首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transforming growth factor-β (TGF-β) acts as a pro-metastatic factor in advanced breast cancer. RNF12, an E3 ubiquitin ligase, stimulates TGF-β signaling by binding to the inhibitory SMAD7 and inducing its proteasomal degradation. How RNF12 activity is regulated and its exact role in cancer is incompletely understood. Here we report that RNF12 was overexpressed in invasive breast cancers and its high expression correlated with poor prognosis. RNF12 promoted breast cancer cell migration, invasion, and experimental metastasis in zebrafish and murine xenograft models. RNF12 levels were positively associated with the phosphorylated AKT/protein kinase B (PKB) levels, and both displayed significant higher levels in the basal-like subtype compared with the levels in luminal-like subtype of breast cancer cells. Mechanistically, AKT-mediated phosphorylation induced the nuclear localization of RNF12, maintained its stability, and accelerated the degradation of SMAD7 mediated by RNF12. Furthermore, we demonstrated that RNF12 and AKT cooperated functionally in breast cancer cell migration. Notably, RNF12 expression strongly correlated with both phosphorylated AKT and phosphorylated SMAD2 levels in breast cancer tissues. Thus, our results uncovered RNF12 as an important determinant in the crosstalk between the TGF-β and AKT signaling pathways during breast cancer progression.Subject terms: Cancer, Cell biology  相似文献   

2.
3.
4.
Synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG phosphorothioate (PS CpG-ODN) are known to decrease IgE synthesis in Th2 allergy responses. Nonetheless, the therapeutic role of PS CpG-ODN is limited due to cytotoxicity. Therefore, we developed a phosphodiester (PO) form of CpG-ODN (46O) with reduced toxicity but effective against allergies. In this study, we first compared the toxicity of 46O with CpG-ODNs containing a PS backbone (1826S). We also investigated the therapeutic efficacy and mechanism of 46O injected intravenously in a mouse model of ovalbumin (OVA)-induced atopic dermatitis (AD). To elucidate the mechanism of 46O underlying the inhibition of IgE production, IgE- and TGF-β-associated molecules were evaluated in CD40/IL-4- or LPS/IL-4-stimulated B cells. Our data showed that the treatment with 46O was associated with a lower hematological toxicity compared with 1826S. In addition, injection with 46O reduced erythema, epidermal thickness, and suppressed IgE and IL-4 synthesis in mice with OVA-induced AD. Additionally, 46O induced TGF-β production in LPS/IL-4-stimulated B cells via inhibition of Smad7, which suppressed IgE synthesis via interaction between Id2 and E2A. These findings suggest that enhanced TGF-β signaling is an effective treatment for IgE-mediated allergic conditions, and 46O may be safe and effective for treating allergic diseases such as AD and asthma.  相似文献   

5.
TGF-β1 has long been considered as a key mediator in diabetic kidney disease (DKD) but anti-TGF-β1 treatment fails clinically, suggesting a diverse role for TGF-β1 in DKD. In the present study, we examined a novel hypothesis that latent TGF-β1 may be protective in DKD mice overexpressing human latent TGF-β1. Streptozotocin-induced Type 1 diabetes was induced in latent TGF-β1 transgenic (Tg) and wild-type (WT) mice. Surprisingly, compared to WT diabetic mice, mice overexpressing latent TGF-β1 were protected from the development of DKD as demonstrated by lowing microalbuminuria and inhibiting renal fibrosis and inflammation, although blood glucose levels were not altered. Mechanistically, the renal protective effects of latent TGF-β1 on DKD were associated with inactivation of both TGF-β/Smad and nuclear factor-κB (NF-κB) signaling pathways. These protective effects were associated with the prevention of renal Smad7 from the Arkadia-induced ubiquitin proteasomal degradation in the diabetic kidney, suggesting protection of renal Smad7 from Arkadia-mediated degradation may be a key mechanism through which latent TGF-β1 inhibits DKD. This was further confirmed in vitro in mesangial cells that knockdown of Arkadia failed but overexpression of Arkadia reversed the protective effects of latent TGF-β1 on high glucose-treated mesangial cells. Latent TGF-β1 may protect kidneys from TGF-β1/Smad3-mediated renal fibrosis and NF-κB-driven renal inflammation in diabetes through inhibiting Arkadia-mediated Smad7 ubiquitin degradation.  相似文献   

6.
7.
Complex formation and endocytosis of transforming growth factor-β (TGF-β) receptors play important roles in signaling. However, their interdependence remained unexplored. Here, we demonstrate that ALK1, a TGF-β type I receptor prevalent in endothelial cells, forms stable complexes at the cell surface with endoglin and with type III TGF-β receptors (TβRIII). We show that ALK1 undergoes clathrin-mediated endocytosis (CME) faster than ALK5, type II TGF-β receptor (TβRII), endoglin, or TβRIII. These complexes regulate the endocytosis of the TGF-β receptors, with a major effect mediated by ALK1. Thus, ALK1 enhances the endocytosis of TβRIII and endoglin, while ALK5 and TβRII mildly enhance endoglin, but not TβRIII, internalization. Conversely, the slowly endocytosed endoglin has no effect on the endocytosis of either ALK1, ALK5, or TβRII, while TβRIII has a differential effect, slowing the internalization of ALK5 and TβRII, but not ALK1. Such effects may be relevant to signaling, as BMP9-mediated Smad1/5/8 phosphorylation is inhibited by CME blockade in endothelial cells. We propose a model that links TGF-β receptor oligomerization and endocytosis, based on which endocytosis signals are exposed/functional in specific receptor complexes. This has broad implications for signaling, implying that complex formation among various receptors regulates their surface levels and signaling intensities.  相似文献   

8.
TGF-β1 mRNA and protein were recently found to increase in animal brains after experimental lesions that cause local deafferentation or neuron death. Elevations of TGF-β1 mRNA after lesions are prominent in microglia but are also observed in neurons and astrocytes. Moreover, TGF-β1 mRNA autoinduces its own mRNA in the brain. These responses provide models for studying the increases of TGF-β1 protein observed in βA/amyloid-containing extracellular plaques of Alzheimer's disease (AD) and Down's syndrome (DS) and in brain cells of AIDS victims. Involvement of TGF-β1 in these human brain disorders is discussed in relation to the potent effects of TGF-β1 on wound healing and inflammatory responses in peripheral tissues. We hypothesize that TGF-β1 and possibly other TGF-β peptides have organizing roles in responses to neurodegeneration and brain injury that are similar to those observed in non-neural tissues. Work from many laboratories has shown that activities of TGF-β peptides on brain cells include chemotaxis, modification of extracellular matrix, and regulation of cytoskeletal gene expression and of neurotrophins. Similar activities of the TGF-β's are well established in other tissues.  相似文献   

9.
Dysregulation of immune responses has been linked to the generation of immunoglobulin G (IgG) autoantibodies that target human β1ARs and contribute to deleterious cardiac outcomes. Given the benefits of β-blockers observed in patients harboring the IgG3 subclass of autoantibodies, we investigated the role of these autoantibodies in human β1AR function. Serum and purified IgG3(+) autoantibodies from patients with onset of cardiomyopathy were tested using human embryonic kidney (HEK) 293 cells expressing human β1ARs. Unexpectedly, pretreatment of cells with IgG3(+) serum or purified IgG3(+) autoantibodies impaired dobutamine-mediated adenylate cyclase (AC) activity and cyclic adenosine monophosphate (cAMP) generation while enhancing biased β-arrestin recruitment and Extracellular Regulated Kinase (ERK) activation. In contrast, the β-blocker metoprolol increased AC activity and cAMP in the presence of IgG3(+) serum or IgG3(+) autoantibodies. Because IgG3(+) autoantibodies are specific to human β1ARs, non–failing human hearts were used as an endogenous system to determine their ability to bias β1AR signaling. Consistently, metoprolol increased AC activity, reflecting the ability of the IgG3(+) autoantibodies to bias β-blocker toward G-protein coupling. Importantly, IgG3(+) autoantibodies are specific toward β1AR as they did not alter β2AR signaling. Thus, IgG3(+) autoantibody biases β-blocker toward G-protein coupling while impairing agonist-mediated G-protein activation but promoting G-protein–independent ERK activation. This phenomenon may underlie the beneficial outcomes observed in patients harboring IgG3(+) β1AR autoantibodies.  相似文献   

10.
Endothelial-to-mesenchymal transition (EndMT) is involved in cardiac fibrosis induced by angiotensin II (Ang II). A disintegrin and metalloproteinase 8 (ADAM8), a member of ADAMs family, participates in cell adhesion, proteolysis and various signaling. However, its effects on the development of cardiac fibrosis remain completely unknown. This study aimed to reveal whether ADAM8 aggravates cardiac fibrosis induced by Ang II in vivo and in vitro. The C57BL/6J mice or cardiac endothelial cells were subjected to Ang II infusion to induce fibrosis. The results showed that systolic blood pressure and diastolic blood pressure were significantly increased under Ang II infusion, and ADAM8 was up-regulated. ADAM8 inhibition attenuated Ang II-induced cardiac dysfunction. ADAM8 knockdown suppressed Ang II-induced cardiac fibrosis as evidenced by the down-regulation of CTGF, collagen I, and collagen III. In addition, the endothelial marker (VE-cadherin) was decreased, whilst mesenchymal markers (α-SMA and FSP1) were increased following Ang II infusion. However, ADAM8 repression inhibited Ang II-induced EndMT. Moreover, ADAM8 silencing repressed the activation of TGF-β1/Smad2/Smad3 pathways. Consistent with the results in vivo, we also found the inhibitory effects of ADAM8 inhibition on EndMT in vitro. All data suggest that ADAM8 promotes Ang II-induced cardiac fibrosis and EndMT via activating TGF-β1/Smad2/Smad3 pathways.  相似文献   

11.
Junctional adhesion molecules (JAMs) are endothelial and epithelial adhesion molecules involved in the recruitment of circulating leukocytes to inflammatory sites. We show here that JAM-L, a protein related to the JAM family, is restricted to leukocytes and promotes their adhesion to endothelial cells. Cis dimerization of JAM-L is required to engage in heterophilic interactions with its cognate counter-receptor CAR (coxsackie and adenovirus receptor). Interestingly, JAM-L expressed on neutrophils binds CAR independently of integrin activation. However, on resting monocytes and T lymphocytes, which express the integrin VLA-4, JAM-L molecules engage in complexes with VLA-4 and mainly accumulate in their monomeric form. Integrin activation is required for the dissociation of JAM-L–VLA-4 complexes and the accumulation of functional JAM-L dimers, which indicates that the leukocyte integrin VLA-4 controls JAM-L function in cis by controlling its dimerization state. This provides a mechanism through which VLA-4 and JAM-L functions are coordinately regulated, allowing JAM-L to strengthen integrin-dependent adhesion of leukocytes to endothelial cells.  相似文献   

12.
13.
Cell signals for growth factors depend on the mechanical properties of the extracellular matrix (ECM) surrounding the cells. Microtubule acetylation is involved in the transforming growth factor (TGF)-β-induced myofibroblast differentiation in the soft ECM. However, the mechanism of activation of α-tubulin acetyltransferase 1 (α-TAT1), a major α-tubulin acetyltransferase, in the soft ECM is not well defined. Here, we found that casein kinase 2 (CK2) is required for the TGF-β-induced activation of α-TAT1 that promotes microtubule acetylation in the soft matrix. Genetic mutation and pharmacological inhibition of CK2 catalytic activity specifically reduced microtubule acetylation in the cells cultured on a soft matrix rather than those cultured on a stiff matrix. Immunoprecipitation analysis showed that CK2α, a catalytic subunit of CK2, directly bound to the C-terminal domain of α-TAT1, and this interaction was more prominent in the cells cultured on the soft matrix. Moreover, the substitution of alanine with serine, the 236th amino acid located at the C-terminus, which contains the CK2-binding site of α-TAT1, sig-nificantly abrogated the TGF-β-induced microtubule acetylation in the soft matrix, indicating that the successful binding of CK2 and the C-terminus of α-TAT1 led to the phosphorylation of serine at the 236th position of amino acids in α-TAT1 and regulation of its catalytic activity. Taken together, our findings provide novel insights into the molecular mechanisms underlying the TGF-β-induced activation of α-TAT1 in a soft matrix.  相似文献   

14.
15.
SPARC (secreted protein, acidic and rich in cysteine, also known as osteonectin and BM-40) is a metal-binding glycoprotein secreted by a variety of cultured cells and characteristic of tissues undergoing morphogenesis, remodeling, and repair. Recently it has been shown that SPARC inhibits the progression of the endothelial cell cycle in mid-G1, and that a synthetic peptide (amino acids 54–73 of secreted murine SPARC, peptide 2.1) from a cationic, disulfide-bonded region was in part responsible for the growth-suppressing activity [Funk and Sage (1991): Proc Natl Acad Sci USA 88:2648–2652]. Moreover, SPARC was shown to interact directly with bovine aortic endothelial (BAE) cells through a C-terminal EF-hand sequence comprising a high-affinity Ca2+-binding site of SPARC and represented by a synthetic peptide (amino acids 254–273) termed 4.2 [Yost and Sage (1993): J Biol Chem 268:25790–25796]. In this study we show that peptide 4.2 is a more potent inhibitor of DNA synthesis that acts cooperatively with peptide 2.1 to diminish the incorporation of [3H]-thymidine by both BAE and bovine capillary endothelial (BCE) cells. At concentrations of 0.019–0.26 mM peptide 4.2, thymidine incorporation by BAE cells was decreased incrementally, relative to control values, from approximately 100 to 10%. Although somewhat less responsive, BCE cells exhibited a dose-responsive decrement in thymidine incorporation, with a maximal inhibition of 55% at 0.39 mM. The inhibitory effect of peptide 4.2 was essentially independent of heparin and basic fibroblast growth factor and was blocked by anti-SPARC peptide 4.2 IgG, but not by antibodies specific for other domains of SPARC. To identify residues that were necessary for inhibition of DNA synthesis, we introduced single amino acid substitutions into synthetic peptide 4.2 and tested their activities and cell-surface binding characteristics on endothelial cells. Two peptides displayed null to diminished effects in the bioassays that were concentration-dependent: peptide 4.2 K, containing an Asp258 → Lys substitution, and peptide 4.2 AA, in which the two disulfide-bonded Cys (positions 255 and 271) were changed to Ala residues. Peptide 4.2 K, which failed to fulfill the EF-hand consensus formula, exhibited an anomalous fluorescence emission spectrum, in comparison with the wild-type 4.2 sequence, that was indicative of a compromised affinity for Ca2+. Moreover, ablation of the disulfide bond in peptide 4.2 AA potentially destabilized the Ca2+-binding loop structure, as assessed by fluorescence spectroscopy, such that the peptide competed poorly for the binding of [125I]-peptide 4.2 to BAE cells. We conclude both that Ca2+-coordinating Asp at position 258 and the conformation of peptide 4.2 are necessary for the inhibition of DNA synthesis by SPARC in cultured endothelial cells.  相似文献   

16.
Activation of the receptor tyrosine kinase c-kit by the kit-ligand, also known as stem cell factor (SCF), is essential to melanocyte and germ cell development and during the early stages of hematopoiesis. Deregulated expression of c-kit has been reported in malignancies affecting these lineages, i.e., myeloid leukemias, melanomas, and germ cell tumors. In addition, c-kit and SCF are coexpressed in some breast and colorectal cancer (CRC) cells, raising the question of whether c-kit serves an autocrine role in normal or malignant epithelial tissues. In this study, we demonstrate that human colorectal carcinomas, but not normal colorectal mucosa cells, coexpress SCF and c-kit in situ. Expression of c-kit was also observed in mucosa adjacent to colorectal tumor tissue. Consistent with a growth-regulatory role of SCF in CRC cells, exogenous SCF stimulated anchorage-dependent and anchorage-independent growth in four out of five CRC cell lines. Exogenous transforming growth factor (TGF)-β1 added at nanomolar concentrations to HT-29 CRC cells, which express the type I, II, and III TGF-β receptors, downregulated c-kit expression to background levels and inhibited c-kit–dependent proliferation. Similarly, TGF-β1 inhibited SCF-dependent proliferation of three first-passage CRC cell lines. In summary, expression of the potential autocrine SCF/c-kit axis is a tumor-associated phenomenon in colorectal cancer that can be suppressed by TGF-β1 in TGF-β–responsive CRC cells. J. Cell. Physiol. 172:1–11, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Vascular endothelial cells (ECs) form a critical interface between blood and tissues that maintains whole-body homeostasis. In COVID-19, disruption of the EC barrier results in edema, vascular inflammation, and coagulation, hallmarks of this severe disease. However, the mechanisms by which ECs are dysregulated in COVID-19 are unclear. Here, we show that the spike protein of SARS-CoV-2 alone activates the EC inflammatory phenotype in a manner dependent on integrin ⍺5β1 signaling. Incubation of human umbilical vein ECs with whole spike protein, its receptor-binding domain, or the integrin-binding tripeptide RGD induced the nuclear translocation of NF-κB and subsequent expression of leukocyte adhesion molecules (VCAM1 and ICAM1), coagulation factors (TF and FVIII), proinflammatory cytokines (TNFα, IL-1β, and IL-6), and ACE2, as well as the adhesion of peripheral blood leukocytes and hyperpermeability of the EC monolayer. In addition, inhibitors of integrin ⍺5β1 activation prevented these effects. Furthermore, these vascular effects occur in vivo, as revealed by the intravenous administration of spike, which increased expression of ICAM1, VCAM1, CD45, TNFα, IL-1β, and IL-6 in the lung, liver, kidney, and eye, and the intravitreal injection of spike, which disrupted the barrier function of retinal capillaries. We suggest that the spike protein, through its RGD motif in the receptor-binding domain, binds to integrin ⍺5β1 in ECs to activate the NF-κB target gene expression programs responsible for vascular leakage and leukocyte adhesion. These findings uncover a new direct action of SARS-CoV-2 on EC dysfunction and introduce integrin ⍺5β1 as a promising target for treating vascular inflammation in COVID-19.  相似文献   

18.
Chronic kidney disease (CKD) is characterized by the gradual loss of renal function and is a major public health concern. Risk factors for CKD include hypertension and proteinuria, both of which are associated with endoplasmic reticulum (ER) stress. ER stress-induced TDAG51 protein expression is increased at an early time point in mice with CKD. Based on these findings, wild-type and TDAG51 knock-out (TDKO) mice were used in an angiotensin II/deoxycorticosterone acetate/salt model of CKD. Both wild-type and TDKO mice developed hypertension, increased proteinuria and albuminuria, glomerular injury, and tubular damage. However, TDKO mice were protected from apoptosis and renal interstitial fibrosis. Human proximal tubular cells were used to demonstrate that TDAG51 expression induces apoptosis through a CHOP-dependent mechanism. Further, a mouse model of intrinsic acute kidney injury demonstrated that CHOP is required for ER stress-mediated apoptosis. Renal fibroblasts were used to demonstrate that TGF-β induces collagen production through an IRE1-dependent mechanism; cells treated with a TGF-β receptor 1 inhibitor prevented XBP1 splicing, a downstream consequence of IRE1 activation. Interestingly, TDKO mice express significantly less TGF-β receptor 1, thus, preventing TGF-β-mediated XBP1 splicing. In conclusion, TDAG51 induces apoptosis in the kidney through a CHOP-dependent mechanism, while contributing to renal interstitial fibrosis through a TGF-β-IRE1-XBP1 pathway.Subject terms: Endoplasmic reticulum, Apoptosis, End-stage renal disease, Preclinical research, Chronic inflammation  相似文献   

19.
In the early 1990s, it has been described that LTα and LTβ form LTα2β and LTαβ2 heterotrimers, which bind to TNFR1 and LTβR, respectively. Afterwards, the LTαβ2–LTβR system has been intensively studied while the LTα2β–TNFR1 interaction has been ignored to date, presumably due to the fact that at the time of identification of the LTα2β–TNFR1 interaction one knew already two ligands for TNFR1, namely TNF and LTα. Here, we show that LTα2β interacts not only with TNFR1 but also with TNFR2. We furthermore demonstrate that membrane-bound LTα2β (memLTα2β), despite its asymmetric structure, stimulates TNFR1 and TNFR2 signaling. Not surprising in view of its ability to interact with TNFR2, LTα2β is inhibited by Etanercept, which is approved for the treatment of rheumatoid arthritis and also inhibits TNF and LTα.Subject terms: Cytokines, Signal transduction  相似文献   

20.
Hepatocellular carcinoma (HCC) progression is closely related to pathological fibrosis, which involves heterotypic intercellular interactions (HIIs) between liver cancer cells and fibroblasts. Here, we studied them in a direct coculture model, and identified fibronectin from fibroblasts and integrin-α5β1 from liver cancer cells as the primary responsible molecules utilizing CRISPR/Cas9 gene-editing technology. Coculture led to the formation of 3D multilayer microstructures, and obvious fibronectin remodeling was caused by upregulated integrin-α5β1, which greatly promoted cell growth in 3D microstructures. Integrin-α5 was more sensitive and specific than integrin-β1 in this process. Subsequent mechanistic exploration revealed the activation of integrin-Src-FAK, AKT and ERK signaling pathways. Importantly, the growth-promoting effect of HIIs was verified in a xenograft tumor model, in which more blood vessels were observed in bigger tumors derived from the coculture group than that derived from monocultured groups. Hence, we conducted triculture by introducing human umbilical vein endothelial cells, which aligned to and differentiated along multilayer microstructures in an integrin-α5β1 dependent manner. Furthermore, fibronectin, integrin-α5, and integrin-β1 were upregulated in 52 HCC tumors, and fibronectin was related to microvascular invasion. Our findings identify fibronectin, integrin-α5, and integrin-β1 as tumor microenvironment-related targets and provide a basis for combination targeted therapeutic strategies for future HCC treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号