首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Ribonuclease T1 (RNase T1) cleaves the phosphodiester bond of RNA specifically at the 2′-end of guanosine. 2′-guanosinemonophosphate (2′-GMP) acts as inhibitor for this reaction and was cocrystallized with RNase T1. X-Ray analysis provided insight in the geometry of the active site and in the parts of the enzyme involved in the recognition of guanosine. RNase T1 is globular in shape and consists of a 4.5 turns α-helix lying “below” a four-stranded antiparallel β-sheet containing recognition center as well as active site. The latter is indicated by the position of phosphate and sugar residues of 2′-GMP and shows that Glu58, His92 and Arg77 are active in phosphodiester hydrolysis. Guanine is recognized by a stretch of protein from Tyr42 to Tyr45. Residues involved in recognition are peptide NH and C=O, guanine O6 and N1H which form hydrogen bonds and a stacking interaction of Tyr45 on guanine. Although, on a theoretical basis, many specific amino acid-guanine interactions are possible, none is employed in the RNase T1.guanine recognition.  相似文献   

2.
Abstract

The modes of binding of adenosine 2′-monophosphate (2′-AMP) to the enzyme ribonuclease (RNase) T1 were determined by computer modelling studies. The phosphate moiety of 2′-AMP binds at the primary phosphate binding site. However, adenine can occupy two distinct sites - (1) The primary base binding site where the guanine of 2′-GMP binds and (2) The subsite close to the N1 subsite for the base on the 3′-side of guanine in a guanyl dinucleotide. The minimum energy conformers corresponding to the two modes of binding of 2′-AMP to RNase T1 were found to be of nearly the same energy implying that in solution 2′-AMP binds to the enzyme in both modes. The conformation of the inhibitor and the predicted hydrogen bonding scheme for the RNase T1 - 2′-AMP complex in the second binding mode (S) agrees well with the reported x-ray crystallographic study. The existence of the first mode of binding explains the experimental observations that RNase T1 catalyses the hydrolysis of phosphodiester bonds adjacent to adenosine at high enzyme concentrations. A comparison of the interactions of 2′-AMP and 2′-GMP with RNase T1 reveals that Glu58 and Asn98 at the phosphate binding site and Glu46 at the base binding site preferentially stabilise the enzyme - 2′-GMP complex.  相似文献   

3.
Abstract

The solution structure of RNase T1 and its complexes with 2′-GMP and. 3′-GMP have been investigated by combined use of 2D-NMR spectroscopy and restrained molecular dynamics calculations (MD). An analysis of the nuclear Overhauser effects (NOEs) observed indicates the presence of one a helix as well as of two antiparallel β sheets. Interaction of the nucleotides with the active site leads to changes of the backbone conformation of the amino acids involved. However, the interaction between the protein and 3′-GMP is not as strong as the interaction with 2′-GMP, possibly because of weaker binding.  相似文献   

4.
Abstract

The mechanism of action of ribonuclease (RNase) T1 is still a matter of considerable debate as the results of x-ray, 2-D nmr and site-directed mutagenesis studies disagree regarding the role of the catalytically important residues. Hence computer modelling studies were carried out by energy minimisation of the complexes of RNase T1 and some of its mutants (His40Ala, His40Lys, and Glu58Ala) with the substrate guanyl cytosine (GpC), and of native RNase T1 with the reaction intermediate guanosine 2′, 3′-cyclic phosphate (G>p). The puckering of the guanosine ribose moiety in the minimum energy conformer of the RNase T1 - GpC (substrate) complex was found to be O4′-endo and not C3′-endo as in the RNase T1 - 3′-guanylic acid (inhibitor/product) complex. A possible scheme for the mechanism of action of RNase T1 has been proposed on the basis of the arrangement of the catalytically important amino acid residues His40, Glu58, Arg77, and His92 around the guanosine ribose and the phosphate moiety in the RNase T1 - GpC and RNase T1 - G>p complexes. In this scheme, Glu58 serves as the general base group and His92 as the general acid group in the transphosphorylation step. His40 may be essential for stabilising the negatively charged phosphate moiety in the enzyme-transition state complex.  相似文献   

5.
Selenium (Se) influences the metabolism of thyroid hormones in mammals. However, the role of Se deficiency in the regulation of thyroid hormones in chickens is not well known. In the present study, we examined the levels of thyroidal triiodothyronine (T3), thyroidal thyroxine (T4), free triiodothyronine, free thyroxine (FT4), and thyroid-stimulating hormone in the serum and the mRNA expression levels of 25 selenoproteins in chicken thyroids. Then, principal component analysis (PCA) was performed to analyze the relationships between the selenoproteins. The results indicated that Se deficiency influenced the conversion of T4 to T3 and induced the accumulation of T4 and FT4. In addition, the mRNA expression levels of the selenoproteins were generally decreased by Se deficiency. The PCA showed that eight selenoproteins (deiodinase 1 (Dio1), Dio2, Dio3, thioredoxin reductase 2 (Txnrd2), selenoprotein i (Seli), selenoprotein u (Selu), glutathione peroxidase 1 (Gpx1), and Gpx2) have similar trends, which indicated that they may play similar roles in the metabolism of thyroid hormones. The results showed that Se deficiency inhibited the conversion of T4 to T3 and decreased the levels of the crucial metabolic enzymes of the thyroid hormones, Dio1, Dio2, and Dio3, in chickens. In addition, the decreased selenoproteins (Dio1, Dio2, Dio3, Txnrd2, Seli, Selu, Gpx1, and Gpx2) induced by Se deficiency may indirectly limit the conversion of T4 to T3 in chicken thyroids. The information presented in this study is helpful to understand the role of Se in the thyroid function of chickens.  相似文献   

6.
RNase activity from Chlorella was partially purified. Two RNase activities were demonstrated, one soluble and the other ribosomal. The effects on ribonuclease activity of variations in pH and temperature, and of Mg2+, Na+, and mononucleotides were examined. The RNase activities (phosphodiesterases EC 3.1.4.23) were both endonucleolytic, releasing oligonucleotides, and cyclic nucleotide intermediates, but exhibited different specificities in releasing mononucleotides from RNA. The ribosomal activity released 3′-GMP, and after prolonged incubation 3′-UMP, but the soluble activity released 3′-GMP, 3′-AMP and 3′-UMP. Neither ofthe RNase preparations hydrolysed DNA, nor released 5′-nucleotides from RNA. Increased ribosomal RNase activity was related to dissociation of ribosomes, and latency of ribosomal RNase activity was demonstrated. The possible in vivo distribution of RNases is discussed.  相似文献   

7.
Genomic or high molecular weight RNA of retroviruses consisted of 2 to 5% double-stranded RNA. Fragmentation of genomic viral RNA by limited RNase T1 treatment before cellulose CF-11 chromatography indicated that 3 to 5% of the viral RNA fragments were eluted as double-stranded RNA. This double-strandedness was in close agreement with the more representative 2 to 3% double-strandedness as determined by RNase T2 resistance studies performed on genomic and subunit viral RNA. The double-stranded RNA of RNase T2 treated retrovirus RNA was purified by cellulose CF-11 chromatography.  相似文献   

8.
Information was obtained on rates of overall molecular reorientation and segmental motion of amino acid sidechains of oxytocin in dimethylsulfoxide by determination of spin-lattice relaxation times (T1) at 25 MHz for carbon-13 in natural abundance in the hormone. The T1 values of the α-carbons of amino acid residues located in the 20-membered ring of oxytocin are all about 50 msec. The overall correlation time for the hormone backbone was estimated to be 8.8 × 10?10 sec. The sidechains of Tyr, Ile and Gln undergo segmental motion with respect to the backbone of the ring. The T1 value of the α-carbon of the Leu residue is greater than for any α-carbon in the ring, indicating an increased mobility of the backbone of the C-terminal acyclic peptide as compared to the ring. The β- and γ-carbons of the Pro residue undergo an exo-endo interconversion with regard to the plane formed by α-carbon, δ-carbon and N atom of the Pro pyrollidine ring. These data are discussed in light of results from other experimental and theoretical studies, including carbon-13 spin-lattice relaxation times for oxytocin in aqueous solution.  相似文献   

9.
J A Walmsley  B L Sagan 《Biopolymers》1986,25(11):2149-2172
1H- and 31P-nmr spectroscopy have been used to investigate the self-association of M2(5′-CMP) [M = Li+, Na+, K+, Rb+, or (CH3)4 N+; 5′-CMP = cytidine 5′-monophosphate], the self-association of Li2(5′-GMP) (5′-GMP = guanosine 5′-monophosphate), and the heteroassociation of 5′-GMP and 5′-CMP (1 : 1 mole ratio) in aqueous solution as a function of the nature of the monovalent cation. Proton spectral differences for the different 5′-CMP salts exhibit a cation-size dependence and have been ascribed to a change in the stacking geometry. An average stacking association constant of 0.63 ± 0.24M?1 at 1°C, consistent with the weak stacking interactions of the cytosine bases, was determined for the 5′-CMP salts. Heteroassociation of 5′-GMP and 5′-CMP follows the reverse of the cation order for the formation of ordered aggregates of 5′-GMP. Heteroassociation occurs in the presence of Li+, Na+, and Rb+ ions, but only self-association occurs for the K+ nucleotides. Li2(5′-GMP), which does not form ordered species, self-associates to form disordered base stacks with a stacking constant of 1.63 ± 0.11M?1 at 1°C.  相似文献   

10.
The complete primary structure of a base non-specific and adenylic acid preferential RNase (RNase Le2) from the fruit bodies of Lentinus edodes was analyzed. The sequence was mostly determined by analysis of the peptides generated by V8 protease digestion and BrCN cleavage (including α-chymotryptic, and V8 protease digest of BrCN fragments). It consists of 239 amino acid residues. The molecular weight is 25831. The location of 10 half cystine residues were almost superimposable on those of known fungal RNases of the RNase T2 family. The sequence homologies between RNase Le2 and four known fungal RNases of the RNase T2 family, RNase T2, RNase M, RNase Trv, and RNase Rh, are 102, 103, 109, and 74, respectively. The homologous sequences are concentrated around the three histidines, which are supposed to form the active site of RNase T2 family RNases.  相似文献   

11.
Abstract

We examined the effects of 1–(2-deoxy -2-fluoro-β-D-arabinofuranosyl)-thymine (or FMAU, a potent antiviral nucleoside) on the stability of duplex and triplexes. When compared the stability of the self-complementary 5′-A5T5 duplex with 5′-A5X5 (X = FMAU), duplex containing FMAU has much higher melting temperature (Tm). 5′-A6T5T3X3T5F3X3 and T3X3T5A6T5F3X3 form the parallel and antiparallel triplexes T3X3: A6:X3X3, respectively. The former exhibited the typical T:A:T triplex behavior with only one melting temperature at 70 °C and 45 °c in 1.0 M and 0.2 M NaCl solution, respectively, whereas the latter has two Tm values at 56 °C and 28 °C in 1.0 M solution. FMAU clearly stabilize the triplex structure as A6T22 which forms the parallel triplex T6:A6:T6 has also only one Tm at 54 °C and 37 °C in high and iow salt concentration solutions, respectively. A 31mer 5′-TCCTCCTTTTTTAGGAGGATTTTTTGGTGGT and 5′-TCCTCCTTTTTTAGGAGGATTTTTTX'X'TX'X'T (X' = 2′-deoxy-5-methylcytidine) were prepared to study their triplex forming potential. The former was found to have a week interaction of the Watson-Crick duplex with the mismatched third-strand at all pH. The latter formed a stable triplex at lower pH consistent with required protonation on the 5-methylcytosine base. For these studies we developed a simple PC desktop spreadsheet program to calculate the first derivative profile of the melting curve data.

This paper is dedicated to Prof. Jacques H. van Boom on the occasion of his 60th birthday.  相似文献   

12.
A model for the complex between E. coli RNase HI and the DNA/RNA hybrid (previously refined by molecular dynamics simulations) was used to determine the impact of the internucleotide linkage modifications (either 3′–O–CH2–P–O–5′ or 3′–O–P–CH2–O–5′) on the ability of the modified-DNA/RNA hybrid to create a complex with the protein. Modified internucleotide linkages were incorporated systematically at different positions close to the 3′-end of the DNA strand to interfere with the DNA binding site of RNase H. Altogether, six trajectories were produced (length 1.5). Mutual hydrogen bonds connecting both strands of the nucleic acids hybrid, DNA with RNase H, RNA with RNase H, and the scissile bond with the Mg++ · 4H2O chelate complex (bound in the active site) were analyzed in detail. Many residues were involved in binding of the DNA (Arg88, Asn84, Trp85, Trp104, Tyr73, Lys99, Asn100, Thr43, and Asn16) and RNA (Gln76, Gln72, Tyr73, Lys122, Glu48, Asn44, and Cys13) strand to the substrate-binding site of the RNase H enzyme. The most remarkable disturbance of the hydrogen bonding net was observed for structures with modified internucleotide linkages positioned in a way to interact with the Trp104, Tyr73, Lys99, and Asn100 residues (situated in the middle of the DNA binding site, where a cluster of Trp residues forms a rigid core of the protein structure).  相似文献   

13.
Veal heart ribonuclease P has an essential RNA component   总被引:14,自引:0,他引:14  
The activity of RNase P (EC 3.1.26.5) from veal heart can be abolished by pretreatment of the enzyme preparation with micrococcal nuclease, pancreatic RNase A, or RNase T1. This indicates that veal heart RNase P contains an RNA component essential for function of the enzyme as has also been shown for E. coli RNase P (1–3). Additionally, veal heart RNase P has a buoyant density in Cs2SO4 of 1.33 g/cm3, which is intermediate between that of protein and nucleic acid.  相似文献   

14.
15.
Abstract

Cytidine 3′,-5′-cyclic phosphate (cCMP) occurs in nature and has growth stimulatory activity on L-1210 cells. The initiation of cell growth by cCMP, under conditions where CAMP, cGMP and cUMP delay the onset of proliferation suggests that cCMP may play a regulatory role in the cell metabolism. It has been reported that in 3′,5′-cyclic nucleotides, the phosphate ring fused to the furanose ring resuicts the conformation of the furanose ring to the twist form C(3′) endo C(4′) exo (3T4), in contrast to the C(2′) endo C(3′) endo (2T3) and C(3′) endo C(2′) exo (3T2) twist forms normally found in nucleotides and nucleosides. We have carried out an accurate crystal structure of cCMP and found that the furanose ring in cCMP has the C(3′) endo C(2′) exo conformation (3T2), with a pseudo rotation amplitude (P) of 44° and phase angle τm of 12°. cCMP is in low anti conformation (XCN = 15.4°) and O(5′) has the fixed g conformation. The phosphate ring is constrained to the chair conformation, as in other cyclic nucleotides. The two exocyclic P-O bond distances are short (1.489, 1.476Å) and the ring angle at N(3) is large (125.2°) suggesting that the molecule in the solid state is a zwitterion with a plus charge on N(3). The crystals are hydrated and highly unstable. The three water molecules are highly disordered in ten locations. The crystals of cCMP 3H2O are hexagonal, a = 16.294(3), b = c = 11.099(4)Å, space group P61, final R value is 0.067 for 1620 reflections 230.  相似文献   

16.
We have theoretically and experimentally studied the binding of two different ligands to wild-type ribonuclease T1 (RNT1) and to a mutant of RNT1 with Glu-46 replaced by Gln. The binding of the natural substrate 3′-GMP has been compared with the binding of a fluorescent probe, 2-aminopurine 3′-monophosphate (2AP), and relative free energies of binding of these ligands to the mutant and the wild-type (wt) enzyme have been calculated by free energy perturbation methods. The free energy perturbations predict that the mutant RNT1-Gln-46 binds 2AP better than 3′GMP, in agreement with experiments on dinucleotides. Four free energy perturbations, forming a closed loop, have been performed to allow the detection of systematic errors in the simulation procedure. Because of the larger number of atoms involved, it was necessary to use a much longer simulation time for the change in the protein, i.e., the perturbation from Glu to Gln, than in the perturbation from 3′-GMP to 2AP. Finally the structure of the binding site is analyzed for understanding differences in catalytic speed and binding strength. © 1993 Wiley-Liss, Inc.  相似文献   

17.
Proton and phosphorus-31 nuclear spin–lattice relaxation times T1 and spin–spin relaxation times T2 have been measured on the single-stranded polyriboadenylic acid [poly(A)]–Mn2+ system in a neutral D2O solution in the temperature range 10°–90°C at 100 and 40.5 MHz, respectively, with the Fourier transform nmr method. Minimum values of T1 have been found for all these nuclei, which have enabled the exact estimation of apparent distances from Mn2+ to H2, H8, H1′, and the phosphorus nucleus to be 4.7, 4.1, 5.2, and 3.0 Å, respectively. The electron spin of Mn2+ penetrates into the phosphorus nucleus, giving 31P hyperfine coupling of more than 106 Hz. Evidence of penetration of the electron spin into H8 and H2 is also obtained, suggesting direct coordination of nitrogen atoms of the adenine ring to the Mn2+ Ion. Combined with the result from proton relaxation enhancement of water, it is concluded that every Mn2+ ion added is bound directly to two phosphate groups with a Mn2+–phosphorus distance of 3.3 Å, while a part of the Mn2+ ions are simultaneouly bound to the adenine ring. It is estimated that 39 ± 13% and 13 ± 5% of Mn2+ are coordinated by N7 and N3 (or N1), respectively. The motional freedom of poly(A) in the environment of the Mn2+ binding site has been found to be quenched to the extent that the rotational motion becomes several times slower than that of the corresponding Mn2+–free poly(A). The activation energies for the molecular motion are, however, practically unchanged from those for Mn2+–free poly(A), and are found to be 8.3, 8.5, 6.1, and 8.7 kcal/mol for H8, H2, H1′, and phosphorus, respectively. T2 of phosphorus is determined by the dissociation rate (k?1) of Mn2+ from the phosphate group for the whole temperature range studied with activation enthalpy of 6.5 kcal/mol. The dissociation rates of Mn2+ from the adenine ring are also estimated from proton T2 values below 50°C.  相似文献   

18.
The peptide bond preceding proline residues realizes a cis/trans conformational switch with high switching resistance in native proteins and folding intermediates. Therefore, individual isomers have the potential to differ in bioactivity. However, information about isomer-specific bioactivities is difficult to obtain because of the risk of affecting isomeric distribution by bioactivity assay components.Here we present an approach that allows for the measurement of the recovery of enzymatic activities of wild-type RNase T1 and RNase T1 variants during refolding under conditions where the population of enzyme-substrate or enzyme-product complexes is negligible. Recovery of enzymatic activity was continuously monitored within the visible range of the spectrum by addition of a fluorescence-labeled nucleotide substrate to the refolding sample. We found that a nonnative trans conformation at Pro39 renders the RNase T1 almost completely inactive. A folding intermediate having a nonnative trans conformation at Pro55 shows about 46% of the enzymatic activity referred to the native state. Pro55, in contrast to the active site located Pro39, is situated in a solvent-exposed loop region remote from active-site residues. In both cases, peptidyl prolyl cis/trans isomerases accelerate the regain of nucleolytic activity. Our findings show that even if there is a considerable distance between the site of isomerization and the active site, conformational control of the bioactivity of proteins is likely to occur, and that the surface location of prolyl bonds suffices for the control of buried active sites mediated by peptidyl prolyl cis/trans isomerases.  相似文献   

19.
An arsenite-oxidizing bacterium, strain S2-3HT, was isolated from arsenic-contaminated soil sample collected from Dantchaeng district, Suphanburi province, Thailand and was characterized based on polyphasic taxonomic study. The strain was observed to be a Gram-stain negative, aerobic, yellow pigmented, non-spore forming and rod-shaped bacterium. Major menaquinone was MK-6. Iso-C15:0, iso-C15:0 3OH, C16:1 ω7c/C16:1 ω6c, C16:0, iso-C17:0 3OH, and C16:0 3OH were the predominant cellular fatty acids. The polar lipid profile consisted of phosphatidylethanolamine, unidentified phospholipids and unidentified aminophospholipids. The DNA G+C content was 37.0 mol%. Phylogenetic analysis using 16S rRNA sequence showed that strain S2-3HT is affiliated to the genus Flavobacterium, and is closely related to F. defluvii KCTC 12612T (97.0 %) and F. johnsoniae NBRC 14942T (97.0 %). The strain S2-3HT could be clearly distinguished from the related Flavobacterium species by its physiological and biochemical characteristics as well as its phylogenetic position and DNA–DNA relatedness. Therefore, the strain represents a novel species of the genus Flavobacterium, for which the name Flavobacterium arsenitoxidans sp. nov. (type strain S2-3HT = KCTC 22507T = NBRC 109607T = PCU 331T = TISTR 2238T) is proposed.  相似文献   

20.
Ribonuclease T1 (RNase T1) cleaves the phosphodiester bond of RNA specifically at the 3'-end of guanosine. 2'-guanosinemonophosphate (2'-GMP) acts as inhibitor for this reaction and was cocrystallized with RNase T1. X-Ray analysis provided insight in the geometry of the active site and in the parts of the enzyme involved in the recognition of guanosine. RNase T1 is globular in shape and consists of a 4.5 turns alpha-helix lying "below" a four-stranded antiparallel beta-sheet containing recognition center as well as active site. The latter is indicated by the position of phosphate and sugar residues of 2'-GMP and shows that Glu58, His92 and Arg77 are active in phosphodiester hydrolysis. Guanine is recognized by a stretch of protein from Tyr42 to Tyr45. Residues involved in recognition are peptide NH and C = O, guanine O6 and N1H which form hydrogen bonds and a stacking interaction of Tyr45 on guanine. Although, on a theoretical basis, many specific amino acid-guanine interactions are possible, none is employed in the RNase T1.guanine recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号