma concentration of arginine, ADMA and SDMA and investigated their relationship with CKD and long-term outcome in non-ST-elevation myocardial infarction (NSTEMI).

Methodology/Principal Findings

We prospectively measured arginine, ADMA, and SDMA at hospital admission in 104 NSTEMI patients. CKD was defined as an estimated glomerular filtration rate (eGFR) <60 ml/min/1.73 m2. We considered a primary end point of combined cardiac death and re-infarction at a median follow-up of 21 months. In CKD (n = 33) and no-CKD (n = 71) patients, arginine and ADMA were similar, whereas SDMA was significantly higher in CKD patients (0.65±0.23 vs. 0.42±0.12 µmol/L; P<0.0001). Twenty-four (23%) patients had an adverse cardiac event during follow-up: 12 (36%) were CKD and 12 (17%) no-CKD patients (P = 0.02). When study population was stratified according to arginine, ADMA and SDMA median values, only SDMA (median 0.46 µmol/L) was associated with the primary end-point (P = 0.0016). In models adjusted for age, hemoglobin and left ventricular ejection fraction, the hazard ratio (HR) for CKD and SDMA were high (HR 2.93, interquartile range [IQR] 1.15–7.53; P = 0.02 and HR 6.80, IQR 2.09–22.2; P = 0.001, respectively) but, after mutual adjustment, only SDMA remained significantly associated with the primary end point (HR 5.73, IQR 1.55–21.2; P = 0.009).

Conclusions/Significance

In NSTEMI patients, elevated SDMA plasma levels are associated with CKD and worse long-term prognosis.  相似文献   

6.
Accumulation of symmetric dimethylarginine in hepatorenal syndrome   总被引:4,自引:0,他引:4  
In patients with cirrhosis, nitric oxide (NO), asymmetric dimethylarginine (ADMA), and possibly symmetric dimethylarginine (SDMA) have been linked to the severity of the disease. We investigated whether plasma levels of dimethylarginines and NO are elevated in patients with hepatorenal syndrome (HRS), compared with patients with cirrhosis without renal failure (no-HRS). Plasma levels of NO, ADMA, SDMA, and l-arginine were measured in 11 patients with HRS, seven patients with no-HRS, and six healthy volunteers. SDMA concentration in HRS was higher than in no-HRS and healthy subjects (1.47 +/- 0.25 vs. 0.38 +/- 0.06 and 0.29 +/- 0.04 microM, respectively; P < 0.05). ADMA and NOx concentrations were higher in HRS and no-HRS patients than in healthy subjects (ADMA, 1.20 +/- 0.26, 1.11 +/- 0.1, and 0.53 +/- 0.06 microM, respectively; P < 0.05; NOx, 94 +/- 9.1, 95.5 +/- 9.54, and 37.67 +/- 4.62 microM, respectively; P < 0.05). In patients with HRS there was a positive correlation between serum creatinine and plasma SDMA (r2 =0.765, P < 0.001) but not between serum creatinine and ADMA or NOx. The results suggest that renal dysfunction is a main determinant of elevated SDMA concentration in HRS. Accumulation of ADMA as a result of impaired hepatic removal may be the causative factor initiating renal vasoconstriction and SDMA retention in the kidney.  相似文献   

7.
Summary. The aim of this study was to investigate the possible relationship among dimethylarginines (asymmetric, ADMA; symmetric, SDMA) and homocysteine (Hcy) levels in subjects affected by chronic, mild to intermediate, hyperhomocysteinemia.ADMA and SDMA were assayed by an optimised HPLC method in 75 patients (Hcy = 20.8 μmol/L, 17.1–30.2; median and percentile range) and, for comparison, in 85 healthy subjects (Hcy = 8.0 μmol/L, 7.0–9.1). In controls, the cut-off values were set at 0.61 μmol/L for ADMA and 0.56 or 0.48 μmol/L for male and female SDMA, respectively. In patients, ADMA and SDMA levels were increased (p<0.001) with respect to controls, but no correlation with Hcy was observed. Hyperhomocysteinemic subjects showed a different behaviour in respect to ADMA and SDMA levels and this allowed their stratification in 3 subgroups characterized by ADMA and SDMA in the normal range, only SDMA, or both ADMA and SDMA over the cut-off values. A lack of correlation with Hcy was again observed, thus minimizing the direct role of Hcy on ADMA and SDMA metabolism and suggesting the need for further studies on this issue.  相似文献   

8.
Asymmetric dimethylarginine (ADMA) systemic concentrations are elevated in hypercholesterolemic adults and contribute to nitric oxide (NO) dependent endothelial dysfunction. Decreased activity of the key ADMA-hydrolyzing enzyme dimethylarginine dimethylaminohydrolase (DDAH) may be involved. Yet, the ADMA/DDAH/NO pathway has not been investigated in childhood hypercholesterolemia. We studied 64 children with hypercholesterolemia type II (HCh-II) and 54 normocholesterolemic (NCh) children (mean ± SD; age, years: 11.1 ± 3.5 vs. 11.9 ± 4.6). Plasma and urine ADMA was measured by GC-MS/MS. Dimethylamine (DMA), the ADMA metabolite, creatinine, nitrite and nitrate in urine were measured by GC-MS. The DMA/ADMA molar ratio in urine was calculated to estimate whole body DDAH activity. ADMA plasma concentration (mean ± SD; nM: 571 ± 85 vs. 542 ± 110, P = 0.17) and ADMA urinary excretion rate (mean ± SD: 7.1 ± 2 versus 7.2 ± 3 μmol/mmol creatinine, P = 0.6) were similar in HCh-II and NCh children. Both DMA excretion rate [median (25th-75th percentile): 56.3 (46.4-109.1) vs. 45.2 (22.2-65.5) μmol/mmol creatinine, P = 0.0004] and DMA/ADMA molar ratio [median (25th-75th percentile): 9.2 (6.0-16.3) vs. 5.4 (3.8-9.4), P = 0.0004] were slightly but statistically significantly increased in HCh-II children compared to NCh children. Plasma and urinary nitrite and nitrate were similar in both groups. In HCh-II whole body DDAH activity is elevated as compared to NCh. HCh-II children treated with drugs for hypercholesterolemia had lower plasma ADMA levels than untreated HCh-II or NCh children, presumably via increased DDAH activity. Differences between treated and untreated HCh-II children were not due to differences in age. In conclusion, HCh-II children do not have elevated ADMA plasma levels, largely due to an apparent increase in DDAH activity. While this would tend to limit development of endothelial dysfunction, it is not clear whether this might be medication-induced or represent a primary change in HCh-II children.  相似文献   

9.
Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase (NOS), may be related to reduced biosynthesis of nitric oxide in diseases associated with accelerated atherosclerosis. The closely related compound symmetric dimethylarginine (SDMA) does not inhibit NOS, but may compete with arginine for cellular uptake, thereby limiting substrate availability for NOS. We report on a method for the simultaneous measurement of arginine, ADMA, and SDMA as a tool to gain insight in the role of these compounds in the regulation of NOS activity. Sample cleanup was performed by solid-phase extraction on polymeric cation-exchange columns using monomethylarginine as internal standard. After derivatization with ortho-phthaldialdehyde reagent containing 3-mercaptopropionic acid, analytes were separated by isocratic reversed-phase HPLC with fluorescence detection. The stable derivatives were separated with near baseline resolution. Using a sample volume of 0.2 ml, linear calibration curves were obtained with limits of quantification of 0.08 microM for arginine and 0.01 microM for ADMA and SDMA. Analytical recovery was 98-102%, and interassay CV was better than 3%. Plasma from healthy volunteers (n = 53) contained 94 +/- 26 microM arginine, 0.42 +/- 0.06 microM ADMA, and 0.47 +/- 0.08 microM SDMA. Due to its high precision and sensitivity this method is a valuable tool in research on the metabolism of dimethylated arginines and their role in the regulation of NOS activity.  相似文献   

10.
Elevated plasma concentrations of asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) were found in various clinical settings including coronary heart disease. To assess ADMA and SDMA diagnostic validity in patients with different stages of ischemic heart disease, we studied these markers in patients having stable angina pectoris (SAP), unstable angina (USAP), and acute myocardial infarction (AMI). The results were compared with the values of healthy individuals. Plasma ADMA and SDMA levels were measured by high-performance liquid chromatography. In all patient groups both markers were significantly elevated in comparison with control ones (p?<?0.001). In SAP patients, the median ADMA value was 0.75 (0.31–2.73)?μmol/L, and SDMA 1.11 (0.69–0.1.42)?μmol/L, in USAP patients, the marker values were 0.94 (0.34–3.13)?μmol/L and 1.23 (0.88–4.72)?μmol/L, and in AMI patients, 0.98 (0.48–2.01)?μmol/L and 1.26 (0.75–2.93)?μmol/L, while in healthy subjects they were 0.31 (0.17–0.87)?μmol/L and 0.29 (0.20–0.83)?μmol/L, respectively. SDMA was found significantly different in SAP and AMI patients (p?<?0.05). Diagnostic accuracy was determined by receiver operating characteristic (ROC) curve analysis. The highest area under the ROC (AUC) for ADMA was obtained in AMI patients (0.976), while for SDMA in USAP patients (1.000). There was no significant difference between the AUCs. The greatest sensitivity and specificity were found in the USAP group (95.65 and 96.30?% for ADMA, and 100?% for each characteristic of SDMA). Considering these results, SDMA showed better clinical accuracy in assessing ischemic disease, where it could be used as a valid marker and a therapeutic target.  相似文献   

11.
[Purpose]Aerobic exercise training (AT) reverses aging-induced deterioration of arterial stiffness via increased arterial nitric oxide (NO) production. Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of NO synthase, was decreased by AT. However, whether AT-induced changes in ADMA levels are related to changes in nitrite/nitrate (NOx) levels remains unclear. Accordingly, we aimed to clarify whether the relationship between plasma ADMA and NOx levels affected the AT-induced reduction of arterial stiffness in middle-aged and older adults.[Methods]Thirty-one healthy middle-aged and older male and female subjects (66.4 ± 1.3 years) were randomly divided into two groups: exercise intervention and sedentary controls. Subjects in the training group completed an 8-week AT (60%–70% peak oxygen uptake [V˙O2peak] for 45 min, 3 days/week).[Results]AT significantly increased V˙O2peak (p < 0.05) and decreased carotid β-stiffness (p < 0.01). Moreover, plasma ADMA levels were significantly decreased while plasma NOx levels and NOx/ADMA ratio were significantly increased by AT (p < 0.01). Additionally, no sex differences in AT-induced changes of circulating ADMA and NOx levels, NOx/ADMA ratio, and carotid β-stiffness were observed. Furthermore, the AT-induced increase in circulating ADMA levels was negatively correlated with an increase in circulating NOx levels (r = -0.414, p < 0.05), and the AT-induced increase in NOx/ADMA ratio was negatively correlated with a decrease in carotid β-stiffness (r = -0.514, p < 0.01).[Conclusion]These results suggest that the increase in circulating NOx with reduction of ADMA elicited by AT is associated with a decrease in arterial stiffness regardless of sex in middle-aged and older adults.  相似文献   

12.

Background

Major depression is a well-known risk factor for cardiovascular diseases and increased mortality following myocardial infarction. However, biomarkers of depression and increased cardiovascular risk are still missing. The aim of this prospective study was to evaluate, whether nitric-oxide (NO) related factors for endothelial dysfunction, such as global arginine bioavailability, arginase activity, L-arginine/ADMA ratio and the arginine metabolites asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) might be biomarkers for depression-induced cardiovascular risk.

Methods

In 71 in-patients with major depression and 48 healthy controls the Global Arginine Bioavailability Ratio (GABR), arginase activity (arginine/ornithine ratio), the L-arginine/ADMA ratio, ADMA, and SDMA were determined by high-pressure liquid chromatography. Psychiatric and laboratory assessments were obtained at baseline at the time of in-patient admittance and at the time of hospital discharge.

Results

The ADMA concentrations in patients with major depression were significantly elevated and the SDMA concentrations were significantly decreased in comparison with the healthy controls. Even after a first improvement of depression, ADMA and SDMA levels remained nearly unchanged. In addition, after a first improvement of depression at the time of hospital discharge, a significant decrease in arginase activity, an increased L-arginine/ADMA ratio and a trend for increased global arginine bioavailability were observed.

Conclusions

Our study results are evidence that in patients with major depression ADMA and SDMA might be biomarkers to indicate an increased cardiovascular threat due to depression-triggered NO reduction. GABR, the L-arginine/ADMA ratio and arginase activity might be indicators of therapy success and increased NO production after remission.  相似文献   

13.
The balance between nitric oxide (NO) and vasoconstrictors like endothelin is essential for vascular tone and endothelial function. L-Arginine is converted to NO and L-citrulline by NO synthase (NOS). Asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) are endogenous inhibitors of NO formation. ADMA is degraded by dimethylamino dimethylhydrolases (DDAHs), while SDMA is exclusively eliminated by the kidney. In the present article we report a LC-tandem MS method for the simultaneous determination of arginine, ADMA, and SDMA in plasma. This method is designed for high sample throughput of only 20-mul aliquots of human or mouse plasma. The analysis time is reduced to 1.6 min by LC-tandem MS electrospray ionisation (ESI) in the positive mode. The mean plasma levels of l-arginine, ADMA, and SDMA were 74+/-19 (SD), 0.46+/-0.09, and 0.37+/-0.07 microM in healthy humans (n=85), respectively, and 44+/-14, 0.72+/-0.23, and 0.19+/-0.06 microM in C57BL/6 mice. Also, the molar ratios of arginine to ADMA were different in man and mice, i.e. 166+/-50 and 85+/-22, respectively.  相似文献   

14.
Nitric oxide (NO) is synthesized by NO synthase from L-arginine, which can be competitively blocked by endogenous inhibitors such as asymmetric dimethylarginine (ADMA), but not by symmetric dimethylarginine (SDMA). ADMA is degraded by dimethylarginine dimethylaminohydrolase (DDAH) to dimethylamine and citrulline. A growing number of published clinical studies documented a strong correlation between increased ADMA blood levels and cardiovascular morbidity and mortality. We present here a highly sensitive method for the determination of this compounds in plasma and urine by means of HPLC-MS. The sample preparation is very simple and comprises only protein precipitation and concentration in the case of plasma samples and dilution in the case of urine. The samples are derivatized automatically with orthophthaldialdehyde and 2-mercaptoethanol, are separated on a 250 mm x 4 mm RP18 column by gradient elution with formate buffer/methanol and are detected by ESI-MS. The calibration functions are linear and cover the range from normal to pathologic concentration values of the analytes. The intra-day relative standard deviation (R.S.D.) of the assay for ADMA in plasma is 7.5% and the corresponding inter-day R.S.D. is 5.7%. In urine, these values for ADMA are 3.8 and 6.4%, respectively. All other analytes in plasma as well as in urine exhibit intra-day R.S.D. below 8%. The corresponding inter-day R.S.D. are all below 13%.  相似文献   

15.
Elevated blood concentrations of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric-oxide (NO) synthase, are found in association with diabetes, hypertension, congestive heart failure, and atherosclerosis. ADMA levels are controlled by dimethylarginine dimethylaminohydrolases (DDAHs), cytosolic enzymes that hydrolyze ADMA to citrulline and dimethylamine. ADMA also has been proposed to be regulated through an alternative pathway by alanine-glyoxylate aminotransferase 2 (AGXT2), a mitochondrial aminotransferase expressed primarily in the kidney. The goal of this study was to define the subcellular localization of human AGXT2 and test the hypothesis that overexpression of human AGXT2 protects from ADMA-induced inhibition in nitric oxide (NO) production. AGXT2 was cloned from human kidney cDNA and overexpressed in COS-7 cells and human umbilical vein endothelial cells with a C-terminal FLAG epitope tag. Mitochondrial localization of human AGXT2 was demonstrated by confocal microscopy and a 41-amino acid N-terminal mitochondrial cleavage sequence was delineated by N-terminal sequencing of the mature protein. Overexpression of human AGXT2 in the liver of C57BL/6 mice using an adenoviral expression vector produced significant decreases in ADMA levels in plasma and liver. Overexpression of human AGXT2 also protected endothelial cells from ADMA-mediated inhibition of NO production. We conclude that mitochondrially localized human AGXT2 is able to effectively metabolize ADMA in vivo resulting in decreased ADMA levels and improved endothelial NO production.  相似文献   

16.

Objectives

Low levels of high-density lipoprotein (HDL) cholesterol are associated with an increased risk of acute myocardial infarction possibly through impaired endothelial atheroprotection and decreased nitric oxide (NO) bioavailability. Asymmetric dimethylarginine (ADMA) mediates endothelial function by inhibiting nitric oxide synthase activity. In patients with acute myocardial infarction, we investigated the relationship between serum levels of HDL and ADMA.

Approach and Results

Blood samples from 612 consecutive patients hospitalized for acute MI <24 hours after symptom onset were taken on admission. Serum levels of ADMA, its stereoisomer, symmetric dimethylarginine (SDMA) and L-arginine were determined using high-performance liquid chromatography. Patients with low HDL (<40 mg/dL for men and <50 mg/dL for women) were compared with patients with higher HDL. Most patients (59%) had low HDL levels. Median ADMA levels were markedly higher in the low HDL group (0.69 vs. 0.50 µmole/L, p<0.001). In contrast, SDMA and L-arginine levels were similar for the two groups (p = 0.120 and p = 0.064). Notably, ADMA, but not SDMA or L-arginine, was inversely correlated with HDL (r = −0.311, p<0.001). In stratified analysis, this relationship was only found for low HDL levels (r = −0.265, p<0.001), but not when HDL levels were higher (r = −0.077, p = 0.225). By multivariate logistic regression analysis, ADMA level was strongly associated with low HDL levels (OR(95%CI):6.06(3.48–10.53), p<0.001), beyond traditional confounding factors.

Conclusions

Our large population-based study showed for the first time a strong inverse relationship between HDL and ADMA in myocardial infarction patients, suggesting a functional interaction between HDL and endothelium, beyond metabolic conditions associated with low HDL levels.  相似文献   

17.
18.
Elevated plasma concentrations of the asymmetric (ADMA) and symmetric (SDMA) dimethylarginine have repeatedly been linked to adverse cardiovascular clinical outcomes. Both dimethylarginines can be degraded by alanine–glyoxylate aminotransferase 2 (Agxt2), which is also the key enzyme responsible for the degradation of endogenously formed β-aminoisobutyrate (BAIB). In the present study we wanted to investigate the effect of BAIB on Agxt2 expression and Agxt2-mediated metabolism of dimethylarginines. We infused BAIB or saline intraperitoneally for 7 days in C57/BL6 mice via minipumps. Expression of Agxt2 was determined in liver and kidney. The concentrations of BAIB, dimethylarginines and the Agxt2-specific ADMA metabolite α-keto-δ-(N(G),N(G)-dimethylguanidino)valeric acid (DMGV) was determined by LC–MS/MS in plasma and urine. As compared to controls systemic administration of BAIB increased plasma and urine BAIB levels by a factor of 26.5 (p < 0.001) and 25.8 (p < 0.01), respectively. BAIB infusion resulted in an increase of the plasma ADMA and SDMA concentrations of 27% and 31%, respectively, (both p < 0.05) and a 24% decrease of plasma DMGV levels (p < 0.05), while expression of Agxt2 was not different.Our data demonstrate that BAIB can inhibit Agxt2-mediated metabolism of dimethylarginines and show for the first time that endogenous Agxt2 is involved in the regulation of systemic ADMA, SDMA and DMGV levels. The effect of BAIB excess on endogenous dimethylarginine levels may have direct clinical implications for humans with the relatively common genetic trait of hyper-β-aminoisobutyric aciduria.  相似文献   

19.
Protein arginine methylation is catalyzed by a family of enzymes called protein arginine methyltransferases (PRMTs). Three forms of methylarginine have been identified in eukaryotes: monomethylarginine (l-NMMA), asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA), all characterized by methylation of one or both guanidine nitrogen atoms of arginine. l-NMMA and ADMA, but not SDMA, are competitive inhibitors of all nitric oxide synthase isoforms. SDMA is eliminated almost entirely by renal excretion, whereas l-NMMA and ADMA are further metabolized by dimethylarginine dimethylaminohydrolase (DDAH). To explore the interplay between methylarginine synthesis and degradation in vivo, we determined PRMT expression and DDAH activity in mouse lung, heart, liver, and kidney homogenates. In addition, we employed HPLC-based quantification of protein-incorporated and free methylarginine, combined with immunoblotting for the assessment of tissue-specific patterns of arginine methylation. The salient findings of the present investigation can be summarized as follows: 1) pulmonary expression of type I PRMTs was correlated with enhanced protein arginine methylation; 2) pulmonary ADMA degradation was undertaken by DDAH1; 3) bronchoalveolar lavage fluid and serum exhibited almost identical ADMA/SDMA ratios, and 4) kidney and liver provide complementary routes for clearance and metabolic conversion of circulating ADMA. Together, these observations suggest that methylarginine metabolism by the pulmonary system significantly contributes to circulating ADMA and SDMA levels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号