共查询到20条相似文献,搜索用时 0 毫秒
1.
Multiplicity of mitochondrial proteinases in yeast 总被引:2,自引:0,他引:2
2.
Pieter Spincemaille Nabil Matmati Yusuf A. Hannun Bruno P.A. Cammue Karin Thevissen 《Biochimica et Biophysica Acta (BBA)/General Subjects》2014
Background
Sphingolipids (SLs) are not only key components of cellular membranes, but also play an important role as signaling molecules in orchestrating both cell growth and apoptosis. In Saccharomyces cerevisiae, three complex SLs are present and hydrolysis of either of these species is catalyzed by the inositol phosphosphingolipid phospholipase C (Isc1p). Strikingly, mutants deficient in Isc1p display several hallmarks of mitochondrial dysfunction such as the inability to grow on a non-fermentative carbon course, increased oxidative stress and aberrant mitochondrial morphology.Scope of review
In this review, we focus on the pivotal role of Isc1p in regulating mitochondrial function via SL metabolism, and on Sch9p as a central signal transducer. Sch9p is one of the main effectors of the target of rapamycin complex 1 (TORC1), which is regarded as a crucial signaling axis for the regulation of Isc1p-mediated events. Finally, we describe the retrograde response, a signaling event originating from mitochondria to the nucleus, which results in the induction of nuclear target genes. Intriguingly, the retrograde response also interacts with SL homeostasis.Major conclusions
All of the above suggests a pivotal signaling role for SLs in maintaining correct mitochondrial function in budding yeast.General significance
Studies with budding yeast provide insight on SL signaling events that affect mitochondrial function. 相似文献3.
H Koshinsky S Honour G Khachatourians 《Biochemical and biophysical research communications》1988,151(2):809-814
T-2 toxin inhibits oxygen consumption of whole cells and purified mitochondria of Saccharomyces cerevisiae. Inhibition of mitochondrial respiration is not relieved by 2, 4-dinitrophenol, indicating that T-2 toxin inhibits mitochondrial function at the level of the electron transport chain. T-2 toxin inhibition of state 3 respiration (with succinate) is overcome by N, N, N', N'-tetramethyl-p-phenylenediamine, indicating inhibition of site II of the electron transport chain. T-2 toxin inhibits mitochondrial succinate dehydrogenase activity and increases mitochondrial NADH dehydrogenase activity. 相似文献
4.
5.
6.
Certain yeast strains secrete a protein toxin, which inhibits the growth of sensitive pathogens and yeasts. Studies have shown that production of the toxin is dependent on presence of linear, double-stranded DNA plasmids in the killer yeasts. In the yeast Pichia pastoris, two linear double-stranded DNA plasmids have been identified. In the present study, the search for toxin-producing capability in P. pastoris has been conducted. No killer activity could be detected when 14 different indicator strains were tested. 相似文献
7.
LENNEY JF 《The Journal of biological chemistry》1956,221(2):919-930
8.
Stephen F. Cottrell 《Biochemical and biophysical research communications》1981,98(4):1091-1096
The relative concentration of mitochondrial DNA in the yeast, has been examined under a variety of different growth conditions by means of an isotope dilution procedure which is shown to yield accurate estimates of mitochondrial DNA content in small samples of this yeast. Under a derepression scheme in which only limited cell proliferation occurs, mitochondrial DNA exhibited nearly a doubling in relative amount. The concentration of mitochondrial DNA was also observed to fluctuate depending upon the strain, growth phase and carbon source included in the growth media. Our results indicate that the relative proportion of mitochondrial DNA does indeed vary according to a variety of different conditions that the cells are subjected to. 相似文献
9.
10.
Saccharomyces cerevisiae pell and crd1 mutants deficient in the biosynthesis of mitochondrial phosphatidylglycerol (PG) and cardiolipin (CL) as well as Kluyveromyces lactis mutants impaired in the respiratory chain function (RCF) containing dysfunctional mitochondria show altered sensitivity to metabolic inhibitors. The S. cerevisiae pell mutant displayed increased sensitivity to cycloheximide, chloramphenicol, oligomycin and the cell-wall perturbing agents caffeine, caspofungin and hygromycin. On the other hand, the pel1 mutant was less sensitive to fluconazole, similarly as the K. lactis mutants impaired in the function of mitochondrial cytochromes. Mitochondrial dysfunction resulting either from the absence of PG and CL or impairment of the RCF presumably renders the cells more resistant to fluconazole. The increased tolerance of K. lactis respiratory chain mutants to amphotericin B, caffeine and hygromycin is probably related to a modification of the cell wall. 相似文献
11.
A search for maturating peptidases of the precursor protein of the mating hormone (pheromone) alpha-factor of Saccharomyces cerevisiae was performed using short model peptides representing those sequences of the precursor protein, where cleavage is thought to occur in vivo. This search was done in a mutant lacking several of the unspecific vacuolar peptidases. The chromogenic peptide Cbz-Tyr-Lys-Arg-4-nitroanilide led to the detection of a membrane-bound enzyme called proteinase yscF. Cleavage of the synthetic peptide derivative occurs after the basic amino acid pair, a proposed signal for hormone processing. Optimum pH for the reaction is 7.2. The enzyme does not cleave after single basic amino acid residues indicating that it is distinct from trypsin-like proteinases. Proteolytic activity is enhanced by Triton X-100. The enzyme is strongly inhibited by EGTA, EDTA and mercurials but insensitive to phenylmethylsulfonyl fluoride. The enzyme activity is strongly dependent on Ca2+ ions. In a mutant (kex2), which accumulates an over-glycosylated alpha-factor precursor, no proteinase yscF activity can be found. Membrane-bound peptidase activity possibly involved in removal of the arginyl and lysyl residues remaining at the carboxy terminus of the alpha-factor pheromone peptide after the initial cut of the precursor molecule could be identified by using the model peptides Cbz-Tyr-Lys-Arg and Cbz-Tyr-Lys. 相似文献
12.
Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae
下载免费PDF全文

Thioredoxins are small, highly conserved oxidoreductases which are required to maintain the redox homeostasis of the cell. Saccharomyces cerevisiae contains a cytoplasmic thioredoxin system (TRX1, TRX2, and TRR1) as well as a complete mitochondrial thioredoxin system, comprising a thioredoxin (TRX3) and a thioredoxin reductase (TRR2). In the present study we have analyzed the functional overlap between the two systems. By constructing mutant strains with deletions of both the mitochondrial and cytoplasmic systems (trr1 trr2 and trx1 trx2 trx3), we show that cells can survive in the absence of both systems. Analysis of the redox state of the cytoplasmic thioredoxins reveals that they are maintained independently of the mitochondrial system. Similarly, analysis of the redox state of Trx3 reveals that it is maintained in the reduced form in wild-type cells and in mutants lacking components of the cytoplasmic thioredoxin system (trx1 trx2 or trr1). Surprisingly, the redox state of Trx3 is also unaffected by the loss of the mitochondrial thioredoxin reductase (trr2) and is largely maintained in the reduced form unless cells are exposed to an oxidative stress. Since glutathione reductase (Glr1) has been shown to colocalize to the cytoplasm and mitochondria, we examined whether loss of GLR1 influences the redox state of Trx3. During normal growth conditions, deletion of TRR2 and GLR1 was found to result in partial oxidation of Trx3, indicating that both Trr2 and Glr1 are required to maintain the redox state of Trx3. The oxidation of Trx3 in this double mutant is even more pronounced during oxidative stress or respiratory growth conditions. Taken together, these data indicate that Glr1 and Trr2 have an overlapping function in the mitochondria. 相似文献
13.
The role of mitochondria in the oxygen induction of a number of catabolic and mitochondrial enzymes (citrate synthase, NAD- and NADP-isocitrate dehydrogenases, oxoglutarate dehydrogenase, NAD-glutamate dehydrogenase) has been investigated in anaerobic yeast grown under different conditions. The patterns of variation of enzyme activity with oxygen and lipid content of the mitochondria and with antibiotics suggest that more than one control is operating. The inhibition produced by cycloheximide, which blocks protein translation, suggests that induction involves de novo protein synthesis, except for an initial 2-h induction of citrate synthase, which is insensitive to all antibiotics tested. Ethidium bromide prevents enzyme induction in lipid-depleted anaerobic yeast. Induction follows normal kinetics in lipid-supplemented cultures despite the ethidium bromide block in the development of respiratory ability. Enzyme induction is inhibited by chloramphenicol in both lipid-depleted and lipid-supplemented anaerobic yeast. On the basis of four results it can be postulated that the mitochondrial genome is involved in controlling the induction of enzymes synthesized on cytoplasmic ribosomes. This control might be exerted by a specific, mitochondrial product or might be the result of modulation by a secondary product of mitochondrial function. 相似文献
14.
15.
16.
Search for mitochondrial DNA sequences in chick nuclear DNA 总被引:1,自引:0,他引:1
17.
Genetic analysis of regulatory mutants affecting synthesis of extracellular proteinases in the yeast Yarrowia lipolytica: identification of a RIM101/pacC homolog. 总被引:2,自引:0,他引:2
下载免费PDF全文

M Lambert S Blanchin-Roland F Le Louedec A Lepingle C Gaillardin 《Molecular and cellular biology》1997,17(7):3966-3976
18.
Among numerous regulatory peptide (RP) it is possible to presumably indicate the relict, evolutionary ancient RP. They combine three features: formation from non-specialized proteins-precursors, a comparatively high resistance to action of proteases in the organism media, and maximal simplicity of their structure. The examples of them are glyprolines--a recently identified RP family, as well as tuftsin. Several other praline-containing RP in terminal sites also seem to belong to the evolutionary ancient RP. The proposed approach to studies on the RP evolution is additional to those used traditionally in this problem. 相似文献
19.
20.
Search for mitochondrial DNA sequences in chick nuclear DNA 总被引:1,自引:0,他引:1