首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
An enzyme's substrate specificity is one of its most important characteristics. The quantitative comparison of broad-specificity enzymes requires the selection of a homogenous set of substrates for experimental testing, determination of substrate-specificity data and analysis using multivariate statistics. We describe a systematic analysis of the substrate specificities of nine wild-type and four engineered haloalkane dehalogenases. The enzymes were characterized experimentally using a set of 30 substrates selected using statistical experimental design from a set of nearly 200 halogenated compounds. Analysis of the activity data showed that the most universally useful substrates in the assessment of haloalkane dehalogenase activity are 1-bromobutane, 1-iodopropane, 1-iodobutane, 1,2-dibromoethane and 4-bromobutanenitrile. Functional relationships among the enzymes were explored using principal component analysis. Analysis of the untransformed specific activity data revealed that the overall activity of wild-type haloalkane dehalogenases decreases in the following order: LinB~DbjA>DhlA~DhaA~DbeA~DmbA>DatA~DmbC~DrbA. After transforming the data, we were able to classify haloalkane dehalogenases into four SSGs (substrate-specificity groups). These functional groups are clearly distinct from the evolutionary subfamilies, suggesting that phylogenetic analysis cannot be used to predict the substrate specificity of individual haloalkane dehalogenases. Structural and functional comparisons of wild-type and mutant enzymes revealed that the architecture of the active site and the main access tunnel significantly influences the substrate specificity of these enzymes, but is not its only determinant. The identification of other structural determinants of the substrate specificity remains a challenge for further research on haloalkane dehalogenases.  相似文献   

2.
Protein tyrosine kinases play key roles in the progression of numerous human diseases including several types of cancers. We report here a simple colorimetric assay for tyrosine kinase activity employing synthetic peptide substrates prepared on Tentagel synthesis beads. Phosphorylation of compounds on beads was detected with an antiphosphotyrosine antibody complexed with a secondary antibody-alkaline phosphatase conjugate. This assay may prove useful for the identification and characterization of synthetic substrates of this important class of enzymes.  相似文献   

3.
Structural comparison of three different haloalkane dehalogenases suggested that substrate specificity of these bacterial enzymes could be significantly influenced by the size and shape of their entrance tunnels. The surface residue leucine 177 positioned at the tunnel opening of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26 was selected for modification based on structural and phylogenetic analysis; the residue partially blocks the entrance tunnel, and it is the most variable pocket residue in haloalkane dehalogenase-like proteins with nine substitutions in 14 proteins. Mutant genes coding for proteins carrying all possible substitutions in position 177 were constructed by site-directed mutagenesis and heterologously expressed in Escherichia coli. In total, 15 active protein variants were obtained, suggesting a relatively high tolerance of the site for the introduction of mutations. Purified protein variants were kinetically characterized by determination of specific activities with 12 halogenated substrates and steady-state kinetic parameters with two substrates. The effect of mutation on the enzyme activities varied dramatically with the structure of the substrates, suggesting that extrapolation of one substrate to another may be misleading and that a systematic characterization of the protein variants with a number of substrates is essential. Multivariate analysis of activity data revealed that catalytic activity of mutant enzymes generally increased with the introduction of small and nonpolar amino acid in position 177. This result is consistent with the phylogenetic analysis showing that glycine and alanine are the most commonly occurring amino acids in this position among haloalkane dehalogenases. The study demonstrates the advantages of using rational engineering to develop enzymes with modified catalytic properties and substrate specificities. The strategy of using site-directed mutagenesis to modify a specific entrance tunnel residue identified by structural and phylogenetic analyses, rather than combinatorial screening, generated a high percentage of viable mutants.  相似文献   

4.
Two putative haloalkane dehalogenases (HLDs) of the HLD‐I subfamily, DccA from Caulobacter crescentus and DsaA from Saccharomonospora azurea, have been identified based on sequence comparisons with functionally characterized HLD enzymes. The two genes were synthesized, functionally expressed in E. coli and shown to have activity toward a panel of haloalkane substrates. DsaA has a moderate activity level and a preference for long (greater than 3 carbons) brominated substrates, but little activity toward chlorinated alkanes. DccA shows high activity with both long brominated and chlorinated alkanes. The structure of DccA was determined by X‐ray crystallography and was refined to 1.5 Å resolution. The enzyme has a large and open binding pocket with two well‐defined access tunnels. A structural alignment of HLD‐I subfamily members suggests a possible basis for substrate specificity is due to access tunnel size.  相似文献   

5.
Classical methods of peptide synthesis in solution were used for the preparation of the two tetrapeptides alanyl-lysyl-arginyl-tyrosine and acetyl-alanyl-lysyl-arginyl-tyrosine-(N-methylamide). The two compounds were able to be recognized as substrates by proenkephalin processing enzymes and were used for the development of a quantitative assay for these enzymes. The first substrate proved to be convenient, although it was also partially degraded by amino- and carboxypeptidases under the conditions of the assay. The second was found to be hydrolyzed by the endopeptidases at too slow a rate to allow its routine use in the assay.  相似文献   

6.
W Kang  EC Shin 《PloS one》2012,7(8):e43960
Hepatitis C virus (HCV) infection is the leading cause of liver transplantation in Western countries. Studies of HCV infection using cell culture-produced HCV (HCVcc) in vitro systems require quantification of infectious HCV virions, which has conventionally been performed by immunofluorescence-based focus-forming assay with manual foci counting; however, this is a laborious and time-consuming procedure with potentially biased results. In the present study, we established and optimized a method for convenient and objective quantification of HCV virions by colorimetric focus-forming assay with automated focus counting by image analysis. In testing different enzymes and chromogenic substrates, we obtained superior foci development using alkaline phosphatase-conjugated secondary antibody with BCIP/NBT chromogenic substrate. We additionally found that type I collagen coating minimized cell detachment during vigorous washing of the assay plate. After the colorimetric focus-forming assay, the foci number was determined using an ELISpot reader and image analysis software. The foci number and the calculated viral titer determined by this method strongly correlated with those determined by immunofluorescence-based focus-forming assay and manual foci counting. These results indicate that colorimetric focus-forming assay with automated focus counting by image analysis is applicable as a more-efficient and objective method for quantification of infectious HCV virions.  相似文献   

7.
Plasmodium falciparum is the most prevalent and deadly species of the human malaria parasites, and thioredoxin reductase (TrxR) is an enzyme involved in the redox response to oxidative stress. Essential for P. falciparum survival, the enzyme has been highlighted as a promising target for novel antimalarial drugs. Here we report the discovery and characterization of seven molecules from an antimalarial set of 13533 compounds through single-target TrxR biochemical screens. We have produced high-purity, full-length, recombinant native enzyme from four Plasmodium species, and thioredoxin substrates from P. falciparum and Rattus norvegicus. The enzymes were screened using a unique, high-throughput, in vitro native substrate assay, and we have observed selectivity between the Plasmodium species and the mammalian form of the enzyme. This has indicated differences in their biomolecular profiles and has provided valuable insights into the biochemical mechanisms of action of compounds with proven antimalarial activity.  相似文献   

8.
The linB gene product (LinB), which is involved in the degradation of gamma-hexachlorocyclohexane in Sphingomonas paucimobilis UT26, is a member of haloalkane dehalogenases with a broad range of substrate specificity. Elucidation of the factors determining its substrate specificity is of interest. Aiming to facilitate purification of recombinant LinB protein for site-directed mutagenesis analysis, a 6-histidyl tail was added to the C-terminus of LinB. The His-tagged LinB was specifically bound with Ni-NTA resin in the buffer containing 10 mM imidazole. After elution with 500 mM imidazole, quantitative recovery of protein occurred. The steady-state kinetic parameters of the His-tagged LinB for four substrates were in good agreement with that of wild-type recombinant LinB. Although the His-tagged LinB expressed in an average of 80% of the activity of the wild type LinB for 10 different substrates, the decrease was very similar for different substrates with the standard deviation of 5.5%. The small activity reduction is independent of the substrate shape, size, or number of substituents, indicating that the His-tagged LinB can be used for further mutagenesis studies. To confirm the suitability of this system for mutagenesis studies, two mutant proteins with substitution in putative halide binding residues (W109 and F151) were constructed, purified, and tested for activity. As expected, complete loss in activity of W109L and sustained activity of F151W were observed.  相似文献   

9.
In this study, the first fluorescent assay for bacterial cytochrome P450 BM3 (BM3) and mutants is described. BM3 mutants are potentially very versatile biocatalysts for the production of fine chemicals. A fluorescent assay would be very useful for the identification of nonnatural ligands in high-throughput inhibition assays. Because of the ease and sensitivity of alkoxyresorufin O-dealkylation assays, four different alkoxyresorufins were evaluated as substrates. Wild-type BM3 showed extremely low activity toward all four alkoxyresorufins tested. Five different BM3 mutants were constructed, carrying different combinations of mutations R47L, F87V, and L188Q, which were previously shown to increase activity toward nonnatural substrates. For all mutants, a high benzyloxyresorufin O-dealkylation (BROD) activity was found. The triple mutant of BM3, R47L/F87V/L188Q, showed the highest activity, increasing 900-fold compared to wild-type BM3. The BROD assay could also be applied in whole Escherichia coli cells; permeabilization by lipopolysaccharide deficiency strongly increased activity. To demonstrate the applicability of the BROD assay to screening for novel ligands of BM3 R47L/F87V/L188Q, a library of 45 drug-like compounds was tested for inhibition. Of these compounds, 8 showed strong inhibition of the BROD activity, demonstrating for the first time that drug-like molecules also can bind with high affinity to BM3 mutants.  相似文献   

10.
11.
Derivatives of D-luciferin, D-luciferin methyl ester, D-luciferin O-sulfate, D-luciferin O-phosphate, D-luciferyl-L-N alpha-arginine and D-luciferyl-L-phenylalanine were used as highly sensitive substrates for carboxylic esterase, arylsulfatase, alkaline phosphatase and carboxypeptidases A, B and N. Enzymatic cleavage of the compounds by enzymes leading to the release of D-luciferin was demonstrated. Kinetic constants have been determined for D-luciferin methyl ester and carboxylic esterase, for D-luciferin O-sulfate and arylsulfatase, for D-luciferin O-phosphate and alkaline phosphatase, for D-luciferyl-L-phenylalanine and carboxypeptidase A, and for carboxypeptidases B and N and D-luciferyl-L-N alpha-arginine. All compounds proved to be highly sensitive substrates for the respective enzymes, permitting a limit of detection for enzymes between 10 and 500 fg per assay.  相似文献   

12.
Assay of apical membrane enzymes based on fluorogenic substrates.   总被引:5,自引:0,他引:5  
A series of enzymatic rate assays are described. The assays are based on coumarin derivatives that are fluorogenic substrates for the enzymes dipeptidase IV, aminopeptidase N, alkaline phosphatase, and gamma-glutamyltransferase. These simple assays are rapid and offer improved sensitivity over established colorimetric methods. The substrates have apparent affinities for the enzymes of 5-250 microM. L-Glutamic acid gamma-(7-amido-4-methylcoumarin) is characterized as a substrate of gamma-glutamyltransferase on the basis of inhibition of enzymatic cleavage when the glycylglycine acceptor molecule is omitted and inhibition of the enzymatic reaction by addition of glycine. Assay conditions for the four enzymes are established such that less than 0.6% of the substrate is consumed, fluorescence is proportional to enzymatic product, and results may be directly compared to established colorimetric assays. Intestinal epithelial cells are used both to establish appropriate assay conditions and to demonstrate the utility of the assays.  相似文献   

13.
This report documents the use of a new and sensitive colorimetric method for measuring phosphomonoesterase activity. The substrates are the phosphate esters of 4-(p-nitrophenoxy)-1,2-butanediol (PNB), 4-(2,4-dinitrophenoxy)-1,2-butanediol (DNB) and 3-(p-nitrophenoxy)-1,2-propanediol (PNG). The key intermediate in the assay is the nitrophenoxy diol which is obtained by enzyme hydrolysis of its phosphate ester. Periodate oxidation of this substance in solution containing methylamine quantitatively yields its nitrophenolate ion whose concentration is determined colorimetrically. The amount of nitrophenolate ion is thus equivalent to the amount of nitrophenoxy diol whose concentration is a function of the phosphomonoesterase activity in the assay sample. The unhydrolyzed phosphomonoester is completely stable to periodate and the hydrolytic conditions used in the assay. The enzymes used to test the substrates were E. coli alkaline phosphomonoesterase and wheat germ phosphomonoesterase. These new esters were all better substrates than the glycerol phosphate esters. Their Michaelis-Menten constants were determined for E. coli phosphomonoesterase.  相似文献   

14.
The quantitative, semi-automated assay described here is an alternative characterization method allowing for highly sensitive and specific detection of bifidobacterial enzymes. Twenty strains of Bifidobacterium longum, including the type strain ATCC 15707, and type strains of 15 other Bifidobacterium species were enzymatically characterized using 20 4-methylumbelliferyl conjugated substrates. Enzyme activities were determined by directly measuring the intensity of fluorescence derived from 4-methylumbelliferone, a fluorescent metabolic by-product. For this method, a Titertek Fluoroskan II fluorometer was used. Enzymes included glycosidases, an esterase, phosphatase, sulphatase, and neuraminidase. B. longum showed strong activity (greater than 1,000 absolute fluorescence units, afu) for alpha-L-Arabinopyranosidase and alpha-L-Arabinofuranosidase, beta-D-Fucosidase, alpha- and beta-D-Galactosidase, alpha-D-Glucosidase, and alpha-D-Mannosidase. No activity (less than or equal to 50 afu) was observed for beta-D-Cellobiosidase, alpha- and beta-L-Fucosidase, beta-D-Glucuronidase, beta-D-Mannosidase, Neuraminidase and Sulphatase. Enzymatic activity profiles in other bifidobacteria were different according to the species. This assay is simple and rapid (6 hr). Special cultural requirements are unnecessary. Results are objective and quantitative. This assay may be a useful tool for bifidobacterial taxonomy.  相似文献   

15.
Multicopper oxidases are a multi-domain family of enzymes that are able to couple oxidation of substrates with reduction of dioxygen to water. These enzymes are capable of oxidizing a vast range of substrates, varying from aromatic to inorganic compounds such as metals. This metallo-oxidase activity observed in several members of this family has been linked to mechanisms of homeostasis in different organisms. Recently, a periplasmic multicopper oxidase, encoded by Campylobacter jejuni, has been characterised and associated with copper homeostasis and with the protection against oxidative stress as it may scavenge metallic ions into their less toxic form and also inhibit the formation of radical oxygen species. In order to contribute to the understanding of its functional role, the crystal structure of the recombinant McoC (Campylobacter jejuni CGUG11284) has been determined at 1.95 ? resolution and its structural and biochemical characterizations undertaken. The results obtained indicate that McoC has the characteristic fold of a laccase having, besides the catalytic centres, another putative binding site for metals. Indeed, its biochemical and enzymatic characterization shows that McoC is essentially a metallo-oxidase, showing low enzymatic efficiency towards phenolic substrates.  相似文献   

16.
Haloalkane dehalogenases catalyze cleavage of the carbon-halogen bond in halogenated aliphatic compounds, resulting in the formation of an alcohol, a halide, and a proton as the reaction products. Three structural features of haloalkane dehalogenases are essential for their catalytic performance: (i) a catalytic triad, (ii) an oxyanion hole, and (iii) the halide-stabilizing residues. Halide-stabilizing residues are not structurally conserved among different haloalkane dehalogenases. The level of stabilization of the transition state structure of S(N)2 reaction and halide ion provided by each of the active site residues in the enzymes DhlA, LinB, and DhaA was quantified by quantum mechanic calculations. The residues that significantly stabilize the halide ion were assigned as the primary (essential) or the secondary (less important) halide-stabilizing residues. Site-directed mutagenesis was conducted with LinB enzyme to confirm location of its primary halide-stabilizing residues. Asn38Asp, Asn38Glu, Asn38Phe, Asn38Gln, Trp109Leu, Phe151Leu, Phe151Trp, Phe151Tyr, and Phe169Leu mutants of LinB were constructed, purified, and kinetically characterized. The following active site residues were classified as the primary halide-stabilizing residues: Trp125 and Trp175 of DhlA; Asn38 and Trp109 of LinB; and Asn41 and Trp107 of DhaA. All these residues make a hydrogen bond with the halide ion released from the substrate molecule, and their substitution results in enzymes with significantly modified catalytic properties. The following active site residues were classified as the secondary halide-stabilizing residues: Phe172, Pro223, and Val226 of DhlA; Trp207, Pro208, and Ile211 of LinB; and Phe205, Pro206, and Ile209 of DhaA. The differences in the halide stabilizing residues of three haloalkane dehalogenases are discussed in the light of molecular adaptation of these enzymes to their substrates.  相似文献   

17.
Powerful directed evolution methods have been developed for tailoring proteins to our needs in industrial applications. Here, the authors report a medium-throughput assay system designed for screening mutant libraries of oxygenases capable of inserting a hydroxyl group into a C-H bond of aromatic or O-heterocyclic compounds and for exploring the substrate profile of oxygenases. The assay system is based on 4-aminoantipyrine (4-AAP), a colorimetric phenol detection reagent. By using 2 detection wavelengths (509 nm and 600 nm), the authors achieved a linear response from 50 to 800 microM phenol and standard deviations below 11% in 96-well plate assays. The monooxygenase P450 BM-3 and its F87A mutant were used as a model system for medium-throughput assay development, identification of novel substrates (e.g., phenoxytoluene, phenylallyether, and coumarone), and discovery of P450 BM-3 F87A mutants with 8-fold improvement in 3-phenoxytoluene hydroxylation activity. This activity increase was achieved by screening a saturation mutagenesis library of amino acid position Y51 using the 4-AAP protocol in the 96-well format.  相似文献   

18.
Haloalkane dehalogenases are bacterial enzymes capable of carbon-halogen bond cleavage in halogenated compounds. To obtain insights into the mechanism of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26 (LinB), we studied the steady-state and presteady-state kinetics of the conversion of the substrates 1-chlorohexane, chlorocyclohexane, and bromocyclohexane. The results lead to a proposal of a minimal kinetic mechanism consisting of three main steps: (i) substrate binding, (ii) cleavage of the carbon-halogen bond with simultaneous formation of an alkyl-enzyme intermediate, and (iii) hydrolysis of the alkyl-enzyme intermediate. Release of both products, halide and alcohol, is a fast process that was not included in the reaction mechanism as a distinct step. Comparison of the kinetic mechanism of LinB with that of haloalkane dehalogenase DhlA from Xantobacter autotrophicus GJ10 and the haloalkane dehalogenase DhaA from Rhodococcus rhodochrous NCIMB 13064 shows that the overall mechanisms are similar. The main difference is in the rate-limiting step, which is hydrolysis of the alkylenzyme intermediate in LinB, halide release in DhlA, and liberation of an alcohol in DhaA. The occurrence of different rate-limiting steps for three enzymes that belong to the same protein family indicates that extrapolation of this important catalytic property from one enzyme to another can be misleading even for evolutionary closely related proteins. The differences in the rate-limiting step were related to: (i) number and size of the entrance tunnels, (ii) protein flexibility, and (iii) composition of the halide-stabilizing active site residues based on comparison of protein structures.  相似文献   

19.
Rhodococcus erythropolis strain Y2, isolated from soil by enrichment culture using 1-chlorobutane, was able to utilize a range of halogenated aliphatic compounds as sole sources of carbon and energy. The ability to utilize 1-chlorobutane was conferred by a single halidohydrolase-type haloalkane dehalogenase. The presence of the single enzyme in cell-free extracts was demonstrated by activity strain polyacrylamide gel electrophoresis. The purified enzyme was a monomeric protein with a relative molecular mass of 34 kDa and demonstrated activity against a broad range of haloalkanes, haloalcohols and haloethers. The highest activity was found towards alpha, omega disubstituted chloro- and bromo- C2-C6 alkanes and 4-chlorobutanol. The Km value of the enzyme for 1-chlorobutane was 0.26 mM. A comparison of the R. erythropolis Y2 haloalkane halidohydrolase with other haloalkane dehalogenases is discussed on the basis of biochemical properties and N-terminal amino acid sequence data.  相似文献   

20.
Haloalkane dehalogenases are known as bacterial enzymes cleaving a carbon–halogen bond in halogenated compounds. Here we report the first biochemically characterized non-microbial haloalkane dehalogenase DspA from Strongylocentrotus purpuratus. The enzyme shows a preference for terminally brominated hydrocarbons and enantioselectivity towards β-brominated alkanes. Moreover, we identified other putative haloalkane dehalogenases of eukaryotic origin, representing targets for future experiments to discover dehalogenases with novel catalytic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号