首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Optical, resonance Raman, and electron paramagnetic resonance spectroscopies have been used to characterize the ligands and spin state of the chloroplast cytochrome b-559. The protein was isolated from both maize and spinach in a low-potential form. The spectroscopic data indicate that the heme iron in both ferric and ferrous cytochrome b-559 is in its low-spin state and ligated in its fifth and sixth coordination positions by histidine nitrogens. Electron paramagnetic resonance data for the purified spinach cytochrome are in good agreement with those determined by Bergstr?m and V?nng?rd [Bergstr?m, J., & V?nng?rd, T. (1982) Biochim. Biophys. Acta 682, 452-456] for a low-potential membrane-bound form of cytochrome b-559. The g values of high-potential cytochrome b-559 are shifted from those of its low-potential forms; this shift is interpreted as arising from a deviation of the planes of the two axial histidine imidazole rings from a parallel orientation. The model is consistent with the physical data and may also account for the facility with which cytochrome b-559 can be converted between low- and high-potential forms. Recent biochemical and molecular biological data [Widger, W. R., Cramer, W. A., Hermodson, M., Meyer, D., & Gullifor, M. (1984) J. Biol. Chem. 259, 3870-3876; Herrmann, R. G., Alt, J., Schiller, D., Cramer, W. A., & Widger, W. R. (1984) FEBS Lett. 179, 239-244] have shown that two polypeptides, one with 83 residues and a second with 39 residues, most likely constitute the protein of the cytochrome.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
G S Tae  W A Cramer 《FEBS letters》1989,259(1):161-164
Removal of the extrinsic 33 kDa polypeptide increased the accessibility to trypsin of a COOH-terminal tridecapeptide epitope of the alpha subunit of cytochrome b-559 (psbE gene product). The sensitivity of the cytochrome epitope to trypsin was not measurably affected by removal of the 16 and 23 kDa extrinsic polypeptides, nor increased by removal of the OEC manganese along with the 33 kDa protein. While protecting alpha-cytochrome b-559 against trypsin, the 33 kDa protein is also proteolyzed, suggesting the possibility of an additional protein component involved in the shielding of the cytochrome. Shielding of the COOH-terminal epitope of alpha-cytochrome b-559 by the OEC 33 kDa protein implies that these COOH-terminal chains of the cytochrome are part of a protein network in the lumen space near the photosystem II reaction center. This network may contain residues that are involved in the binding of essential OEC metal ions.  相似文献   

3.
4.
A sumary of biochemical, biophysical, and molecular biological data is presented which led to the identification of two different polypeptides ( and , MW=9.16 and 4.27 kDa) in the cytochrome b-559 protein. The presence of a single His residue on each polypeptide, and the conclusion from spectroscopy that the heme coordination must be bis-histidine led to an obligatory requirement for coordination of a single heme through a heme cross-linked dimer. This structure does not have a precedent among soluble or membrane bound cytochromes. The possible participation of the cytochrome in the pathway of photoactivation is discussed.  相似文献   

5.
6.
In the presence of 0.1-5 muM N-methylphenazonium methosulphate approx. 50-70% oxidation of cytochrome b-559 can be induced by far-red light. The oxidation is best observed with long wavelength far-red light (732 nm) of moderate intensities (approx. 10(4) ergs/cm2 per s) and is reversed by subsequent illumination with red light. Concentrations of N-methylphenazonium methosulphate above 5 muM are inhibitory probably due to cyclic electron flow. The far-red oxidation is inhibited by low concentrations of the plastoquinone antagonist 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, while 3-(3,4-dichlorophenyl)-1,1-dimethylurea inhibits red light reduction and increases the amplitude of far-red oxidation. The effect of N-methylphenazonium methosulphate is mimicked by N-methyl-phenazonium ethosulphate, but not by pyocyanine or diaminodurene. Low concentrations (2-3 muM) of N-methylphenazonium methosulphate also stimulate a 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone-inhibitable red light reduction of cytochrome f.  相似文献   

7.
Light-induced redox changes of cytochrome b-559   总被引:2,自引:0,他引:2  
Dark incubation of spinach or pea chloroplasts with 10 μm carbonylcyanide m-chlorophenylhydrazone (CCCP) had a negligible effect either on the redox state or the redox potential of the high potential form of cytochrome b-559 (cytochrome b-559hp). A similar result was obtained with spinach chloroplasts on incubation with 3.3 μm carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP), but pea chloroplasts showed a decrease of 10–20% in the amount of reduced cytochrome b-559.Light-induced redox changes of cytochrome b-559 were not observed in untreated spinach chloroplasts. In the presence of CCP or FCCP, cytochrome b-559 was photooxidized both in 655 nm actinic light and in far-red light. Addition of the plastoquinone antagonist, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) to CCCP- or FCCP-treated chloroplasts had only a small effect on the photooxidation of cytochrome b-559 in 655 light, but it completely inhibited the oxidation in far-red light.Electron flow from water to 2,3′,6-trichlorophenolindophenol was partly inhibited by CCCP or FCCP, but the degree of inhibition does not appear to be sufficient to account for the photooxidation of cytochrome b-559.The photooxidation of cytochrome b-559 by 655 nm light at liquid nitrogen temperature was not influenced by prior treatment of the chloroplasts at room temperature with CCCP, DBMIB, or CCCP + DBMIB.The results cannot be explained by the presence of two independent pools of cytochrome b-559 in CCCP-treated chloroplasts, one photooxidized by Photosystem II and the other photooxidized by Photosystem I and photoreduced by Photosystem II.  相似文献   

8.
9.
Protease accessibility and antibody to a COOH-terminal peptide were used as probes for the in situ topography of the Mr 10,000 psbE gene product (alpha subunit) of the chloroplast cytochrome b-559. Exposure of thylakoid membranes to trypsin or Staphylococcus aureus V8 protease cleaved the alpha subunit to a slightly smaller polypeptide (delta Mr approximately -1000) as detected on Western blots, without loss of reactivity to COOH-terminal antibody. The disappearance of the parent Mr 10,000 polypeptide from thylakoids in the presence of trypsin correlated with the appearance of the smaller polypeptide with delta Mr = -750, the conversion having a half-time of approximately 15 min. Exposure of inside-out vesicles to trypsin resulted in almost complete loss of reactivity to the antibody, showing that the COOH terminus is exposed on the lumenal side of the membrane. Removal of the extrinsic polypeptides of the oxygen-evolving complex resulted in an increase of the accessibility of the alpha subunit to trypsin. These data establish that the alpha subunit of cytochrome b-559 crosses the membrane once, as predicted from its single, 26-residue, hydrophobic domain. The NH2 terminus of the alpha polypeptide is on the stromal side of the membrane, where it is accessible, most likely at Arg-7 or Glu-6/Asp-11, to trypsin or V8 protease, respectively. As a consequence of this orientation, the single histidine residue in the alpha subunit is located on the stromal side of the hydrophobic domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The psbF gene of chloroplast DNAs encodes the beta-subunit of cytochrome b-559 of the photosystem II reaction center. The psbF locus of Euglena gracilis chloroplast DNA has an unusual 1042 nt group II intron that appears to be formed from the insertion of one group II intron into structural domain V of a second group II intron. Using both direct primer extension cDNA sequencing and cDNA cloning and sequencing, we have determined that a 618 nt internal intron is first excised from the 1042 nt intron of psbF pre-mRNA, resulting in a partially spliced pre-mRNA containing a 424 nt group II intron with a spliced domain V. The 424 nt intron is then removed to yield the mature psbF mRNA. Therefore, the 1042 nt intron of psbF is a group II intron within another group II intron. We use the term 'twintron' to define this new type of genetic element. Intermediates in the splicing pathway were detected by northern hybridization. Splicing of both the internal and external introns occurs via lariat intermediates. Twintron splicing was found to proceed by a sequential pathway, the internal intron being removed prior to the excision of the external intron. A possible mechanism for twintron formation by intron transposition is discussed.  相似文献   

11.
Photosynthesis Research - Although there is an extensive literature on the properties and possible electron transfer pathways of cytochrome b-559, which is a prominent subunit of the multi-subunit...  相似文献   

12.
The enigmatic cytochrome b-559 of oxygenic photosynthesis   总被引:1,自引:0,他引:1  
The ubiquitous and obligatory association of cytochrome b -559 with the photosystem II reaction center of oxygenic photosynthesis is a conundrum since it seems not to have a function in the primary electron transport pathway of oxygen evolution. A model for the cytochrome structure that satisfies the cis -positive rule for membrane protein assembly consists of two short, non-identical hydrophobic membrane-spanning polypeptides (α and β), each containing a single histidine residue, as ligands for the bridging heme prosthetic group that is on the side of the membrane opposite to the water splitting apparatus. The ability of the heterodimer, but not the single α-subunit, to satisfy the cis -positive rule implies that the cytochrome inserts into the membrane as a heterodimer, with some evidence implicating it as the first membrane inserted unit of the assembling reaction center. The very positive redox potential of the cytochrome can be explained by a position for the heme in a hydrophobic niche near the stromal aqueous interface where it is also influenced by the large positive dipole potential of the parallel α-helices of the cytochrome. The requirement for the cytochrome in oxygenic photosynthesis may be a consequence of the presence of the strongly oxidizing reaction center needed for H2O-splitting. This may lead to the need, under conditions of stress or plastid development, for an alternate source of electrons when the H2O-splitting system is not operative as a source of reductant for the reaction center.  相似文献   

13.
14.
(1) The proportion of higher plant chloroplast cytochrome b-559 oxidizable during illumination by low intensity 732 nm light increases as the pH is decreased below 6.5. At pH 5.0-5.3 total oxidation is seen and subsequent red light can cause reduction of up to 2/3 of the oxidized cytochrome. The oxidation by far red light at pH 5 is inhibited by 2 muM 2,5-dibromo-3-methyl-6-isopropyl-rho-benzoquinone whereas the red light-induced reduction is inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. In this pH range ferricyanide-oxidized cytochrome b-559 exists in a form not reducible by ferrocyanide. (2) An increase in the amplitude of far-red induced oxidation also occurs at higher pH (up to pH 7.8) after pre-treatment of chloroplasts with substantially higher levels of light (approx. 10(6) ergs-cm-2-s-1). The degree of light activation is pH dependent, being more pronounced at lower pH. After light activation, cytochrome b-559 can be completely oxidized by far-red light in a manner reversible by red light up to pH values of 6, and the curve describing the amplitude of far-red oxidation as a function of pH is shifted by 0.5-1.0 pH unit toward higher pH. Far-red oxidation and red light reduction are again inhibited by 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone and 3-(3,4-dichlorophenyl)-1,1-dimethylurea, respectively. (3) Light activation at pH 5.2-6.0 is also manifested in a small decrease in the amplitude of subsequent dark ferrocyanide reduction, and this decrease is inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (10 muM). (4) The effect of intramembranal acidity on the effective redox potential of cytochrome b-559 and its function is discussed.  相似文献   

15.
Localization of low potential cytochrome b-559 in photosystem I   总被引:3,自引:0,他引:3  
  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号