首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A comparative study of the binding of square planar cis- and trans-[Pt(NH3)2Cl2] complexes and the octahedral [Ru(NH3)5(H2O)]3+ complex to tRNAphe from yeast was carried out by X-ray crystallography. Both of the carcinostatic compounds, cis-[Pt(NH3)2Cl2] and [Ru(NH3)5(H2O)]3+ show similarities in their mode of binding to tRNA. These complexes bind specifically to the N(7) positions of guanines G15 and G18 in the dihydrouridine loop. [Ru(NH3)5(H2O)]3+ has an additional binding site at N(7) of residue G1 after extensive soaking times (58 days). A noncovalent binding site for ruthenium is also observed in the deep groove of the acceptor stem helix with shorter (25 days) soaking time. The major binding site for the inactive trans-[Pt(NH3)Cl2] complex is at the N(1) position of residue A73, with minor trans-Pt binding sites at the N(7) positions of residues Gm34, G18 and G43. The similarities in the binding modes of cis-[Pt(NH3)2Cl2] and [Ru(NH3)5(H2O)]3+ are expected to be related to their carcinostatic properties.  相似文献   

2.
The time course of the relaxation effect induced by a single dose (3 x 10(-6) mol/L) of trans-[Ru(NH3)4L(NO)]3+ (L=nic, 4-pic, py, imN, P(OEt)3, SO(3)(2-), NH3, and pz) species and sodium nitroprusside (4 x 10(-9) mol/L) was studied in aortic rings without endothelium and pre-contracted with noradrenaline (1 x 10(-6) mol/L). All the compounds induced a relaxing effect in the aortic rings, but the intensity and time of relaxation were different. Only the species where L=py, 4-pic, and P(OEt)3 were able to induce 100% (99-100%) of the relaxing effect during the assay. trans-[Ru(NH3)4(L)(NO)]3+ (L=SO(3)(2-) and NH3) showed the lowest relaxing effect (36 and 37%, respectively) when compared with the other compounds. Relationship was observed between the time corresponding to half of the maximum relaxation intensity observed and, respectively, k-NO, E0'[Ru(NO)]3+/[Ru(NO)]2+ in trans-[Ru(NH3)4(L)(NO)]3+ species and E0'Ru(III)/Ru(II) in trans-[Ru(NH3)4(L)(H2O)]3+ ions. These relationships strongly suggested that the NO liberation from the reduced nitrosyl complexes was responsible for the observed relaxation.  相似文献   

3.
Visible light decomposition of aqueous NH3 to N2 was investigated using a photocatalyst aqueous solution based on molecular photoelectron relay systems of either sensitizer (tris(2,2'-bipyridine)ruthenium(II), (Ru(bpy)3(2+))/potassium peroxodisulfate(K(2)S(2)O(8)) or Ru(bpy)3(2+)/methylviologen dichloride(MV2+)/O2, capable of using visible light instead of UV-driven semiconductors such as TiO2. It was confirmed by using an in situ visible absorption spectral change under irradiation that the Ru(II) complex is oxidized to the Ru(III) complex by K(2)S(2)O(8), and that the Ru(III) complex formed is stable without NH3, while the added NH3 was oxidized by the Ru(III) complex to produce the Ru(II) complex. In the presence of 1 mM NH3 aqueous solution, the Ru(III) complex was the predominant species under the photostationary state, but in the presence of 100 mM NH3, Ru(II) predominated. Gas-chromatographic analysis of the gaseous phase in the presence of 8.1 M NH3 showed that the photochemical oxidation of ammonia yielded N2. It was also demonstrated by using the in situ visible absorption spectrum under irradiation of the NH3 (1 M)/Ru(bpy)3(2+) (0.1 mM)/MV2+ (10 mM) system under Ar that MV+* is accumulated, showing that NH3 works as an electron donor for MV+* accumulation with simultaneous formation of the oxidized product of ammonia ((NH3)ox) without producing N2. It was suggested that the reduced product (MV+*) and the oxidized product ((NH3)ox) are in a kind of dynamic equilibrium prohibiting further oxidation of (NH3)ox by Ru(bpy)3(3+) to N2. In the O2 atmosphere, the oxidation of MV+* to MV2+ takes place to accumulate Ru(III) complex, so that (NH3)ox was further oxidized to N2. The high activity of IrO2 as a cocatalyst in this system was demonstrated.  相似文献   

4.
Using pulse radiolysis and laser flash photolysis, we have investigated the reactions of the deleterious species, e(-)(aq), HO&z.rad;, O(2)(*)(-) and O(2)((1)Delta(g)) with 10 water-soluble cyclopropyl-fused C(60) derivatives including a mono-adduct dendro[60]fullerene (d) and C(60) derivatives based on C(60)[C(COOH)(2)](n=2-6), some of which are known to be neuroprotective in vivo. The rate constants for reactions of e(-)(aq) and HO&z.rad; lie in the range 0.5-3.3 x 10(10) M(-1) s(-1). The d and bis-adduct monoanion radicals display sharp absorption peaks around 1000 nm (epsilon = 7 000-11 500 M(-1) cm(-1)); the anions of the tris-, tetra-, and penta-adduct derivatives have broader, weaker absorptions. The monohydroxylated radicals have their most intense absorption maxima around 390-440 nm (epsilon = 1000-3000 M(-1) cm(-1)). The anion and hydroxylated radical absorption spectra display a blue-shift as the number of addends increases. The radical anions react with oxygen (k approximately 10(7)-10(9) M(-1) s(-1)). The reaction of O(2)(*)(-) with the C(60) derivatives does not occur via an electron transfer. The rate constants for singlet oxygen reaction with the dendrofullerene and eee-derivative in D(2)O at pH 7.4 are k approximately 7 x 10(7) and approximately 2 x 10(7) M(-1) s(-1) respectively, in contrast to approximately 1.2 x 10(5) M(-1) s(-1) for the reaction with C(60) in C(6)D(6). The large acceleration of the rates for electron reduction and singlet oxygen reactions in water is due to a solvophobic process.  相似文献   

5.
When O2 was injected into an anaerobic suspension of valinomycin-treated rat liver mitochondria inhibited with rotenone, antimycin, and myxothiazol, a small amount of O2 (0.23-0.33 ng-atom of O/mg of protein) was reduced extremely rapidly (within the 2 s time-resolution of the oxygen electrode). The subsequent steady-state rate of flow of electrons to oxygen was very low [less than 3 nequiv. X s-1 X (g of mitochondrial protein)-1]. In the presence of valinomycin there was a rapid ejection of protons synchronous with the rapid phase of O2 consumption corresponding to 0.38-0.61 nequiv. of H+ X (mg of mitochondrial protein)-1. When valinomycin was replaced by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) there was a rapid alkalification of the medium corresponding to 0.20-0.42 nequiv. of H+ X (mg of mitochondrial protein)-1. When 2 mM-Fe(CN)6(4-) was present to re-reduce endogenous cytochrome c, O2 consumption was still biphasic but the second phase of O2 consumption was very much more rapid [600 nequiv. X s-1 X (g of protein)-1], and resulted in the virtually complete consumption of the O2 in the pulse within 4 s. With 60 microM-Ru(NH3)6(2+) as reductant, O2 consumption was even faster [1200 nequiv. X s-1 X (g of protein)-1]. In a medium containing 150 mM-choline chloride with Ru(NH3)6(2+) as reductant, the proton per reducing equivalent stoichiometry (delta H+O/e-) was +0.95 in the presence of valinomycin and -0.94 in the presence of FCCP. In choline chloride medium containing Ru(NH3)6(2+) and valinomycin, there was an uptake of K+ ions corresponding to 1.86 K+/e-. It is concluded that nearly 1 proton is translocated outwards through cytochrome oxidase per oxidizing equivalent injected in this medium. In low ionic strength sucrose-based medium, with Ru(NH3)6(2+) as reductant, delta H+O/e- was 1.05 in the presence of valinomycin, and -0.71 in the presence of FCCP. It is concluded that the translocation of protons is accompanied by net acid production in this medium.  相似文献   

6.
15-Deacetyl-13-glycine-substituted hypocrellin B (GDHB) is a new type of hypocrellin derivative with an enhanced red absorption longer than 600 nm and water solubility. Visible light (> 470 nm) irradiation of an anaerobic aqueous solution of GDHB, the formation of GDHB*- was detected by an ESR method in the absence or presence of electron donor. When exposed to oxygen, superoxide anion radical and singlet oxygen were formed. The superoxide anion radical was generated by GDHB*- via electron transfer to oxygen and this process was significantly enhanced by the presence of electron donors. Singlet oxygen ((1)O2) was also formed in the photosensitization of GDHB in aerobic solution and 1,4-diazabicyclo [2,2,2] octane (DABCO), sodium azide (NaN3) and histidine inhibited the generation of (1)O2. A 9,10-diphenyl antracene (DPA)-bleaching method was used to determine the quantum yield of (1)O2 generated from GDHB photosensitization. The (1)O2 quantum yield was estimated to be 0.65. With the depletion of oxygen, the accumulation of GDHB*- would replace that of (1)O2. Evidence accumulated that the photodynamic action of GDHB may proceed via both type I and type II mechanisms and that a type II mechanism will be transformed into a type I mechanism as oxygen gets depleted.  相似文献   

7.
Poly(lactic acid) (PLA) and poly(acrylic acid) (PAA) biomaterials with luminescent ruthenium tris(bipyridine) centers couple drug delivery and imaging functions. Hydrophobic [Ru(bpyPLA2)3](PF6)2 (1) was generated from [Ru[bpy(CH2OH)2]3](PF6)2 in bulk monomer using 4-(dimethylamino)pyridine as the catalyst. The bromoesters, [Ru[bpy(CH2OR)2]3](PF6)2, [Ru[bpy(C13H27)2][bpy(CH2OR]2](PF6)2 (4), and [Ru[bpy(PLAOR)2]3]2+ (9) (R=COCBr(CH3)2), served as initiators for tert-butyl acrylate (tBA) polymerization. Conversion of PtBA to PAA via hydrolysis affords water soluble materials, [Ru(bpyPAA2)3]2+ (7) and [Ru[bpy(C13H27)2](bpyPAA2)2]2+ (8) and the amphiphilic star polymer [Ru[bpy(PLA-PAA)2]3)](PF6)2 (11), which is soluble in a H2O/CH3CN (1:1) mixture. Luminescence excitation and emission spectra of the Ru polymers were in agreement with the parent [Ru(bpy)3]2+ chromophore (lambdaex=468, lambdaem=621 nm). Lifetimes of tau approximately 700 ns in both air and nitrogen atmospheres are typical for most materials; however, the amphiphilic star block copolymer 11 is quenched by oxygen to some degree. Thermal analysis shows the expected glass transitions for the polymeric ruthenium complex materials.  相似文献   

8.
A novel polypyridyl ligand pteridino[7,6-f][1,10]phenanthroline-1,13(10H,12H)-dione (ppd) and its ruthenium(II) complex [Ru(bpy)2ppd]2+ have been synthesized and characterized by elemental analysis, electrospray mass spectra and 1H NMR. The interaction of the complex with calf thymus DNA was investigated by spectroscopic and viscosity measurements. The results suggest that the complex binds to DNA via an intercalative mode and serves as a molecular "light switch" for DNA. Moreover, the complex has been found to promote the photocleavage of plasmid DNA pBR322 under irradiation at 365 nm. The mechanism studies reveal that singlet oxygen (1O2) and superoxide anion radical (O2*(-))play a significant role in the photocleavage.  相似文献   

9.
Estimates of the net equilibrium binding constants for [(H2O)(NH3)5RuII]2+, [Cl(NH3)5RuIII]2+, cis-[(H2O)2(NH3)4RuII]2+ and cis-[Cl2(NH3)4RuIII]+ with apotransferrin (Tf) and holotransferrin (Fe2Tf) suggests that RuIII, but not RuII complexes bind with a higher affinity to the iron binding sites. Several other presumably histidyl imidazole sites bind with approximately the same affinity (Keff = 10(2) to 10(3) M(-1) to both RuII and RuIII. Compared to HeLa cells, an order of magnitude higher level of nuclear DNA binding ([Ru]DNA/[P]DNA) was required to achieve the same level of toxicity in Jurkat Tag cells, which probably relates to the substantially higher levels of cis-[Cl2(NH3)4Ru]+ needed to inhibit 50% of the cell growth in the Jurkat Tag cell line. Against Jurkat Tag cells, the toxicity of the pentaammineruthenium(III) group is enhanced by approximately two orders of magnitude upon binding primarily to the Fe-sites in apotransferrin, whereas the toxicity of the tetraammineruthenium(III) moiety is only marginally increased. Binding to Fe2Tf does not increase the toxicity of either group. Significant dissociation over 24 h of the ammineruthenium(III) ions from apotransferrin requires reduction to RuII.  相似文献   

10.
We describe the synthesis, characterization, and reactivity of several Ru(II) complexes of the type cis-L2Ru(Z)n+, where L is an α-diimine [e.g. 2,2′-bipyridine (bpy) or 1,10-phenanthroline (phen)] ligand and Z is a bis-coordinated scorpionate ligand such as tris-(1-pyrazolyl)methane (HC(pz)3, PZ=1-pyrazolyl; n=2) or tetrakis-(1-pyrazolyl)borate anion (B(pz)4; n=1). The complexes each exhibit strong visible absorption assigned as a π*(L)←dπ(Ru) metal-to-ligand charge-transfer (MLCT) transition characteristic of the cis-L2Ru2+ kernel. A corresponding MLCT excited state emission is observed in room temperature CH3CN solution, although emission energies, lifetimes, and quantum yields are reduced relative to Ru(bpy)3 2+. Electronic spectra and cyclic voltammetry measurements indicate that the relative π-acceptor abilities of the coordinated Z are: Z=(1H-pyrazolyl)2(pz)2B(pz)2<(pyridine)2<(pz)2CH(pz). Uncoordinated pz groups of cis-(bpy)2Ru(pz)2B(pz)2 + can be reacted to form a sterically hindered, localized-valence (Kcom33 l mol−1) cis,cis-(bpy)2RuII(pz)2B(pz)2RuII(bpy)2 3+ dimer. The dimer properties are interpreted by comparison to the known cis-(bpy)2RuII(pz)2RuII(bpy)2 2+ analog. The dimer is photoreactive and undergoes an asymmetrical photocleavage in CH3CN (yielding cis-(bpy)2RuIII(pz)2B(pz)2 2+ and cis-(bpy)2RuII(CH3CN)2 2+), similar to the corresponding thermal reaction observed for the mixed-valence cis-(bpy)2RuII(pz)2RuIII(bpy)2 3+ system.  相似文献   

11.
The triplet states of adriamycin (Ad), daunomycin (D) and two daunomycin analogues, daunomycinone (Dc) and daunomycin N-trifluoroacetamide (DAc), have been studied using laser flash photolysis and pulse radiolysis techniques. Triplet lifetimes, molar absorption coefficients, energy levels and quantum yields have been obtained for Dc and DAc, and estimated for D and Ad. Time-resolved near-infrared singlet oxygen luminescence measurements have been carried out on D, Ad and 5-iminodaunomycin (5-ID) in 2H2O solution and Dc in benzene solution at room temperature. Singlet oxygen quenching by the water-soluble anthracyclines was observed and a second-order rate constant of approx. 10(8) M-1.s-1 obtained. Electron spin resonance experiments have demonstrated that D photoexcited at lambda less than or 365 nm gives rise to singlet oxygen as shown by its reaction with 2,2,6,6-tetramethyl-4-piperidone to give the corresponding nitroxyl radical. Although all the anthracyclines studied have the ability to photosensitize the formation of singlet oxygen, the quantum yields are very low (phi delta approximately 0.02-0.03), suggesting that these anthracyclines would be poor photodynamic sensitisers.  相似文献   

12.
Phthalocyanine mediated photosensitization of 2'-deoxyguanosine (dG) in oxygen saturated aqueous solution has previously been shown to result in the addition of molecular oxygen to the guanine base generating the 4R* and 4S* diastereoisomers of 4,8-dihydro-4-hydroxy-8-oxo-2'-deoxyguanosine (dO) (the asterisk denotes unambiguous assignment of the 4R and 4S diastereoisomers). The data presented here show that the same guanine modified bases are generated in a 1:1 ratio when thymidylyl-(3',5')-2'-deoxyguanosine (d(TpG)) is similarly photo-oxidized. These modified dinucleoside monophosphates, labelled d(TpO)-A and -B, have been isolated by high performance liquid chromatography and characterized by proton NMR spectrometry, fast atom bombardment mass spectrometry, and enzymatic digestions. Photosensitization in D2O instead of H2O leads to an increase in the rate of d(TpO) formation that is consistent with a type II (singlet oxygen) reaction mechanism. Three interesting properties of these modified dinucleoside monophosphates are: i) the rate of their digestion with spleen phosphodiesterase is greatly reduced relative to d(TpG), ii) they are not digested by snake venom phosphodiesterase, and iii) they are stable to 1.0 M piperidine at 90 degrees C for 30 min. The latter observation indicates that 4,8-dihydro-4-hydroxy-8-oxoguanine is not a base lesion responsible for the strand breaks observed following hot piperidine treatment of DNA exposed to type II photosensitizers or chemically generated singlet oxygen.  相似文献   

13.
Oxidation of cytochrome c, a key protein in mitochondrial electron transport and a mediator of apoptotic cell death, by reactive halogen species (HOX, X2), i.e., metabolites of activated neutrophils, was investigated by stopped-flow. The fast initial reactions between FeIIIcytc and HOX species, with rate constants (at pH 7.6) of k > 3 x 10(6) M(-1) s(-1) for HOBr, k > 3 x 10(5) M(-1) s(-1) for HOCl, and k = (6.1+/-0.3) x 10(2) M(-1) s(-1) for HOI, are followed by slower intramolecular processes. All HOX species lead to a blue shift of the Soret absorption band and loss of the 695-nm absorption band, which is an indicator for the intact iron to Met-80 bond, and of the reducibility of FeIIIcytc. All HOX species do, in fact, persistently impair the ability of FeIIIcytc to act as electron acceptor, e.g., in reaction with ascorbate or O2*-. I2 selectively oxidizes the iron center of FeIIcytc, with a stoichiometry of 2 per I2, and with k(FeIIcytc + I2) approximately 4.6 x 10(4) M(-1) s(-1) and k(FeIIcytc + I2*-) = (2.9+/-0.4) x 10(8) M(-1) s(-1). Oxidation of FeIIcytc by HOX species is not selectively directed toward the iron center; HOBr and HOCl are considered to react primarily by N-halogenation of side chain amino groups, and HOI mainly by sulfoxidation. There is some evidence for the generation of HO* radicals upon reaction of HOCl with FeIIcytc. Chloramines (e.g., NH2Cl), bromamine (NH2Br), and cyclo-Gly2 chloramide oxidize FeIIcytc slowly and unselectively, but iodide efficiently catalyzes reactions of these N-halogens to yield fast selective oxidation of the iron center; this is due to generation of I2 by reaction of I- with the N-halogen and recycling of I- by reaction of I2 with FeIIcytc. Iodide also catalyzes methionine sulfoxidation and thiol oxidation by NH2Cl. The possible biological relevance of these findings is discussed.  相似文献   

14.
The NO donor trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O (py=pyridine) was loaded into poly-lactic-co-glycolic acid (PLGA) microparticles using the double emulsification technique. Scanning electron microscopy (SEM) and dynamic light scattering revealed that the particles are spherical in shape, have a diameter of 1600nm, and have low tendency to aggregate. The entrapment efficiency was 25%. SEM analysis of the melanoma cell B16-F10 in the presence of the microparticles containing the complex trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O (pyMP) showed that the microparticles were adhered to the cell surface after 2h of incubation. The complex with concentrations lower than 1x10(-4)M did not show toxicity in B16-F10 murine cells. The complex in solution is toxic at higher concentrations (>1x10(-3)M), with cell death attributed to NO release following the reduction of the complex. pyMP is not cytotoxic due to the lower bioavailability and availability of the entrapped complex to the medium and its reducing agents. However, pyMP is phototoxic upon light irradiation. The phototoxicity strongly suggests that cell death is due to NO release from trans-[Ru(NO)(NH(3))(4)(py)](3+). This work shows that pyMP can serve as a model for a drug delivery system carrying the NO donor trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O, which can release NO locally at the tumor cell by irradiation with light only.  相似文献   

15.
T J Thomas  R P Messner 《Biochimie》1988,70(2):221-226
The effects of Ru(NH3)(3+)6 on the conformation of poly(dG-m5dC).poly(dG-m5dC) and poly(dG-dC).poly(dG-dC) were studied by circular dichroism (CD) spectroscopy. Ru(NH3)(3+)6 at very low concentrations provokes the Z-DNA conformation in both polynucleotides. In the presence of 50 mM NaCl, the concentration of Ru(NH3)(3+)6 at the midpoint of B to Z transition of poly(dG-m5dC).poly(dG-m5dC) is 4 microM compared to 5 microM for Co(NH3)(3+)6. The half-lives of B to Z transition of poly(dG-m5dC).poly(dG-m5dC) in the presence of 10 microM Ru(NH3)(3+)6 and Co(NHG3)(3+)6 are at 23 and 30 min, respectively. The concentration of Ru(NH3)(3+)6 at the midpoint of B to Z transition of poly(dG-dC).poly(dG-dC) is 50 microM. These results demonstrate that Ru(NH3)(3+)6 is a highly efficient trivalent cation for the induction of B to Z transition in poly(dG-m5dC).poly(dG-m5dC) and poly(dG-dC).poly(dG-dC). In contrast, Ru(NH3)(3+)6 has no significant effect on the conformation of calf thymus DNA, poly(dA-dT).poly(dA-dT) and poly(dA-dC).poly(dG-dT).  相似文献   

16.
A novel polypyridyl ligand 2-(4'-benzyloxyphenyl)imidazo[4,5-f][1,10]phenanthroline (BPIP) and its complex [Ru(bpy)2(BPIP)]2+ (1) (bpy=2,2'-bipyridine) and (2) [Ru(phen)2(BPIP)]2+) (phen=1,10-phenanthroline) have been synthesized and characterized by elemental analysis, electrospray mass spectra and 1H NMR. The DNA-binding properties of the two complexes were investigated by spectroscopic and viscosity measurements. The results suggest that both complexes bind to DNA via an intercalative mode. Both complexes can enantioselectively interact with calf thymus DNA (CT-DNA) in a way. The Lambda enantiomer of complex 1 is slightly predominant for binding to CT-DNA to the Delta enantiomer. Under irradiation at 365 nm, both complexes have also been found to promote the photocleavage of plasmid pBR 322 DNA. Inhibitors studies suggest that singlet oxygen ((1)O2) and hydroxyl radical (*OH) play a significant role in the cleavage mechanism for both complexes. Moreover, the DNA-binding and photocleavage properties of both complexes were compared with that of [Ru(bpy)2(BPIP)]2+ and [Ru(phen)2(BPIP)]2+. The experimental results indicate that methene group existence or not have a significant effect on the DNA-binding and cleavage mechanism of these complexes.  相似文献   

17.
The aim of this work was to investigate the photodynamic action of electron-rich anthraquinones, viz., cynodontin (CYN) and cynodontin-5,8-dimethylether (CYNM). Both optical and EPR methods are used to detect the generation of singlet oxygen. Based on RNO bleaching, relative to rose bengal (RB), singlet oxygen generating efficiencies of CYN and CYNM are derived to be 0.055 and 0.254, respectively. The formation of superoxide anion via electron transfer to O2 was monitored by optical spectroscopy, using SOD-inhibitable cytochrome c reduction assay. The production of O2-* is enhanced in the presence of electron donors such as EDTA and NADH. Photolysis of CYN and CYNM in DMSO, in the presence of 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), generates a multi-line EPR spectrum, characteristic of spin adduct mixture of O2-* and *OH. Both optical and ESR measurements indicate that O2-* (Type I) and 1O2 (Type II) paths are involved in CYN and CYNM photodynamic action.  相似文献   

18.
A family of auxiliary beta subunits coassemble with Slo alpha subunit to form Ca(2)+-regulated, voltage-activated BK-type K(+) channels. The beta subunits play an important role in regulating the functional properties of the resulting channel protein, including apparent Ca(2)+ dependence and inactivation. The beta3b auxiliary subunit, when coexpressed with the Slo alpha subunit, results in a particularly rapid ( approximately 1 ms), but incomplete inactivation, mediated by the cytosolic NH(2) terminus of the beta3b subunit (Xia et al. 2000). Here, we evaluate whether a simple block of the open channel by the NH(2)-terminal domain accounts for the inactivation mechanism. Analysis of the onset of block, recovery from block, time-dependent changes in the shape of instantaneous current-voltage curves, and properties of deactivation tails suggest that a simple, one step blocking reaction is insufficient to explain the observed currents. Rather, blockade can be largely accounted for by a two-step blocking mechanism (C(n) <---> O(n) <---> O(*)(n) <---> I(n)) in which preblocked open states (O*(n)) precede blocked states (I(n)). The transitions between O* and I are exceedingly rapid accounting for an almost instantaneous block or unblock of open channels observed with changes in potential. However, the macroscopic current relaxations are determined primarily by slower transitions between O and O*. We propose that the O to O* transition corresponds to binding of the NH(2)-terminal inactivation domain to a receptor site. Blockade of current subsequently reflects either additional movement of the NH(2)-terminal domain into a position that hinders ion permeation or a gating transition to a closed state induced by binding of the NH(2) terminus.  相似文献   

19.
The chain reactions HO* + H2O2 --> H2O + O2*- + H+ and O2*- + H+ + H2O2 --> O2 + HO* + H2O, commonly known as the Haber-Weiss cycle, were first mentioned by Haber and Willst?tter in 1931. George showed in 1947 that the second reaction is insignificant in comparison to the fast dismutation of superoxide, and this finding appears to have been accepted by Weiss in 1949. In 1970, the Haber-Weiss reaction was revived by Beauchamp and Fridovich to explain the toxicity of superoxide. During the 1970s various groups determined that the rate constant for this reaction is of the order of 1 M(-1) s(-1) or less, which confirmed George's conclusion. The reaction of superoxide with hydrogen peroxide was dropped from the scheme of oxygen toxicity, and superoxide became the source of hydrogen peroxide, which yields hydroxyl radicals via the Fenton reaction, Fe2+ + H2O2 --> Fe3+ + HO- + HO*. In 1994, Kahn and Kasha resurrected the Haber-Weiss reaction again, but this time the oxygen was believed to be in the singlet (1delta(g)) state. As toxicity arises not from a Fenton-catalysed Haber-Weiss reaction, but from the Fenton reaction, the Haber-Weiss reaction should not be mentioned anymore.  相似文献   

20.
All acridines used (acriflavine, proflavine, acridine orange and 3-azido-10-methylacridinium chloride) produced killing in yeast cells when activated with visible light. Acriflavine, proflavine and 3-azido-10-methylacridinium chloride, but not acridine orange, produced petite and sectored colonies. Both cell killing and petite induction by light activation of acriflavine resulted apparently from photodynamic action mediated by singlet oxygen (1O2) since the effect were prevented by either sodium azide or anaerobiosis. The biological effects of 3-azido-10-methylacridinium chloride, which was developed as a potential photoaffinity probe for studying the binding and biological effects of acridines, appeared to be due to a photodynamic action analogous to that of acriflavine. Sodium azide or anaerobiosis prevented the light-activated effects of 3-azido-10-methylacridinium chloride despite the fact that the initial chemical breakdown of the azido derivative induced by light was not affected. Cells suspended in D2O demonstrated an enhanced response to 3-azido-10-methylacridinium chloride with irradiation. These results indicate that singlet oxygen mediates the light-activated biological effects of both acriflavine and 3-azido-10-methylacridinium chloride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号