首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NADPH-cytochrome P-450 reductases from pig liver and kidney and rabbit liver microsomes were purified to a specific activity of 50–62 μmol cytochrome c reduced/min/mg. All reductase preparations were separated into one major and one minor fraction on Sephadex G-200 columns. The molecular weights of the major fractions of the reductases were estimated to be 74,000, 75,000, and 75,500 for rabbit liver, pig kidney, and liver reductases, respectively, whereas the molecular weight of the minor fractions of these reductases, 67,000, was the same as that of the steapsin-solubilized pig liver reductase on SDS-polyacrylamide gel electrophoresis. Km values for NADPH and cytochrome c were: 20 and 29 μm or 14 and 28 μm for the pig kidney or liver reductase, respectively. Immunochemical studies, including Ouchterlony double diffusion experiments and inhibition of benzphetamine N-demethylation activity in microsomes by antibody against pig liver NADPH-cytochrome P-450 reductase, indicated the similarity of the purified liver and kidney reductases. There were no differences in the ability to reconstitute NADPH-mediated benzphetamine N-demethylation and laurate hydroxylation in reconstituted systems between the pig liver and kidney reductases, indicating that the reductase did not determine substrate specificity in these systems.  相似文献   

2.
An antibody prepared against purified rat liver NADPH-cytochrome c reductase inhibited both the pulmonary and hepatic microsomal covalent binding of 4-ipomeanol as well as the respective NADPH-cytochrome c reductase activities, findings which are consistent with previous studies which indicated the participation of cytochrome P450 in the metabolic activation of the toxin. An antibody prepared against purified rat liver cytochrome b5, which strongly inhibited both the rat hepatic and pulmonary NADH-dependent cytochrome c reductases, and was inactive against the respective NADPH-dependent cytochrome c reductases, had little effect on metabolic activation of 4-ipomeanol by hepatic microsomes, but strongly inhibited both the NADH-supported and the NADPH-supported pulmonary microsomal metabolism and covalent binding of the compound. These results suggest that metabolic activation of 4-ipomeanol involves a two-electron transfer in which transfer of the second electron via cytochrome b5 is rate-limiting in lung microsomes.  相似文献   

3.
1. Nitrofurantoin reductase which catalyzes the bioactivation of nitrofurantoin was purified to electrophoretic homogenity from sheep liver and lung microsomes, with a yield of 15% and 35%, respectively. The specific activity of both reductases was found to be similar (140 nmol/min/mg protein).2. The effects of nitrofurantoin and NADPH concentrations, pH, ionic strength, amount of enzyme and reaction period, on the enzyme activity were studied and the optimum conditions for maximum activity of purified liver and lung nitrofurantoin reductases were determined.3. The enzyme concentration was found proportional with the square root of the rate of nitrofurantoin reduction up to approximately 15 μg protein/ml and 25 μg protein/ml incubation mixture for liver and lung nitrofurantoin reductases, respectively.4. The plots of inverse of the nitrofurantoin concentration against the inverse of the square root of the velocity for the reduction of nitrofurantoin by liver and lung enzymes gave Km values as 27.78 μM and 32.25 μM, respectively.5. The purified liver and lung enzymes were also saturated by NADPH at similar concentrations and the Km values were calculated as 29.4 μM and 35.5 μM, respectively.6. The effects of magnesium, nickel, cadmium and copper ions on the nitrofurantoin reductase activity were examined. Magnesium ion was found to have almost no effect, whereas the other ions inhibited the activity of both liver and lung reductases.  相似文献   

4.
Two 2,5-diketo-d-gluconate reductases, I and II, were purified respectively 918-fold and 28-fold from a mutant strain derived from Corynebacterium sp. SHS 0007. The enzymes appeared to be homogeneous on polyacrylamide gel electrophoresis. Both reductases converted 2,5-diketo-d-gluconate to 2-keto-l-gulonate in the presence of NADPH and seemed to be active only for reduction. The molecular weights of reductases I and II were estimated to be 29,000 and 34,000, respectively; and both were monomeric. Their isoelectric points were respectively pH 4.3 and pH 4.1. The optimum pH was 6.0 to 7.0 for reductase I, and 6.0 to 7.5 for reductase II. The Km values (pH 7.0, 30°C) of reductase I for 2,5-diketo-d-gluconate and for NADPH were 1.8 mM and 12 μM, respectively; and the corresponding values of reductase II were 13.5 mM and 13 μM. Both reductases converted 5-keto-d-fructose to l-sorbose in the presence of NADPH.  相似文献   

5.
F H Faas  W J Carter  J O Wynn 《Life sciences》1974,15(12):2059-2068
Rat liver microsomal NADH-cytochrome c reductase activity is stimulated by 20 μM thyroxine invitro. Thyroxine does not influence microsomal NADH-dichlorophenolindophenol reductase, NADPH-cytochrome c reductase, or NADPH-dichlorophenolindophenol reductase activity. Stimulation of NADH-cytochrome c reductase activity is not mediated by super-oxide and is likely due to enhanced reduction or oxidation of cytochrome b5.  相似文献   

6.
Thiosulfate-cytochrome c-551 reductase derived from Chlorobiumthiosulfatophilum has been highly purified. The enzyme reduces cytochrome c-551 of C. thiosulfatophilum in the presence of thiosulfate while cytochrome c-555 of the organism is not reduced by the enzyme. Cytochrome c-555 reacts with the enzyme at an appreciable rate only in the presence of cytochrome c-551. However, the reduction rate of cytochrome c-551 by the enzyme is greatly enhanced on addition of a catalytic amount of cytochrome c-555. Therefore, cytochrome c-555 seems to function as an effector on thiosulfate-cytochrome c-551 reductase as well as it acts as the electron donor to the light-excited chlorobium chlorophylls.  相似文献   

7.
Benzoate 1,2-dioxygenase system which catalyzed double hydroxylation of benzoate was obtained from Pseudomonas arvilla and was shown to consist of two protein components (component A and B). Component A which was purified and was shown to be homogeneous upon sodium dodecyl sulfate disc gel electrophoresis retained high activity of NADH-cytochrome c reductase. Both of benzoate 1,2-dioxygenase activity and NADH-cytochrome c reductase activity were simultaneously induced by benzoate. Dichlorophenolindophenol which could serve as an electron acceptor of the NADH-cytochrome c reductase inhibited the activity of benzoate 1,2-dioxygenase. These results suggest the possibility that NADH-cytochrome c reductase activity is required for benzoate 1,2-dioxygenase.  相似文献   

8.
The effect of 3,3'-dimethoxybenzidine (o-dianisidine) on the conversion of cholesterol to pregnenolone was investigated in a reconstituted side chain cleavage system using enzymes purified from bovine adrenal cortex; d-p-aminoglutethimide was also assayed under similar conditions for comparison. 3,3'-Dimethoxybenzidine was found to be a potent inhibitor of pregnenolone formation, causing 50% inhibition at a concentration of 1.5 μM when using 70 μM cholesterol — this dose is approximately one fourth that required of 3-methoxybenzidine and one twentieth that required of benzidine for equal inhibition. In the same system, d-p-aminoglutethimide exhibited an I50 value of about 55 μM. No effects of 3,3'-dimetoxybenzidine on adrenodoxin reductase or adrenodoxin activities could be detected, and inhibition of side chain cleavage could be relieved by dilution suggesting that the inhibitor acts by reversibly binding to cytochrome P-450scc.  相似文献   

9.
Cytochrome P-450 from rat lung microsomes has been solubilized and purified 8-fold by using affinity chromatography on an ω-amino-n-octyl derivative of Sepharose 4B. The purified fraction was free of cytochrome b5 and NADPH-cytochrome c reductase and showed spectral characteristics similar to those of lung microsomal cytochrome P-450. When combined with NADPH-cytochrome c reductase partially purified from liver microsomes, the cytochrome P-450 fraction supported the hydroxylation of benzo (α)pyrene and the activity was proportional to the content of the hemoprotein. No absolute requirement for phosphatidylcholine was found.  相似文献   

10.
Abrupt changes in the Arrhenius activation energy of membrane-bound enzymes have often been correlated with changes in the physical state of membrane phospholipids. Similar changes in activation energy have also been found in soluble enzymes. The possibility exists, therefore, that in some of the membrane-bound enzymes the changes might reflect intrinsic changes of the proteins independent of changes in the membrane phospholipids. This hypothesis was investigated using Drosophila mitochondria isolated from wild type and the mutant Ocdts-1. In this mutant it has been shown that succinate-cytochrome c reductase exhibits a change in Arrhenius activation energy at 18°C which is not found in the wild type (Sondergaard, L., Nielsen, N.C. and Smillie, R.M. (1975) FEBS lett. 50, 126–129). A quantitative thin-layer chromatographic analysis of mitochondrial phospholipids showed sphingomyelin to be more abundant in the wild type than in the mutant (5.2% and 4.3% of the total phospholipids, respectively). Since it was shown that the succinate-cytochrome c reductase had a lipid requirement for full activity, reciprocal rebinding experiments were done. These experiments showed that the reconstituted membranes exhibited the change in activation energy at 18°C only when the protein moiety came from mutant mitochondria, that is, the change was independent of the source of the phospholipids used.  相似文献   

11.
Cytochrome P-450 was purified from liver microsomes of phenobarbital-pretreated rabbits to a specific content of 16 to 17 nmoles per mg of protein with a yield of about 10 %. The purified cytochrome yielded only a single protein band on sodium dodecylsulfate-urea-polyacrylamide gel electrophoresis, and an apparent molecular weight of about 45,000 was estimated for the protein. The preparation was free of cytochrome b5, NADH-cytochrome b5 reductase, and NADPH-cytochrome c reductase activities. Aniline hydroxylase and ethylmorphine N-demethylase activities could be reconstituted upon mixing the purified cytochrome with an NADPH-cytochrome c reductase preparation (purified by a detergent method) and phosphatidyl choline.  相似文献   

12.
Cytochrome P-450 was purified from phenobarbital-treated guinea pigs to a specific content of 19.8 nmoles per mg of protein, and was free of cytochrome b5 and NADPH-cytochrome c reductase. The purified cytochrome P-450 gave a single protein band on sodium dodecylsulfate-polyacrylamide gel electrophoresis, and an apparent molecular weight of about 49,000 was estimated. Benzphetamine N-demethylation activity could be reconstituted by mixing the purified cytochrome, NADPH-cytochrome c reductase and phosphatidylcholine.  相似文献   

13.
A highly purified reconstituted system isolated from the microsomes of 3-methylcholanthrene-treated rats consisting of cytochrome P-448, NADPH-cytochrome c reductase and synthetic dilauroyl phosphatidylcholine had no DT diaphorase activity, but hydroxylated benzo[a]pyrene at a faster rate than microsomes from 3-methylcholanthrene-treated rats. DT diaphorase purified from liver microsomes of 3-methylcholanthrene-treated rats when added to this reconstituted system did not stimulate or inhibit benzo[a]pyrene hydroxylation, nor could it replace or NADPH-cytochrome c reductase in supporting the reaction. We therefore conclude that microsomal DT diaphorase is not involved in microsomal hydroxylation of benzo[a]pyrene to its phenolic products despite the observation that both DT diaphorase activity and the hydroxylation of benzo[a]pyrene are induced by 3-methylcholanthrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin  相似文献   

14.
NADPH-cytochrome c (P-450) reductase (EC 1.6.2.4) was purified to apparent homogeneity from microsomes of house flies, Musca domestica L. The purification procedure involves column chromatography on three different resins. The key step in the purification scheme is the chromatography of the enzyme mixture on an affinity column of agarose-hexane-nicotinamide adenine dinucleotide phosphate. The enzyme has an estimated molecular weight of 83,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and contains 1 mol each of FAD and FMN per mol of enzyme. The enzyme exhibited a Bi Bi ping-pong kinetic mechanism with NADPH and cytochrome c. The Vmax and Km for cytochrome c were 42.3 mumol min-1 mg-1 and 12.7 muM, respectively. Turnover numbers based on micromoles of enzyme were 2,600 min-1. NADP+ and 2'-AMP both inhibited the reductases with apparent Ki values of 6.9 and 187 muM, respectively. These preparations of NADPH-cytochrome c reductase were found to reduce purified house fly cytochrome P-450 in the presence of NADPH.  相似文献   

15.
The influence of the mode of preparation upon some of the characteristics of white adipose tissue plasma membranes and microsomes has been reported. Plasma membrane fractions prepared from mitochondrial pellet were shown to have higher specific activities of (Mg2+ + Na+ + K+)-ATPase than plasma membranes originating in crude microsomes. Isolation of fat cells by collagenase treatment was found to result in a decrease in specific activity of the plasma membrane enzymes; in plasma membranes prepared from isolated fat cells, the specific activity values obtained for (Mg2+ + Na+ + K+)-ATPase and 5′-nucleotidase were only 42% and 6.3% respectively of those obtained in plasma membranes prepared from whole adipose tissue. Purification of whole adipose tissue crude microsomes by hypotonic treatment caused extensive solubilization of the endoplasmic reticulum marker enzymes, NADH oxidase and NADPH cytochrome c reductase. The lability of endoplasmic reticulum marker enzymes, however, was found to be greatly diminished in the preparations from isolated fat cells. The possibility that NADH oxidase and NADHPH cytochrome c reductase activities found in the plasma membranes are microsomal enzymes adsorbed by the plasma membranes is discussed. The peptide patterns as well as the NADH oxidase and NADPH cytochrome c reductase activity patterns of plasma membranes and purified microsomes were compared by means of sodium dodecyl sulfate or Triton X-100 polyacrylamide gel electrophoresis.  相似文献   

16.
The outer membrane of turnip (Brassica rapa L.) mitochondria was isolated by incubating the mitochondria with a dilute digitonin solution and differential centrifuging. The outer membrane fraction was not contaminated by inner membrane enzymes and lacked an NADPH-cytochrome c reductase. However it possessed very active NADH-cytochrome c, dichloroindophenol and ferricyanide reductases which were insensitive to antimycin A, Amytal and low (less than 10 μm) concentrations of Dicumarol. p-Chloromercuribenzoate (ClHgBzO?) and high concentrations (greater than 10 μm) of Dicumarol inhibited the reductases, ClHgBzO? almost completely. Preincubation of the outer membrane with NADH protected it from ClHgBzO? inhibition. An acid phosphatase and an NADPH-ferricyanide reductase were also detected, but the latter was only loosely bound to the membrane. The NADH dehydrogenase of the outer membrane was insensitive to ethylene glycol-bis(β-aminoethyl ether)N,N′-tetraacetate (1 mm) and was not stimulated by CaCl2 (0.5 mm), thus differing from the external NADH oxidase of the inner membrane (Coleman, J. O. D., and Palmer, J. M. (1971) FEBS Lett., 17, 203–208). Respiratory-linked oxidation of exogenous NADH by intact mitochondria showed a similar pattern of inhibition by ClHgBzO? as did the outer membrane, but was inhibited strongly by low concentrations of Dicumarol (5 μm inhibited by 70%).  相似文献   

17.
Suitable incubation conditions were developed for reduced pyridine nucleotide protection and regeneration to permit quantitative assessment of the NADPH requirement for steroid aromatization by human placental microsomes. 10 mM dithiothreitol was found to protect NADP(H) from microsomal nucleotide pyrophosphatase and 2 mM nicotinamide mononucleotide was utilized to control nucleotide glycohydrolase activity. Under these assay conditions, the initial rates of aromatization obtained with restricted NADPH levels were critically dependent upon both the amount and the source of exogenous NADPH-regenerating dehydrogenase system. With excess Leuconostoc mesenteroides glucose-6-phosphate dehydrogenase, an apparent Km for NADPH of 0.20 μM was observed for aromatization which is significently below all previous estimates of the NADPH requirement and which is at greatest only one-tenth the Km value for NADPH utilization by NADPH-cytochrome c reductase. These findings suggest a potential regulatory role for both NADPH-generating and NADPH-accepting enzymes in the support of estrogen biosynthesis.  相似文献   

18.
S.P.J. Brooks  P. Nicholls 《BBA》1982,680(1):33-43
Citrate and other polyanion binding to ferricytochrome c partially blocks reduction by ascorbate, but at constant ionic strength the citrate-cytochrome c complex remains reducible; reduction by TMPD is unaffected. At a constant high ionic strength citrate inhibits the cytochrome c oxidase reaction competitively with respect to cytochrome c, indicating that ferrocytochrome c also binds citrate, and that the citrateferrocytochrome c complex is rejected by the binding site at high ionic strength. At lower ionic strengths, citrate and other polyanions change the kinetic pattern of ferrocytochrome c oxidation from first-order towards zero-order, indicating preferential binding of the ferric species, followed by its exclusion from the binding site. The turnover at low cytochrome c concentrations is diminished by citrate but not the Km (apparent non-competitive inhibition) or the rate of cytochrome a reduction by bound cytochrome c. Small effects of anions are seen in direct measurements of binding to the primary site on the enzyme, and larger effects upon secondary site binding. It is concluded that anion-cytochrome c complexes may be catalytically competent but that the redox potentials and/or intramolecular behaviour of such complexes may be affected when enzyme-bound. Increasing ionic strength diminishes cytochrome c binding not only by decreasing the ‘association’ rate but also by increasing the ‘dissociation’ rate for bound cytochrome c converting the ‘primary’ (T) site at high salt concentrations into a site similar kinetically to the ‘secondary’ (L) site at low ionic strength. A finite Km of 170 μM at very high ionic strength indicates a ratio of KMK0M of about 5000. It is proposed that anions either modify the E10 of cytochrome c bound at the primary (T) site or that they perturb an equilibrium between two forms of bound c in favour of a less active form.  相似文献   

19.
Cytochrome P-450 was purified to a content of over 17 nmoles per mg of protein from liver microsomes of phenobarbital-treated rabbits by fractionation with polyethylene glycol 6000, DEAE-cellulose column chromatography, and hydroxylapatite column chromatography in the presence of Renex 690, a nonionic detergent. The purified preparation exhibited a single polypeptide band (molecular weight, 49,000 daltons) when submitted to SDS-polyacrylamide gel electrophoresis. Cytochromes P-420 and b5 and NADPH-cytochrome c reductase were absent. The reconstituted system containing purified cytochrome P-450, reductase, and phosphatidylcholine catalyzed the hydroxylation of benzphetamine, cyclohexane, aniline, and laurate.  相似文献   

20.
Cytochrome c1, the electron donor for cytochrome c, is a subunit of the mitochondrial cytochrome bc1 complex (complex III, cytochrome c reductase). To test if cytochrome c1 is the cytochrome c-binding subunit of the bc1 complex, binding of cytochrome c to the complex and to isolated cytochrome c1 was compared by a gel-filtration method under non-equilibrium conditions (a bc1 complex lacking the Rieske ironsulfur protein was used; von Jagow et al. (1977) Biochim. Biophys. Acta 462, 549–558). The approximate stoichiometries and binding affinities were found to be very similar. Binding of cytochrome c to isolated cytochrome b which is another subunit of the reductase was not detectable by the gel-filtration method. Further, the same lysine residues of cytochrome c were shielded towards chemical acetylation in the complexes c:c1 and c:bc1. From this we conclude that the same surface area of cytochrome c is in direct contact with cytochrome bc1 and with cytochrome c1 in the respective complexes and that therefore cytochrome c is most probably the structural ligand for cytochrome c in mitochondrial cytochrome c reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号