首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chitooligosaccharides (CHOS) are oligomers composed of glucosamine and N-acetylglucosamine with several interesting bioactivities that can be produced from enzymatic cleavage of chitosans. By controlling the degree of acetylation of the substrate chitosan, the enzyme, and the extent of enzyme degradation, CHOS preparations with limited variation in length and sequence can be produced. We here report on the degradation of chitosans with a novel family 75 chitosanase, SaCsn75A from Streptomyces avermitilis . By characterizing the CHOS preparations, we have obtained insight into the mode of action and subsite specificities of the enzyme. The degradation of a fully deacetylated and a 31% acetylated chitosan revealed that the enzyme degrade these substrates according to a nonprocessive, endo mode of action. With the 31% acetylated chitosan as substrate, the kinetics of the degradation showed an initial rapid phase, followed by a second slower phase. In the initial faster phase, an acetylated unit (A) is productively bound in subsite -1, whereas deacetylated units (D) are bound in the -2 subsite and the +1 subsite. In the slower second phase, D-units bind productively in the -1 subsite, probably with both acetylated and deacetylated units in the -2 subsite, but still with an absolute preference for deacetylated units in the +1 subsite. CHOS produced in the initial phase are composed of deacetylated units with an acetylated reducing end. In the slower second phase, higher amounts of low DP fully deacetylated oligomers (dimer and trimer) are produced, while the higher DP oligomers are dominated by compounds with acetylated reducing ends containing increasing amounts of internal acetylated units. The degradation of chitosans with varying degrees of acetylation to maximum extents of degradation showed that increasingly longer oligomers are produced with increasing degree of acetylation, and that the longer oligomers contain sequences of consecutive acetylated units interspaced by single deacetylated units. The catalytic properties of SaCsn75A differ from the properties of a previously characterized family 46 chitosanase from S. coelicolor (ScCsn46A).  相似文献   

2.
3.
We examined the uptake pathway of acetylated low-density lipoprotein and oxidatively modified LDL (oxidized LDL) in human umbilical vein endothelial cells in culture. Proteolytic degradation of 125I-labeled Ac-LDL or Ox-LDL in the confluent monolayer of human endothelial cells was time-dependent and showed saturation kinetics in the dose-response relationship, which suggests that their incorporation is receptor-mediated. Cross-competition studies between acetylated LDL and oxidized LDL showed that the degradation of 125I-labeled acetylated LDL was almost completely inhibited by excess amount of unlabeled acetylated LDL, while only partially inhibited by excess unlabeled oxidized LDL. On the other hand, the degradation of 125I-labeled oxidized LDL was equally inhibited by excess amount of either acetylated or oxidized LDL. Cross-competition results of the cell-association assay paralleled the results shown in the degradation assay. These data indicate that human endothelial cells do not have any additional receptors specific only for oxidized LDL. On the contrary, they may have additional receptors, as we previously indicated on mouse macrophages, which recognize acetylated LDL, but not oxidized LDL.  相似文献   

4.
Ubiquitylation is a versatile post-translational modification (PTM). The diversity of ubiquitylation topologies, which encompasses different chain lengths and linkages, underlies its widespread cellular roles. Here, we show that endogenous ubiquitin is acetylated at lysine (K)-6 (AcK6) or K48. Acetylated ubiquitin does not affect substrate monoubiquitylation, but inhibits K11-, K48-, and K63-linked polyubiquitin chain elongation by several E2 enzymes in vitro. In cells, AcK6-mimetic ubiquitin stabilizes the monoubiquitylation of histone H2B—which we identify as an endogenous substrate of acetylated ubiquitin—and of artificial ubiquitin fusion degradation substrates. These results characterize a mechanism whereby ubiquitin, itself a PTM, is subject to another PTM to modulate mono- and polyubiquitylation, thus adding a new regulatory layer to ubiquitin biology.  相似文献   

5.
Family 18 chitinases such as chitinase B (ChiB) from Serratia marcescens catalyze glycoside hydrolysis via a mechanism involving the N-acetyl group of the sugar bound to the -1 subsite. We have studied the degradation of the soluble heteropolymer chitosan, to obtain further insight into catalysis in ChiB and to experimentally assess the proposed processive action of this enzyme. Degradation of chitosans with varying degrees of acetylation was monitored by following the size-distribution of oligomers, and oligomers were isolated and partly sequenced using (1)H-NMR spectroscopy. Degradation of a chitosan with 65% acetylated units showed that ChiB is an exo-enzyme which degrades the polymer chains from their nonreducing ends. The degradation showed biphasic kinetics: the faster phase is dominated by cleavage on the reducing side of two acetylated units (occupying subsites -2 and -1), while the slower kinetic phase reflects cleavage on the reducing side of a deacetylated and an acetylated unit (bound to subsites -2 and -1, respectively). The enzyme did not show preferences with respect to acetylation of the sugar bound in the +1 subsite. Thus, the preference for an acetylated unit is absolute in the -1 subsite, whereas substrate specificity is less stringent in the -2 and +1 subsites. Consequently, even chitosans with low degrees of acetylation could be degraded by ChiB, permitting the production of mixtures of oligosaccharides with different size distributions and chemical composition. Initially, the degradation of the 65% acetylated chitosan almost exclusively yielded oligomers with even-numbered chain lengths. This provides experimental evidence for a processive mode of action, moving the sugar chain two residues at a time. The results show that nonproductive binding events are not necessarily followed by substrate release but rather by consecutive relocations of the sugar chain.  相似文献   

6.
The complete amino acid sequence of duck skeletal muscle acylphosphatase is presented. The sequence was studied by the manual Edman degradation of the complete series of tryptic peptides and the amino acid composition of peptic peptides. The NH2-terminus is acetylated, and the polypeptide consists of 102 amino acid residues. The sequence is compared with other known acylphosphatases from the skeletal muscle of several vertebrate species.  相似文献   

7.
The effect in reticulocyte lysates of proteins with blocked amino groups on the ATP-dependent degradation of casein and serum albumin was studied in order to assess the extent to which proteins with blocked and with free amino groups share common paths of proteolytic degradation. Completely acetylated or succinylated casein and acetylated or succinylated serum albumin (reduced and carboxymethylated), in addition to other amino-modified proteins, inhibited the ATP-dependent proteolysis of both casein and reduced carboxymethylated serum albumin. Inhibition of serum albumin degradation by acetylated serum albumin was competitive, whereas inhibition of casein degradation by acetylated casein was largely competitive with evidence of mixed kinetics. The different amino-blocked proteins studied, which were largely unfolded under assay conditions, were similarly effective as inhibitors on a weight basis, with Ki values in the range 0.2-0.6 mg/ml; there was no correlation between the ability of the blocked proteins to serve as proteolysis substrates and their effectiveness as inhibitors. Studies of the effects of acetylated proteins on the conjugation of ubiquitin to serum albumin and casein demonstrated that the acetylated proteins blocked formation of ubiquitin-albumin conjugates and of selected casein conjugates; the steady state concentration of selected conjugates of endogenous lysate proteins was increased in the presence of amino-blocked proteins. The results suggest that proteins with blocked amino groups, which cannot serve as substrates for ubiquitin conjugation, can compete for binding to those ubiquitin conjugation factors that recognize and ubiquitinate potential substrates of the ubiquitin pathway. The similar inhibitory properties of the different blocked proteins in turn suggest that a common factor in binding to these conjugation factors may be recognition of the polypeptide backbone.  相似文献   

8.
Conjugation of beta-galactosidase with either dextran, methylated dextran or acetylated dextran had only a small effect on uptake of the enzyme in isolated rat parenchymal and nonparenchymal liver cells. Conjugation of beta-galactosidase with dextran or the modified dextrans, reduced the intracellular degradation of the enzyme by up to about 45%. Methylated dextran had less effect than unmodified dextran or acetylated dextran on reducing the intracellular degradation of beta-galactosidase.  相似文献   

9.
Chitosans, prepared by homogeneous N-deacetylation of chitin, with degrees of N-acetylation ranging from 4 to 60% (FA = 0·04 to 0·60) exhibiting full water solubility and known random distribution of acetyl groups, were degraded with lysozyme. Initial degradation rates (r) were determined from plots of the viscosity decrease (Δ1/[η]) against time of degradation. The time course of degradation of chitosans with lysozyme were non-linear, while the time course of degradation of chitosans with an oxidative-reductive depolymerization reaction (using H2O2) showed the expected linear relationship for a first-order, random depolymerization reaction, independent of the chemical composition of the chitosan.

The effect of lysozyme concentration and substrate concentration on the initial degradation rates were determined, showing that this lysozyme-chitosan system obeys Michaelis-Menten kinetics.

The initial degradation rates of chitosan with lysozyme increased strongly with increasing fraction of acetylated units (FA). From a Michaelis-Menten analysis of the degradation data that assumes different catalytic activities of lysozyme for the different hexameric substrates in the polysaccharide chain, it is concluded that the hexameric substrates that contain three-four or more acetylated units contribute mostly to the initial degradation rate when lysozyme degrades partially N-acetylated chitosans.

A chitosan with a very low fraction of acetylated units (FA = 0·010) was studied as an enzyme inhibitor. Initial degradation rates of chitosan (with different FA values) decreased as the inhibitor concentration increased, while the relative rates stayed constant, indicating that the ratio between initial reaction rates for productive sites (hexamers containing three-four or more N-acetylated units) are unaffected by non-productive sites, as deduced from the theory of competing substrates.  相似文献   


10.
Enzymatic degradation of chitosan polymer with Pectinex Ultra SPL was used to obtain derivatives with biological potential as protective agents against Phytophthora parasitica nicotianae (Ppn) in tobacco plants. The 24 h hydrolysate showed the highest Ppn antipathogenic activity and the chitosan native polymer the lowest. The in vitro growth inhibition of several Phytophthora parasitica strains by two chitosans of different DA was compared. While less acetylated chitosan (DA 1%) fully inhibited three P. parasitica strains at the doses 500 and 1000 mg/l the second polymer (DA 36.5%) never completely inhibited such strains. When comparing two polymers of similar molecular weight and different DA, again the highest antipathogenic activity was for the less acetylated polymer. However, degraded chitosan always showed the highest pathogen growth inhibition. Additionally, a bioassay in tobacco seedlings to test plant protection against Ppn by foliar application demonstrated that partially acetylated chitosan and its hydrolysate induced systemic resistance and higher levels of glucanase activity than less acetylated chitosan. Similarly, when treatments were applied as seeds coating before planting, about 46% of plant protection was obtained using chitosan hydrolysate. It was concluded that, while less acetylated and degraded chitosan are better for direct inhibition of pathogen growth, partially acetylated and degraded chitosan are suitable to protect tobacco against P. parasitica by systemic induction of plant resistance.  相似文献   

11.
The Clostridium cellulovorans xynA gene encodes the cellulosomal endo-1,4-beta-xylanase XynA, which consists of a family 11 glycoside hydrolase catalytic domain (CD), a dockerin domain, and a NodB domain. The recombinant acetyl xylan esterase (rNodB) encoded by the NodB domain exhibited broad substrate specificity and released acetate not only from acetylated xylan but also from other acetylated substrates. rNodB acted synergistically with the xylanase CD of XynA for hydrolysis of acetylated xylan. Immunological analyses revealed that XynA corresponds to a major xylanase in the cellulosomal fraction. These results indicate that XynA is a key enzymatic subunit for xylan degradation in C. cellulovorans.  相似文献   

12.
We report here on the HPCE separation of two chicken H5 histones, which do not show the heterogeneity (Gln/Arg) at residue 15 first found by Greenaway and Murray [Greenaway and Murray (1971) Nat. New Biol. 229, 233-238]. The two subfractions obtained were identified using reversed-phase HPLC, hydrophilic interaction HPLC, Edman degradation, and MALDI-MS analysis. We found that the two H5 subcomponents differ only by an acetylated (designated H5a) and an unacetylated N-terminus (H5b). In contrast to the N-terminally acetylated form of rat kidney histone H1(o), which increased by about 40% with aging of the animal, the corresponding form of chicken H5 did not: the ratio N-terminally acetylated: unacetylated remained constant (30:70) when histone H5 was extracted from erythrocytes of newly hatched chickens and from adult chickens, respectively. The HPCE technique used in this investigation represents a quick and convenient method for analyzing N-terminally acetylated proteins in the presence of unacetylated forms.  相似文献   

13.
Acylpeptide hydrolase, an enzyme that removes the modified residue from N-terminally acetylated peptides, has been purified from ovine liver and developed as a tool in sequencing blocked peptides and proteins. Its instability imposes a major limitation on the use of the mammalian enzyme in protein chemistry. Coupling to Sepharose followed by intramolecular cross-linking with dimethyl-suberimidate increased its thermostability and rendered it more resistant to inactivation by either SDS or N,N-dimethylformamide. The resulting enzyme preparation is reusable and more effective at cleaving longer acetylated peptides. It is therefore useful for unblocking acetylated proteins prior to protein sequence analysis. Intact proteins and many isolated peptides are still too large to be cleaved directly, but in this paper we describe a procedure for overcoming this difficulty. The protein is fragmented and non-acetylated peptides are then absorbed out with isothiocyanato-glass. The N-terminal peptide remains in solution and is unblocked with stabilised acylpeptide hydrolase. No chromatographic separation are required. The N-terminal sequence can then be obtained by automated Edman degradation. This procedure has been successfully demonstrated on a large synthetic peptide.  相似文献   

14.
The nature of the structural changes induced by histone acetylation at the different levels of chromatin organization has been very elusive. At the histone level, it has been proposed on several occasions that acetylation may induce an alpha-helical conformation of their acetylated N-terminal domains (tails). In an attempt to provide experimental support for this hypothesis, we have purified and characterized the tail of histone H4 in its native and mono-, di-, tri-, and tetra- acetylated form. The circular dichroism analysis of these peptides shows conclusively that acetylation does increase their alpha-helical content. Furthermore, the same spectroscopic analysis shows that this is also true for both the acetylated nucleosome core particle and the whole histone octamer in solution. In contrast to the native tails in which the alpha-helical organization appears to be dependent upon interaction of these histone regions with DNA, the acetylated tails show an increase in alpha-helical content that does not depend on such an interaction.  相似文献   

15.
Acetylation is an important, highly conserved, and reversible post-translational modification of proteins. Previously, we showed by nano-HPLC/MS/MS that many nutrient storage proteins in the silkworm are acetylated. Among these proteins, most of the known 30K proteins were shown to be acetylated, including 23 acetylated 30K proteins containing 49 acetylated sites (Kac), indicating the importance of the acetylation of 30K proteins in silkworm. In this study, Bm30K-3, a 30K protein containing three Kac sites, was further assessed in functional studies of its acetylation. Increasing the level of Bm30K-3 acetylation by adding the deacetylase inhibitor trichostatin A (TSA) increased the levels of this protein and further inhibited cellular apoptosis induced by H2O2. In contrast, decreasing the level of acetylation by adding the acetylase inhibitor C646 could reduce the level of Bm30K-3 and increase H2O2-induced apoptosis. Subsequently, BmN cells were treated with CHX and MG132, and increasing the acetylation level using TSA was shown to inhibit protein degradation and improve the stability of Bm30K-3. Furthermore, the acetylation of Bm30K-3 could compete with its ability to be ubiquitinated, suggesting that acetylation could inhibit the ubiquitin-mediated proteasome degradation pathway, improving the stability and accumulation of proteins in cells. These results further indicate that acetylation might regulate nutrition storage and utilization in Bombyx mori, which requires further study.  相似文献   

16.
RNase R is a processive exoribonuclease that plays an important role in degradation of structured RNAs in Escherichia coli. RNase R is unstable in exponential phase cells; however, under certain stress conditions, RNase R levels increase dramatically due to its stabilization. Binding of tmRNA and SmpB to the C-terminal region of RNase R is required for its instability, and this binding is regulated by acetylation of a single residue, Lys544, in exponential phase cells. RNase R is not acetylated in stationary phase. We show here that only exponential phase RNase R is acetylated because the modifying enzyme, protein lysine acetyltransferase, Pka (YfiQ), is absent from late exponential and stationary phase cells. As a consequence, newly synthesized RNase R remains unmodified. Together with the turnover of preexisting acetylated RNase R, no modified RNase R remains in stationary phase. We find that RNase R in cold-shocked cells also lacks the acetyl modification due to the absence of Pka. These data indicate that RNase R stability depends on Pka, which itself is regulated under stress conditions.  相似文献   

17.
Regulation of BubR1 is central to the control of APC/C activity. We have found that BubR1 forms a complex with PCAF and is acetylated at lysine 250. Using mass spectrometry and acetylated BubR1-specific antibodies, we have confirmed that BubR1 acetylation occurs at prometaphase. Importantly, BubR1 acetylation was required for checkpoint function, through the inhibition of ubiquitin-dependent BubR1 degradation. BubR1 degradation began before the onset of anaphase. It was noted that the pre-anaphase degradation was regulated by BubR1 acetylation. Degradation of an acetylation-mimetic form, BubR1–K250Q, was inhibited and chromosome segregation in cells expressing BubR1–K250Q was markedly delayed. By contrast, the acetylation-deficient mutant, BubR1–K250R, was unstable, and mitosis was accelerated in BubR1–K250R-expressing cells. Furthermore, we found that APC/C–Cdc20 was responsible for BubR1 degradation during mitosis. On the basis of our collective results, we propose that the acetylation status of BubR1 is a molecular switch that converts BubR1 from an inhibitor to a substrate of the APC/C complex, thus providing an efficient way to modulate APC/C activity and mitotic timing.  相似文献   

18.
The proliferating cell nuclear antigen (PCNA) protein serves as a molecular platform recruiting and coordinating the activity of factors involved in multiple deoxyribonucleic acid (DNA) transactions. To avoid dangerous genome instability, it is necessary to prevent excessive retention of PCNA on chromatin. Although PCNA functions during DNA replication appear to be regulated by different post-translational modifications, the mechanism regulating PCNA removal and degradation after nucleotide excision repair (NER) is unknown. Here we report that CREB-binding protein (CBP), and less efficiently p300, acetylated PCNA at lysine (Lys) residues Lys13,14,77 and 80, to promote removal of chromatin-bound PCNA and its degradation during NER. Mutation of these residues resulted in impaired DNA replication and repair, enhanced the sensitivity to ultraviolet radiation, and prevented proteolytic degradation of PCNA after DNA damage. Depletion of both CBP and p300, or failure to load PCNA on DNA in NER deficient cells, prevented PCNA acetylation and degradation, while proteasome inhibition resulted in accumulation of acetylated PCNA. These results define a CBP and p300-dependent mechanism for PCNA acetylation after DNA damage, linking DNA repair synthesis with removal of chromatin-bound PCNA and its degradation, to ensure genome stability.  相似文献   

19.
Hydrolysis of partially deacetylated chitosans by ChitinaseB (ChiBeta) from Serratia marcescens results in mixtures of oligosaccharides typically between 2 and 20 sugar residues. The amounts of different oligomer fractions depend on the degree of acetylation of the starting chitosans. We have used experimentally determined distributions of hydrolysis products to develop a model for chitosan hydrolysis by ChiB. Important elements of the model include interaction parameters for acetylated/deacetylated units in each of the six subsites in the active cleft and degree of processivity (multiple attack). The hydrolysis reaction is described as a chemical reaction with an activation barrier that depends on the substrate sequence presented to the enzyme subsites. Using a Monte Carlo approach, the interaction parameters were refined by minimizing the difference between observed and predicted amounts of hydrolysis products obtained upon degradation of chitosan with a degree of acetylation of 65%. The final model can accurately predict complex patterns of oligosaccharides produced in the hydrolysis of chitosans with various degrees of acetylation, as well as patterns observed during reactions with chito-oligosaccharides. The behavior of a ChiB mutant with a mutation in subsite +2 (Gly188Asp), which reduces the affinity for an acetylated sugar, could be predicted correctly by introducing one single change in the model parameters (the interaction energy for an acetylated unit in the +2 subsite). The proposed model may be used to explore degradation products for different enzyme-substrates combinations and to optimize conditions for preparation of specific oligosaccharides. In addition, the model provides insight into subsite interaction parameters and the degree of processivity, which complements previous experimental studies on the mode of action of ChiB.  相似文献   

20.
The distribution of acetyl esterase was studied in 30 strains of wood-rotting fungi. A screening test on agar plates using glucose β-d-pentaacetate as a substrate indicated that all tested fungi produced acetyl esterase to form a clear zone on the culture. All fungi also showed positive responses in an agar test using carboxymethyl cellulose acetate. Enzyme assay showed that extracellular acetylxylan esterase activity was present in the filtrates of wood-meal culture of all these fungi. The ratio of fungal acetylxylan esterase activity to 4-nitrophenyl acetyl esterase activity were higher than that of porcine liver esterase, indicating that fungal esterases have high affinity for acetylated carbohydrates. Acetyl esterase is suggested to be distributed widely in wood-rotting fungi for degradation of native acetylated hemicelluloses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号