首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High hydrostatic pressure enhanced the specific activity of regulatory enzymes of the Benson-Calvin cycle (fructose-1,6-bisphosphatase, glyceraldehyde-3-P dehydrogenase, phosphoribulokinase) which are modulated by the ferredoxin-thioredoxin system. High activity of chloroplast fructose-1,6-bisphosphatase required dithiothreitol, fructose 1,6-bisphosphate, and Ca2+. At 100 bar the A0.5 for fructose 1,6-bisphosphate (0.3 mM) was lower than that at 1 bar (1.5 mM), whereas similar variations of pressure did not alter the A0.5 for Ca2+ (55 microM). The response of chloroplast glyceraldehyde-3-P dehydrogenase exposed to 500 bar was a 4-fold increase in the NADP-linked activity; conversely, the NAD-dependent activity remained unchanged. The concerted action of high pressure and Pi (or ATP), both activators of chloroplast glyceraldehyde-3-P dehydrogenase, led to inactivation. On the other hand, the activity of phosphoribulokinase increased 10-fold when the enzyme was incubated at 1500 bar; the activation process was strictly dependent on the presence of dithiothreitol. At variance with these enzymes, bovine liver fructose-1,6-bisphosphatase, yeast glyceraldehyde-3-P dehydrogenase, and chloroplast ribulose 1,5-bisphosphate carboxylase, whose activities are not modulated by reduced thioredoxin, were inactivated by high pressure. The comparison of oligomeric enzymes revealed that the stimulation of specific activity by high pressure correlated with thioredoxin-mediated activation, and it did not depend on a particular subunit composition. Present results show that high pressure resembled thioredoxin, cosolvents, and chaotropic anions in its action on regulatory enzymes of the Benson-Calvin cycle. The comparison of physiological and non-physiological modulators suggested that thioredoxin-mediated modifications of noncovalent interactions is an important event in light-dependent regulation of chloroplast enzymes.  相似文献   

2.
NADP-glyceraldehyde-3-P dehydrogenase of spinach (Spinacia oleracea) chloroplasts was activated by thioredoxin that was reduced either photochemically with ferredoxin and ferredoxin-thioredoxin reductase or chemically with dithiothreitol. The activation process that was observed with the soluble protein fraction from chloroplasts and with the purified regulatory form of the enzyme was slow relative to the rate of catalysis. The NAD-linked glyceraldehyde-3-P dehydrogenase activity that is also present in chloroplasts and in the purified enzyme preparation was not affected by reduced thioredoxin.

When activated by dithiothreitol-reduced thioredoxin, the regulatory form of NADP-glyceraldehyde-3-P dehydrogenase was partly deactivated by oxidized glutathione. The enzyme activated by photochemically reduced thioredoxin was not appreciably affected by oxidized glutathione. The results suggest that although it resembles other regulatory enzymes in its requirements for light-dependent activation by the ferredoxin/thioredoxin system, NADP-glyceraldehyde-3-P dehydrogenase differs in its mode of deactivation and in its capacity for activation by enzyme effectors independently of thioredoxin.

  相似文献   

3.
A two-stage assay was used to study the effect of organic solvents on the activation of and the catalysis by chloroplast fructose-1,6-bisphosphatase. Irrespective of chemical structure, all the organic solvents tested had a dual effect on the enzyme. In the activation they stimulated and inhibited at low and high concentrations, respectively, in a process that required dithiothreitol, fructose 1,6-bisphosphate, and Ca2+. Conversely, organic solvents inhibited catalysis. The enhancement in fructose-1,6-bisphosphatase activity did not arise from a change in the molecular weight of the enzyme and correlated positively with the hydrophobic character of the organic solvent. In the presence of 2-propanol, all the activation constants for modulators (fructose 1,6-bisphosphate, a2+, thioredoxin-f) were lower than in a strictly aqueous medium. Monothiols were also functional in the activation of chloroplast fructose-1,6-bisphosphatase, although they were less effective than dithiols. Sulfhydryl compounds decreased the concentration of fructose 1,6-bisphosphate required for the activation of the enzyme, and 2-propanol lowered this requirement further. Arrhenius plots were nonlinear for the enzyme activation and linear for the hydrolytic step. The anomalous temperature dependence of the chloroplast fructose-1,6-bisphosphatase activation was indicative of a cooperative process. The data obtained in this study indicate that the concerted activation of chloroplast fructose-1,6-bisphosphatase is favored in a medium less polar than water.  相似文献   

4.
Light activation of NADP-linked glyceraldehyde-3-P dehydrogenase involves reductive cleavage of a disulfide bond. We have proposed that the inactivating disulfide locks the two domains of the enzyme, preventing catalysis, and we have tentatively identified the two critical cysteine residues in the chloroplast enzyme (D. Li, F.J. Stevens, M. Schiffer and L.E. Anderson (1994) Biophys J. 67: 29–35). We reasoned that if activation of this enzyme involves these cysteines that enzymes lacking one or both should be active in the dark and insensitive to reductants. One of these cysteines is present in the enzymes from Anabaena variabilis and Synechocystis PCC 6803 but the other is not. Consistent with the proposed mechanism, glyceraldehyde-3-P dehydrogenase is not affected by DTT-treatment in extracts of either of these cyanobacteria. Fructosebisphosphatase is DTT-activated in extracts of both of these cyanobacteria and glucose-6-P dehydrogenase is inactivated in Synechocystis, as in higher plant chloroplasts. Apparently reductive modulation is possible in these cyanobacteria but glyceraldehyde-3-P dehydrogenase is not light activated.  相似文献   

5.
Pea (Pisum sativum) chloroplastic glyceraldehyde-3-P dehydrogenase (EC 1.2.1.13) was tested for uracil DNA glycosylase activity. It was found that both the chloroplast and the recombinant subunit B dehydrogenases remove uracil from poly(dA[3H]dU). The glycosylase activity of the recombinant subunit B enzyme and that of a truncated form corresponding in length to subunit A were associated with the dehydrogenase activity in gel-filtration experiments. Both activities of the chloroplast enzyme were inhibited by antisera raised against recombinant subunit B, and both activities of the recombinant subunit B enzyme were inhibited by antisera raised against pea chloroplast glyceraldehyde-3-P dehydrogenase. Antisera raised against Escherichia coli uracil glycosylase did not affect the glycosylase activity of the recombinant subunit B enzyme. The glycosylase pH activity profile of the chloroplast dehydrogenase was unique. It is distinct from the dehydrogenase pH activity profile and from the pH activity profiles of other plant glycosylases. The glycosylase activity, but not the dehydrogenase activity, of the recombinant subunit B enzyme was inhibited by uracil. Pyridine nucleotides stimulated the glycosylase activity. To our knowledge this is the first example of a nonhuman glyceraldehyde-3-P dehydrogenase, and of an NADP-dependent glyceraldehyde-3-P dehydrogenase, that exhibits uracil glycosylase activity.  相似文献   

6.
The mutation of a nuclear gene in peanut (Arachis hypogaea L.) plants results in a reduced light-dependent development of chloroplast fine structure, soluble protein, ribulose-1, 5-diP carboxylase, NADP-glyceraldehyde-3-P dehydrogenase, fructose-1, 6-diP aldolase, glycerate-3-P kinase, phosphoenolpyruvate carboxylase, malate dehydrogenase, and dark respiration during the 72-hour lag period of chlorophyll synthesis in dark-grown leaves exposed to continuous light. The mutation has pleiotropic affects. Kinetic analysis shows there is also a 72-hour lag period in the light-dependent development of NADP-glyceraldehyde-3-P dehydrogenase and fructose-1, 6-diP aldolase in the mutant leaves, whereas there is no lag in the development of NAD-malate dehydrogenase and dark respiration. There is minimal development of the chloroplast during the 72-hour mutationally induced lag period, but there is pronounced cytoplasmic and mitochondrial activity during this phase. There is a 24-hour lag period in the light-dependent enlargement of the mutant leaves. At the completion of leaf enlargement, chloroplast differentiation is initiated. The mutation does not result in any chloroplast deletions, it only affects the timing of the synthesis of these components.  相似文献   

7.
Two high-Mr forms of chloroplast glyceraldehyde-3-phosphate dehydrogenase from spinach leaf can be separated by DEAE-cellulose chromatography. One form, the high-Mr glyceraldehyde-3-phosphate dehydrogenase, resembles an enzyme previously described [Yonuschot, G.R., Ortwerth, B.J. & Koeppe, O.J. (1970) J. Biol. Chem. 245, 4193-4198]. The other, a glyceraldehyde-3-phosphate dehydrogenase/phosphoribulokinase complex, is characterised by possession of latent phosphoribulokinase activity, only expressed following incubation with dithiothreitol. This complex is composed not only of subunits A (39.5 kDa) and B (41.5 kDa) characteristic of the high-Mr glyceraldehyde-3-phosphate dehydrogenase, but also of a third subunit, R (40.5 kDa) comigrating with that from the active phosphoribulokinase of spinach. Incubation of the complex with dithiothreitol markedly stimulated both its phosphoribulokinase and NADPH-dependent dehydrogenase activities. This dithiothreitol-induced activation was accompanied by depolymerisation to give two predominantly NADPH-linked tetrameric glyceraldehyde-3-phosphate dehydrogenases (the homotetramer, A4, and the heterotetramer, A2B2) as well as the active dimeric phosphoribulokinase. Incubation of the high-Mr glyceraldehyde-3-phosphate dehydrogenase with dithiothreitol promoted complete depolymerisation yielding only the heterotetramer (A2B2). Possible structures suggested for the glyceraldehyde-3-phosphate dehydrogenase/phosphoribulokinase complex are (A2B2)2A4R2 or (A2B2)(A4)2R2.  相似文献   

8.
The light-regulated chloroplast enzyme phosphoribulokinase (EC 2.7.1. 19) exists in two forms. In darkness this enzyme is present in an oxidized form, which is inactive. It is activated in the light by a thioredoxin-mediated reduction. In extracts from young wheat leaves (Triticum aeestivum L.) phosphoribulokinase as well as some other thioredoxin-modulated enzymes can be activated by the artificial reductant dithiothreitol (DTT). The influence of the activation status and of the substrate ATP on phosphoribulokinase stability was investigated in the presence of endogenous endopeptidases from senescing wheat leaves. Similar experiments were performed with purified phosphoribulokinase from spinach in the presence of exogenous, purified endopeptidases (chymotrypsin and trypsin). Phosphoribulokinase stability was analysed by immunoblotting and activity measurements. Both systems led to similar conclusions. DTT (reductant and ATP (substrate) stabilized phosphoribulokinase in wheat leaf extracts as well as partially purified phosphoribulokinase from spinach. The combination of both effectors was far more protective than either effector alone. DTT had hardly any effect on the degradation of thioredoxin-independent chloroplast enzymes such as glutamate synthase and glutamine synthetase. These results suggest that the activation status and substrate concentrations are not only important for the activity of phosphoribulokinase, but are also relevant for the susceptibility of this enzyme to proteolysis.  相似文献   

9.
A homogeneous multimeric protein isolated from the green alga, Scenedesmus obliquus, has both latent phosphoribulokinase activity and glyceraldehyde-3-phosphate dehydrogenase activity. The glyceraldehyde-3-phosphate dehydrogenase was active with both NADPH and NADH, but predominantly with NADH. Incubation with 20 mM dithiothreitol and 1 mM NADPH promoted the coactivation of phosphoribulokinase and NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase, accompanied by a decrease in the glyceraldehyde-3-phosphate dehydrogenase activity linked to NADH. The multimeric enzyme had a Mr of 560,000 and was of apparent subunit composition 8G6R. R represents a subunit of Mr 42,000 conferring phosphoribulokinase activity and G a subunit of 39,000 responsible for the glyceraldehyde-3-phosphate dehydrogenase activity. On SDS-PAGE the Mr-42,000 subunit comigrates with the subunit of the active form of phosphoribulokinase whereas that of Mr-39,000 corresponds to that of NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase. The multimeric enzyme had a S20,W of 14.2 S. Following activation with dithiothreitol and NADPH, sedimenting boundaries of 7.4 S and 4.4 S were formed due to the depolymerization of the multimeric protein to NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (4G) and active phosphoribulokinase (2R). It has been possible to isolate these two enzymes from the activated preparation by DEAE-cellulose chromatography. Prolonged activation of the multimeric protein by dithiothreitol in the absence of nucleotide produced a single sedimenting boundary of 4.6 S, representing a mixture of the active form of phosphoribulokinase and an inactive dimeric form of glyceraldehyde-3-phosphate dehydrogenase. Algal thioredoxin, in the presence of 1 mM dithiothreitol and 1 mM NADPH, stimulated the depolymerization of the multimeric protein with resulting coactivation of phosphoribulokinase and NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase. Light-induced depolymerization of the multimeric protein, mediated by reduced thioredoxin, is postulated as the mechanism of light activation in vivo. Consistent with such a postulate is the presence of high concentrations of the active forms of phosphoribulokinase and NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase in extracts from photoheterotrophically grown algae. By contrast, in extracts from the dark-grown algae the multimeric enzyme predominates.  相似文献   

10.
11.
The rates of transesterification reactions catalyzed by the protease subtilisin Carlsberg suspended in various anhydrous solvents at 30 degrees C can be increased more than 100-fold by the addition of denaturing organic cosolvents (dimethyl sulfoxide or formamide); in water, the same cosolvents exert no enzyme activation. At 4 degrees C, the activation effect on the lyophilized protease is even higher, reaching 1000-fold. Marked enhancement of enzymatic activity in anhydrous solvents by formamide is also observed for two other enzymes, alpha-chymotrypsin and Rhizomucor miehei lipase, and is manifested in two transesterification reactions. In addition to lyophilized subtilisin, crosslinked crystals of subtilisin are also amenable to the dramatic activation by the denaturing cosolvents. In contrast, subtilisin solubilized in anhydrous media by covalent modification with poly(ethylene glycol) exhibits only modest activation. These observations are rationalized in terms of a mechanistic hypothesis based on an enhanced protein flexibility in anhydrous millieu brought about by the denaturing organic cosolvents. The latter exert their lubricating effect largely at the interfaces between enzyme molecules in a solid preparation, thus easing the flexibility constraints imposed by protein-protein contacts. (c) 1996 John Wiley & Sons, Inc.  相似文献   

12.
Hutchison RS  Groom Q  Ort DR 《Biochemistry》2000,39(22):6679-6688
Photosynthesis in plant species that are evolutionarily adapted for growth in warm climates is highly sensitive to illumination under cool conditions. Although it is well documented that illumination of these sensitive species under cool conditions results in the photosynthetic production of reactive oxygen molecules, the underlying mechanism for the inhibition of photosynthesis remains uncertain. Determinations of chloroplast fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase activity showed that the light-dependent, reductive activation of these key carbon reduction cycle enzymes was substantially inhibited in tomato (Lycopersicon esculentum) following illumination at 4 degrees C. However, other chloroplast enzymes also dependent on thioredoxin-mediated reductive activation were largely unaffected. We performed equilibrium redox titrations to investigate the thermodynamics of the thiol/disulfide exchange between thioredoxin f and the regulatory sulfhydryl groups of fructose-1,6-bisphosphatase, sedoheptulose-1,7-bisphosphatase, phosphoribulokinase, NADP-glyceraldehyde phosphate dehydrogenase, and the chloroplast ATPsynthase. We determined that the redox midpoint potentials for the regulatory sulfhydryl groups of the various enzymes spanned a broad range ( approximately 50 mV at pH 7. 9). The electron-sharing equilibria among thioredoxin f and its target enzymes largely explained the differential effects of photooxidation induced at low temperature on thioredoxin-mediated activation of chloroplast enzymes in tomato. These results not only provide a plausible mechanism for the low-temperature-induced inhibition of photosynthesis in this important group of plants, but also provide a quantitative basis to evaluate the influence of thioredoxin/target enzyme electron-sharing equilibria on the differential activation and deactivation kinetics of thioredoxin-regulated chloroplast enzymes.  相似文献   

13.
Light-dependent reduction of cystine disulfide bonds results in activation of several of the enzymes of photosynthetic carbon metabolism within the chloroplast. We have modeled the tertiary structure of four of these light-activated enzymes, namely NADP-linked malate dehydrogenase, glyceraldehyde-3-P dehydrogenase, fructosebisphosphatase, and sedoheptulosebisphosphatase, and identified cysteines in each enzyme that be expected to form inactivating disulfide bonds (Li, D., F. J. Stevens, M. Schiffer, and L. E. Anderson, 1994. Biophys. J. 67:29-35). We have now converted two residues in the Escherichia coli NAD-linked malate dehydrogenase to cysteines and produced a redox-sensitive enzyme. Oxidation of domain-locking cysteine residues in the mutant enzyme clearly mimics dark inactivation of the redox-sensitive chloroplast dehydrogenase. This result is completely consistent with our proposed mechanism.  相似文献   

14.
NAD+-dependent and NADP+-dependent glyceraldehyde-3-phosphate (G-3-P) dehydrogenases were isolated from Euglena gracilis and characterized as to their physical and chemical parameters. NAD+-G-3-P dehydrogenase was found to have a strong resemblance to similar enzymes from muscle tissue. It has a molecular weight of about 140,000, four subunits of identical size and charge, and a single species of NH2-terminal amino acid. Two sulfhydryl groups per subunit are present, one of which is directly involved in the catalytic activity and is rapidly titratable. The enzyme also exhibits the “half the sites reactivity” of sulfhydryl groups as defined by O. P. Malhotra and S. A. Bernhard ((1968) J. Biol. Chem. 243, 1243). The pH and temperature optima are also similar to those of the enzymes from muscle tissue, as are the reaction kinetics and the strict specificity for NAD+.NADP+-dependent G-3-P dehydrogenase is different in many respects. Its molecular weight is slightly lower (~136,000) than that of the NAD+ enzyme, though it also consists of four subunits. It has a higher affinity for the reverse reaction substrates, in line with its probable function in vivo in CO2 fixation. There is only one sulfhydryl group per subunit, and that is not involved in activity, suggesting a difference in reaction mechanisms between the two enzymes. The NADP+-dependent enzyme exhibits activation by ATP, whereas the NAD+-dependent enzyme is competitively inhibited by this nucleotide.The greatest difference observed is in the physical characteristics of the enzymes. NADP+-G-3-P dehydrogenase was highly hydrophobic. Its solubility in a 10% aqueous solution of p-dioxane was approximately four to five times that of the NAD+-enzyme. Isolation of the enzyme was accomplished by fractionation in 1,2-dimethoxyethane, which also stabilized the enzymatic activity, as did aqueous p-dioxane. The high axial ratio of the NADP+-enzyme (~9) coupled with its very low degree of hydration as well as the high degree of amidation of the dicarboxylic amino acids (>90%) indicates that the exterior of the enzyme molecule is probably hydrophobic in nature. This is in agreement with its in vivo hydrophobic environment in the chloroplast membrane and explains the lability of the enzyme once extracted into an aqueous environment as well as its stabilization in solvents.  相似文献   

15.
The activation states of a number of chloroplastic enzymes of the photosynthetic carbon reduction cycle and levels of related metabolites were measured in leaves of sugar beet (Beta vulgaris L., Klein E-type multigerm) under slowly changing irradiance during a day. The activation states of both phosphoribulokinase and NADP+-glyceraldehyde-3-phosphate dehydrogenase increased early in the light period and remained constant during the middle of the day. Initial ribulose 1,5-bisphosphate carboxylase activity was already about one third of the midday level, did not change for the first 2 hours, but then increased in parallel with the rate of carbon fixation. Because the activation states increased by turns, first phosphoribulokinase and NADP+-glyceraldehyde-3-phosphate dehydrogenase and later ribulose 1,5-bisphosphate carboxylase, the ratios of the activation states changed remarkably. Levels of ribulose bisphosphate and phosphoglycerate, which were high enough to affect enzyme reaction rates and changed in concert with activation state, indicate that these metabolites are involved in feedback/feedforward regulation of enzymes of carbon assimilation. This regulatory sequence is able to explain how the reaction rates for the enzymes of carbon assimilation are adjusted to maintain their activities in balance with each other and with the flux of carbon fixation.  相似文献   

16.
1. The pH optimum of CO2-dependent O2 evolution by barley (Hordeum vulgare L.) chloroplasts was found to be between 7.8 and 8.2. The addition of 1 mM MgCl2 in the dark inhibited O2 evolution over the entire pH range tested and resulted in a much sharper pH profile centered around pH 8.2. 2. The pH optimum for O2 evolution, in the presence and absence of 1 mM MgCl2, was acid-shifted 0.3--0.4 pH units by 2 mM NH4Cl. The pH optimum of O2 evolution, with and without 1 mM MgCl2, was base-shifted by 2 mM sodium acetate, approx. 0.5 pH units relative to the controls. 3. O2 evolution in the presence of bicarbonate plus 3-phosphoglycerate or ribose-5-phosphate was considerably less sensitive to pH than CO2-dependent O2 evolution in the absence of substrate. With these substrates, both in the presence and absence of 1 mM MgCl2, the pH optimum was broad and was centered around pH 7.8. 4. Inhibition of CO2-dependent O2 evolution by inorganic phosphate and magnesium increased as the pH of the reaction mixture was decreased below the optimum. Decreasing the pH from 8.2 to 7.6, reduced over 3-fold the concentration of inorganic phosphate required to inhibit O2 evolution completely. For magnesium, a similar change in pH reduced the concentration required to inhibit O2 evolution 50% approx. 5-fold. At pH 8.2, magnesium inhibition required inorganic phosphate. Magnesium was not required for inhibition of O2 evolution by inorganic phosphate, but incresaed the relative inhibition observed. 5. Illumination of intact barley chloroplasts increased the activity of NADP-glyceraldehyde-3-P dehydrogenase, phosphoribulokinase and fructose-1,6-diphosphatase. MgCl2 and inorganic phosphate prevented this increase in enzyme activity at concentrations that completely inhibited CO2-dependent O2 evolution. 6. The results obtained suggest that magnesium inhibition of O2 evolution may be caused by enhanced phosphate exchange across the chloroplast envelope.  相似文献   

17.
A newly found form of chloroplast phosphoribulokinase (designated the “regulatory form”) required reduced thioredoxin for activity. A second form of the enzyme (the “nonregulatory form”) was not appreciably affected by thioredoxin. The thioredoxin required for activation of the regulatory enzyme could be reduced (i) photochemically by chloroplast membranes that were supplemented with ferredoxin and ferredoxin-thioredoxin reductase or (ii) chemically in the dark with the sulfhydryl reagent dithiothreitol. Following activation by reduced thioredoxin, phosphoribulokinase was deactivated by the soluble chloroplast oxidants dehydroascorbate and oxidized glutathione. The results suggest that the regulatory form of phosphoribulokinase resembles fructose 1,6-bisphosphatase in its mode of regulation by the ferredoxin/thioredoxin system.  相似文献   

18.
Enzymes usually undergo rapid inactivation in the presence of organic media. In some cases, the mechanism is quite simple. For example, when an enzyme, fully dispersed and immobilized inside porous supports, is inactivated, at neutral pH and moderate temperature, in the presence of medium-high concentrations of water-miscible organic cosolvents, the unique cause of inactivation is the interaction of the enzyme with cosolvent molecules and the only inactivating effect is the promotion of conformational changes on enzyme structure.

On this basis, two distinct strategies for stabilization of enzymes against organic solvents are proposed:

a. reduction of the causes of inactivation: generation of hyper-hydrophilic micro-environments having a very open structure and fully surrounding every enzyme molecule;

b. reduction of the effects of inactivation: “rigidification of enzymes” via multipoint covalent immobilization.

By using penicillin G acylase (PGA) as a model enzyme, both strategies have been evaluated and compared. Both stabilizing strategies had significant effects. In this case, hydrophilization of the enzyme nano-environment was found to be more effective than rigidification of the enzyme via multipoint covalent attachment. The combined effect of both stabilizing strategies was also tested: multipoint covalently immobilized enzyme molecules were completely surrounded by hyper-hydrophilic microenvironments. In this way, native PGA that was unstable against organic cosolvents (completely inactivated in less than 3 min in 95% dioxane) was transformed into a very stable immobilized derivative (preserving more than 80% of activity after 40 days under the same conditions).  相似文献   

19.
The patterns of light activation of 4 chloroplastic enzymes were examined in mesophyll protoplasts of pea ( Pisum sativum ) in the absence or presence of oligomycin (inhibitor of oxidative phosphorylation) or antimycin A (inhibitor of cytochrome pathway) or salicylhydroxamic acid (SHAM, inhibitor of alternative pathway). The results were compared with those of DCMU (inhibitor of photosynthetic electron transport). The light activation of NADP glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPDH), fructose-1,6-bisphosphatase (FBPase), phosphoribulokinase (PRK) (enzymes of the Calvin cycle) and NADP malate dehydrogenase (NADP-MDH) (reflects chloroplast redox state) was more pronounced at limiting CO2 (0.1 m M NaHCO3) than that at optimal CO2 (1.0 m M NaHCO3). SHAM decreased markedly (up to 33%) the light activation of all 4 enzymes, while antimycin A or oligomycin exerted only a limited effect (<10% decrease). Antimycin A or oligomycin or SHAM had no significant effect on light activation of these 4 enzymes in isolated chloroplasts. However, DCMU caused a remarkable decrease in light activation of enzymes in both protoplasts (up to 78%) and chloroplasts (up to 69%). These results suggest that the restriction of alternative pathway of mitochondrial metabolism results in a marked decrease in the light activation of key chloroplastic enzymes in mesophyll protoplasts but not in isolated chloroplasts. Such a decrease in the light activation of enzymes could be also a secondary feedback effect because of the restriction on carbon assimilation.  相似文献   

20.
Summary Homologous probes for the wheat coding sequences of the enzymes phosphoribulokinase, phosphoglycerate kinase (both chloroplast and cytosolic forms), chloroplast fructose-1,6-bisphosphatase and the small subunit of ribulose-1,5-bisphosphate carboxylase were used to determine the copy number and chromosomal location of the genes encoding these enzymes by restriction fragment length polymorphism analysis. Heterologous probes were similarly used to characterize the genes for the enzymes glyceraldehyde phosphate dehydrogenase (both chloroplast and cytosolic forms), phosphoenolpyruvate carboxylase and pyruvate, orthophosphate dikinase. Several of the genes are present in single copies per haploid genome, and the different enzymes are encoded by loci dispersed on different chromosomes. The significance of these findings is discussed in relation to gene expression and control of copy number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号