首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative stress is commonly induced when plants are grown under high temperature (HT) stress conditions. Selenium often acts as an antioxidant in plants; however, its role under HT-induced oxidative stress is not definite. We hypothesize that selenium application can partly alleviate HT-induced oxidative stress and negative impacts of HT on physiology, growth and yield of grain sorghum [Sorghum bicolor (L.) Moench]. Objectives of this study were to investigate the effects of selenium on (a) leaf photosynthesis, membrane stability and antioxidant enzymes activity and (b) grain yield and yield components of grain sorghum plants grown under HT stress in controlled environments. Plants were grown under optimal temperature (OT; 32/22 °C daytime maximum/nighttime minimum) from sowing to 63 days after sowing (DAS). All plants were foliar sprayed with sodium selenate (75 mg L?1) at 63 DAS, and HT stress (40/30 °C) was imposed from 65 DAS through maturity. Data on physiological, biochemical and yield traits were measured. High temperature stress decreased chlorophyll content, chlorophyll a fluorescence, photosynthetic rate and antioxidant enzyme activities and increased oxidant production and membrane damage. Decreased antioxidant defense under HT stress resulted in lower grain yield compared with OT. Application of selenium decreased membrane damage by enhancing antioxidant defense resulting in higher grain yield. The increase in antioxidant enzyme activities and decrease in reactive oxygen species (ROS) content by selenium was greater in HT than in OT. The present study suggests that selenium can play a protective role during HT stress by enhancing the antioxidant defense system.  相似文献   

2.
The effects of magnesium (Mg) supplementation on the growth performance, oxidative damage, DNA damage, and photosynthetic pigment synthesis, as well as on the activity level of carbonic anhydrase (CA), ribulose-1,5-bisphosphate carboxylase (Rubisco), and antioxidant enzymes were studied in Vicia faba L. plants exposed to heat stress (HS) and non-heat-stress (non-HS) conditions. Seeds were grown in pots containing a 1:1 mixture of sand and peat, with Mg treatments. The treatments consisted of (i) 0 Mg and non-HS (ambient temperature; control); (ii) 50 mM Mg; (iii) HS (38 °C); and (iv) 50 mM Mg and HS (38 °C). HS was imposed by placing potted plants in an incubator at 38 °C for 48 h. Growth attributes, total chlorophyll (Total Chl), and CA, and Rubisco activity decreased in plants subjected to HS, whereas accumulation of organic solutes [proline (Pro) and glycine betaine (GB)]; superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activity; DNA damage; electrolyte leakage (EL); and malondialdehyde (MDA) and hydrogen peroxide (H2O2) content all increased. Application of Mg, however, significantly enhanced further proline (Pro), glycinebetaine (GB), SOD, POD, and CAT activity, and decreased DNA damage, EL, and MDA and H2O2 concentrations. These results suggest that adequate supply of Mg is not only essential for plant growth and development, but also improves plant tolerance to HS by suppressing cellular damage induced by reactive oxygen species through the enhancement of the accumulation of Pro and GB, and the actions of antioxidant enzymes.  相似文献   

3.
Growth and Metabolism of Senna as Affected by Salt Stress   总被引:1,自引:0,他引:1  
Pot culture experiments were conducted using different NaCl concentrations to assess their impact on the growth and metabolic changes in senna (Cassia angustifolia Vahl.). Five treatments (0, 40, 80, 120, and 160 mM NaCl) were given to the plants at three phenological stages, i.e. at pre-flowering, (45 days after sowing, DAS); flowering (75 DAS) and post-flowering (90 DAS) stages. A significant reduction in the biomass and length of the roots and shoots, photosynthetic rate, stomatal conductance, the total chlorophyll content, protein content, nitrate reductase activity, and reduced nitrogen content of the leaves was observed at each phenological stage with each salt concentration applied. Contrary to this, proline and nitrate contents of the leaves increased markedly. The post-flowering stage was most sensitive to NaCl treatment.  相似文献   

4.
Alterations of plant growth, chlorophyll fluorescence parameters, nodule carbon metabolism and polyols concentration as result of salt stress were examined in alfalfa (Medicago sativa). Plants, in symbiosis with Sinorhizobium meliloti GR4 strain, were grown under controlled conditions for 35 days (DAS) and subjected to 150 mM of NaCl stress. Plant biomass (PDW) and nitrogen fixation rate (NFR) were markedly affected by salt stress conditions; the highest reductions of PDW (50%) and NFR (40%) were registered at 84 DAS and 56 DAS, respectively. In addition, salinity affected the chlorophyll fluorescence parameters, decreased initial chlorophyll fluorescence (F0) and increased the optimum quantum yield of PSII (Fv/Fm ratio). The enzyme activities sucrose synthase activity and phosphoenolpyruvate carboxylase, responsible for the carbon supply to the bacteroids by the formation of dicarboxylates, were drastically inhibited by salinity, mainly at 56 DAS with the beginning of flowering. The content of total soluble sugars and proline increased under salt stress, and these concentrations were higher in nodule than in leaf. This last result suggests that the nodule is an organ specially protected in order to maintain its functioning, even under stress conditions. Besides, the content of myoinositol and pinitol in leaves and nodules changed with the plant growth stage and the saline treatment. Under salinity stress, the concentrations of pinitol in nodule were higher than in leaf, which supports the central function of this molecule in the adaptive response of nodules to salt stress. The increase of pinitol synthesis in nodule of M. sativa under salt stress could be one of the adaptive features used by the plant.  相似文献   

5.
Stevia rebaudiana (S. rebaudiana) is the most important therapeutic plant species and has been accepted as such worldwide. It has a tendency to accumulate steviol glycosides, which are 300 times sweeter than marketable sugar. Recently, diabetic patients commonly use this plant as a sugar substitute for sweet taste. In the present study, the effects of different spectral lights were investigated on biomass accumulation and production of secondary metabolites in adventitious root cultures of S. rebaudiana. For callus development, leaf explants were excised from seed-derived plantlets and inoculated on a Murashige and Skoog (MS) medium containing the combination of 2,4-dichlorophenoxy acetic acid (2, 4-D, 2.0 mg/l) and 6-benzyladenine (BA, 2.0 mg/l), while 0.5 mg/l naphthalene acetic acid (NAA) was used for adventitious root culture. Adventitious root cultures were exposed to different spectral lights (blue, green, violet, red and yellow) for a 30-day period. White light was used as control. The growth kinetics was studied for 30 days with 3-day intervals. In this study, the violet light showed the maximum accumulation of fresh biomass (2.495 g/flask) as compared to control (1.63 g/flask), while red light showed growth inhibition (1.025 g/flask) as compared to control. The blue light enhanced the highest accumulation of phenolic content (TPC; 6.56 mg GAE/g DW), total phenolic production (TPP; 101 mg/flask) as compared to control (5.44 mg GAE/g DW; 82.2 mg GAE/g DW), and exhibited a strong correlation with dry biomass. Blue light also improved the accumulation of total flavonoid content (TFC; 4.33 mg RE/g DW) and total flavonoid production (TFP; 65 mg/flask) as compared to control. The violet light showed the highest DPPH inhibition (79.72%), while the lowest antioxidant activity was observed for control roots (73.81%). Hence, we concluded that the application of spectral lights is an auspicious strategy for the enhancement of the required antioxidant secondary metabolites in adventitious root cultures of S. rebaudiana and of other medicinal plants.  相似文献   

6.
《Aquatic Botany》2001,69(2-4):359-365
Two contrasting ecotypes of Phragmites australis adapted to high (Lake Templiner See: Templ) and low (Lake Parsteiner See: Par1) N supply were investigated regarding the leaf content of photosynthetic pigments. Pigment contents were greatest in middle leaves compared to uppermost (still developing) and lowest leaves (already senescent). The highest content was always yielded by chlorophyll a followed by chlorophyll b>lutein>β-carotene>neoxanthin>violaxanthin>zeaxanthin>antheraxanthin. Pigment patterns were similar when comparing both stands. However, the contents per leaf area (and per dry weight) of all pigments were up to three-fold higher at Templ versus Par1. Differences in N supply are most likely the cause. Although, the productivity of Templ reed was about 10-fold higher than that of Par1, the latter showed a two-fold higher biomass gain per chlorophyll a content (60.8 versus 31.3 g dry weight g−1 chlorophyll a). This reflects the higher efficiency of the Par1 reed adapted to N-limited growth. It is concluded that site conditions, especially N availability, were determining stand-specific variations in content of photosynthetic pigments.  相似文献   

7.
The effect of N availability on photosynthetic capacity, growth parameters and yield was studied in field-grown durum-wheat plants at both the leaf and canopy levels. Two contrasting nitrogen levels (120 and 0 kg ha?1) were assayed in a randomised block design with nine replicates each. Total biomass was measured at anthesis and yield and its agronomical components at maturity. Photosynthetic measurements were performed 2 weeks after anthesis in two plots of each N treatment. Flag leaves were measured, using a LI-COR 6400 combined with the chlorophyll fluorescence meter, and the whole canopy by measuring CO2 and H2O fluxes in an innovative canopy-chamber system. We showed a clear increase in photosynthetic gas exchange and chlorophyll contents with N fertilisation at both canopy and leaf levels. As a consequence the increase in yield as response to N fertilisation seems the result of a larger green leaf area combined with a higher photosynthetic capacity of the leaves attributable to an increase in the maximum carboxylation velocity of Rubisco. Moreover gas-exchange measurements of the flag leaf during grain filling seem to provide a realistic characterisation, not just of the photosynthetic performance of the crop, but also about the impact of N availability on yield. Thus, measurements performed on the flag leaf matched those at the canopy level, with proportional increases in terms of gas exchange and chlorophyll content, providing a fast, cheap and reliable estimation of canopy photosynthesis and the grain yield attained by the crop.  相似文献   

8.
Silicon improves salinity tolerance in wheat plants   总被引:5,自引:0,他引:5  
Durum wheat (Triticum durum cv. Gediz-75) and bread wheat (Triticum aestivum cv. Izmir-85) were grown in a complete nutrient solution in a growth room to investigate effect of silicone supplied to the nutrient solution on plants grown at salt stress. The experiment was a 2 × 2 factorial arrangement with two levels of NaCl in nutrient solution, 0 and 100 mM, and two levels of silicone (Si) in nutrient solution, 0.25 and 0.50 mM, as Na2SiO3. The plants grown at 100 mM NaCl produced less dry matter and chlorophyll content than those without NaCl. Supplementary Si at both 0.25 and 0.5 mM ameliorated the negative effects of salinity on plant dry matter and chlorophyll content. Membrane permeability and proline content in leaves increased with addition of 100 mM NaCl and these increases were decreased with Si treatments. Sodium (Na) concentration in plant tissues increased in both leaves and roots of plants in the high NaCl treatment and Si treatments lowered significantly the concentrations of Na in both leaves and roots. Bread wheat was more tolerant to salinity than durum wheat. The accumulation of Na in roots indicates a possible mechanism whereby bread wheat copes with salinity in the rooting medium and/or may indicate the existence of an inhibition mechanism of Na transport to leaves. Concentrations of both Ca and K were lower in the plants grown at high NaCl than in those in the control treatment and these two element concentrations were increased by Si treatments in both shoots and roots but remained lower than control values in most cases.  相似文献   

9.
Pot culture experiments were conducted to assess the extent of growth, photosynthetic efficiency and nitrogen assimilation of chicory (Cichorium intybus L.) as affected by NaCl and CaCl2 alone as well as in combination. Six treatments, i.e., 80 mM and 160 mM NaCl, 5 mM and 10 mM CaCl2 and 80 mM + 10 mM and 160 mM + 10 mM of NaCl + CaCl2 were given to the growing plants separately at three developmental stages, viz., the pre-flowering (30 DAS), flowering (120 DAS) and post-flowering (150 DAS) stages. Each NaCl treatment caused a significant reduction in total plant biomass, photosynthetic rate, stomatal conductance, total chlorophyll content, soluble protein content, NR activity and nitrogen content, although nitrate content increased. On the contrary CaCl2 treatment gave a favorable effect, compared to the control. The effect of combined treatments was similar to that of NaCl but less in magnitude. Thus, the application of CaCl2 may mitigate the adverse effect caused by NaCl.  相似文献   

10.
Liriodendron tulipifera is an important forest plant which is commonly used in urban environments as a shade tree. Young plants have been exposed (under controlled conditions) to 120 ppb of O3 for 45 consecutive days (5 h d−1). The aim of this investigation was to clarify if O3 limits the physiological performance of L. tulipifera. In treated plants, dynamics related to membrane injury, gas exchange and chlorophyll a fluorescence leads to: (i) increase in lipid peroxidation (maximum value of +78% 15 days after the fumigation, compared to controls); (ii) reduction of photosynthetic activity (up to 66% 28 days after the exposure), twinned with a partial stomatal closure and a store of CO2 in substomatal chambers; (iii) reduction in carboxylation efficiency (−11% at the end of exposure); (iv) damage to PSII, as demonstrated by the increase in the PSII excitation pressure (−57% 28 days after the treatment). On this basis, O3 should be considered very harmful to L. tulipifera, although the reduction of total chlorophylls content and the activation of xanthophyll cycle take place in order to attempt to regulate light absorbed energy limiting oxidative damage.  相似文献   

11.
Salinity is one of the serious abiotic stresses adversely affecting the majority of arable lands worldwide, limiting the crop productivity of most of the economically important crops. Sweet basil (Osmium basilicum) plants were grown in a non-saline soil (EC = 0.64 dS m−1), in low saline soil (EC = 5 dS m−1), and in a high saline soil (EC = 10 dS m−1). There were differences between arbuscular mycorrhizal (Glomus deserticola) colonized plants (+AMF) and non-colonized plants (−AMF). Mycorrhiza mitigated the reduction of K, P and Ca uptake due to salinity. The balance between K/Na and between Ca/Na was improved in +AMF plants. Growth enhancement by mycorrhiza was independent from plant phosphorus content under high salinity levels. Different growth parameters, salt stress tolerance and accumulation of proline content were investigated, these results showed that the use of mycorrhizal inoculum (AMF) was able to enhance the productivity of sweet basil plants under salinity conditions. Mycorrhizal inoculation significantly increased chlorophyll content and water use efficiency under salinity stress. The sweet basil plants appeared to have high dependency on AMF which improved plant growth, photosynthetic efficiency, gas exchange and water use efficiency under salinity stress. In this study, there was evidence that colonization with AMF can alleviate the detrimental salinity stress influence on the growth and productivity of sweet basil plants.  相似文献   

12.
Soil salinity is one of the most important environmental factors responsible for serious agricultural problems. Tomato salt tolerance may be improved by genetic selection and by the use of adapted physiological tools. The aim of this study was to investigate the impact of exogenous application of salicylic acid (SA 0.01 mM) and calcium sulphate (CaSO4 5 mM), singly or in combination, on plant growth, photosynthetic pigments, nutritional behaviour and some metabolic parameters (total chlorophyll, carotenoids, soluble sugars, proline and lipid peroxidation) of two tomato cultivars (cv. Super Marmande and cv. Red River) exposed to salt stress (100 mM NaCl). Application of 100 mM NaCl reduced plant growth, total chlorophyll and carotenoid contents. Salt stress also induced an accumulation of Na+, a decrease in K+ and Ca2 + concentration and root sugar level, an increase in malondialdehyde (MDA) and proline concentration. Deleterious impact of salinity was related to modification in ion content rather than modification in the plant water status. Exogenous application of SA or Ca alone improved plant behaviour in the presence of NaCl. Nevertheless, the best results in terms of growth, photosynthetic pigment concentrations and mineral nutrition (limitation of Na+ accumulation and maintenance of K+ and Ca2 + content) were obtained in response to the combined SA + Ca treatment. Although the involved physiological parameters varied depending on the considered cultivar, our results suggest that Ca2 + and SA may interact to reduce the stress experienced by the plant in the presence of NaCl.  相似文献   

13.
The coastal shrub Limoniastrum monopetalum is capable of growth in soil containing extremely high concentrations of heavy metals. A greenhouse experiment was conducted in order to investigate the effects of a range of Zn concentrations (0–130 mmol l−1) on growth and photosynthetic performance, by measuring relative growth rate, total leaf area, plant height, gas exchange, chlorophyll fluorescence parameters and photosynthetic pigment concentrations. We also determined the total zinc, nitrogen, phosphorus, sulphur, calcium, magnesium, sodium, potassium, iron and copper concentrations in the plant tissues. The study species demonstrated hypertolerance to Zn stress, since survival was recorded with leaf concentrations of up to 1700 mg Zn kg−1 dry mass when treated with 130 mmol Zn l−1. L. monopetalum exhibited little overall effects on photosynthetic function at Zn levels of up to 90 mmol l−1. At greater external Zn concentration, plant growth was negatively affected, due in all probability to the recorded decline in net photosynthetic rate, which may be linked to the adverse effect of the metal on photosynthetic electron transport. Growth parameters were virtually unaffected by leaf tissue concentrations as high as 1400 mg Zn kg−1 dry mass thus indicating that this species could play an important role in the phytoremediation of Zn-polluted areas.  相似文献   

14.
Experiment was conducted to identify the impacts of the salinity acclimation process on the photosynthetic efficiency, osmotic adjustment, membrane integrity, and yield components in two wheat cultivars differing in their salinity tolerance. The design of the experiment was factorial randomized block, where genotype is factor 1 and acclimation treatments represent factor 2. Genotypes were grown from emergence to 30 days after sowing (DAS) by irrigating with tap water [electrical conductivity (EC) of 0.776 dS m?1]. Thereafter, both the genotypes were divided into two groups and exposed to either irrigation with sublethal level of salinity EC of 2.09 or 3.76 dS m?1 for 21 days. At booting stage (65 DAS), both groups were subjected to lethal level of salinity stress EC of 12 dS m?1 for 21 days, followed by irrigation with tap water till maturity. Non-acclimated plants were irrigated with tap water from emergence to 65 days, then directly irrigated with lethal level of salinity for 21 days, followed by irrigation with tap water till maturity. The control plants were continuously irrigated with tap water from emergence until maturity. The non-acclimated plants had decreased electron transport rates at the donor and acceptor side of PSII and PSI in Giza 168, and decreased electron transport rates at PSII acceptor side in Sakha 8 compared to control plants. In both genotypes, the non-acclimated plants had decreased chlorophyll a, b, carotenoid, proline and total soluble sugar concentration, relative water content, membrane stability index, yield and yield components compared with acclimated plants. While, osmotic potential and lipid peroxidation showed an opposite trend. Overall, acclimation treatment (EC of 2.09 dS m?1) during vegetative stage alleviated the inhibitory effects of lethal level of salinity stress at booting stage through enhanced photosynthetic efficiency and osmotic adjustment, resulting in increased membrane integrity, biomass production and grain yield than in non-acclimated plants.  相似文献   

15.
In order to evaluate differential growth, photosynthesis and H+-ATPase activity responses to salt-induced stress, two Jerusalem artichoke (Helianthus tuberosus L.) genotypes (Nanyu No. 1 and Qingyu No. 2) were used in sand-culture experiment with different concentrations of NaCl (0, 30, 60, 90, 120 and 150 mM). After 20 days of growth, the NaCl stress resulted in a decrease of biomass accumulation, relative leaf expansion rate and photosynthetic rate, but an increase of proline content in both genotypes. Compared with Qingyu No. 2, Nanyu No. 1 had lower biomass, photosynthetic rate, gas exchange and transpiration rate, but higher proline content, activities of plasma membrane H+-ATPase (PM H+-ATPase) and vacuolar membrane H+-ATPase (VM H+-ATPase). Hence, the NaCl adaptation strategy in Nanyu No. 1 was by lowering photosynthetic rate, stomatal conductance and transpiration rate while maintaining high H+-ATPase activities, whereas the adjustment of Qingyu No. 2 was by keeping much higher rate of proline accumulation and concentration of chlorophyll. The differences in salt tolerance showed that different adaptation mechanisms existed between cultivars of Jerusalem artichoke. The findings offered the possibility of selecting salt-tolerant genotypes of Jerusalem artichoke.  相似文献   

16.
Liao Y C  Fan H B  Li Y Y  Liu W F  Yuan Y H 《农业工程》2010,30(3):150-154
To study the impact of nitrogen deposition on 1-year-old Chinese fir (Cunninghamia lanceolata) seedlings in pots, the dissolved NH4NO3 was sprayed on the seedlings every 3 days for 1 year. The simulated elevated N depositions were equivalent to N0(0), N1(6 gN/(m2 a)), N2(12 gN/(m2 a)), N3(24 gN/(m2 a)) and N4(48 gN/(m2 a)). The results indicated that medium N treatments (N2, N3) enhanced growth significantly. The height, stem base diameter and per-seedling biomass of Chinese fir seedlings increased with N loads and decreased in the high N treatments. Compared to N0, the height and per-seedling biomass were highest in N2 treatment and increased by 10.77% and 12.35%, respectively. The stem base diameter was highest in N3 treatment and increased by 8.81% compared to N0. The net photosynthetic rate (Pn) in treatments N1, N2, N3, N4 increased by 1.20%, 9.28%, 24.23% and 4.30%, and the highest photosynthetic rate by 67.09%, 125.32%, 148.10% and 51.90%, respectively. The N1–N3 treatments, especially N2, stimulated light compensation point (LCP) of the seedlings significantly, but N4 exhibited inhibitive effect. Compared with LCP, light saturation point (LSP) showed weaker response to N loads, positive to N2, but negative to all other N treatments. Low-to-medium N treatments (N1, N2) enhanced Chl (a + b) by 2.19% and 37.15%, while medium-to-high N treatments (N3, N4) reduced Chl (a + b) by 7.95% and 15.56%, respectively. Water use efficiency (WUE) and stomatal conductance (C) decreased slightly with N loads.  相似文献   

17.
《Aquatic Botany》2007,86(1):62-68
This glasshouse study examined the effect of three damage types on plant growth and nutrient allocation of the invasive aquatic plant, alligator weed (Alternanthera philoxeroides). The damage included: repeated leaf removal, a single application of herbicide, and one-time shoot removal. Damage types were meant to simulate the effects of insect herbivory, chemical, and mowing/grazing, respectively. Response variables included plant biomass and both the concentration and abundance of nutrients. Complete shoot removal and herbicide treatments caused an initial decline in growth rate, followed by several weeks of increasing rates and finally a second decline during the fourth week. Plants from control and repeated leaf removal treatments showed a steady increase in growth rate from the treatment application to the final harvest, but control plants were accumulating biomass three times faster than repeated defoliation plants by the fifth week (9.7 and 3.5 g week−1, respectively). Not surprisingly, all treatments led to lower total cumulative biomass 5 weeks after treatment application (mean 30.8 g) when compared with controls (49.0 g). However, despite the repeated leaf removal and complete shoot removal treatments removing similar quantities of biomass (mean 8.0 and 7.5 g respectively), repeated removal of leaves produced less total biomass (26.2 g) and led to less cumulative above ground biomass (20.1 g) than the other treatments (mean total = 33.1 g, mean above ground = 25.7 g). Repeated leaf removal also produced less below ground biomass (6.1 g) than the shoot removal treatment (8.5 g) and had the greatest negative effect on nitrogen and potassium abundance in plant tissues after 5 weeks. In addition, it reduced the amount of phosphorous to a lower level than herbicide treated or control plants. These results indicate that repeated leaf removal was the treatment most effective in reducing biomass and depleting nutrients in A. philoxeroides plants.  相似文献   

18.
The effects of Cd have been investigated in tomato (Lycopersicon esculentum) plants grown in a controlled environment in hydroponics, using Cd concentrations of 10 and 100 μM. Cadmium treatment led to major effects in shoots and roots of tomato. Plant growth was reduced in both Cd treatments, leaves showed chlorosis symptoms when grown at 10 μM Cd and necrotic spots when grown at 100 μM Cd, and root browning was observed in both treatments. An increase in the activity of phosphoenolpyruvate carboxylase, involved in anaplerotic fixation of CO2 into organic acids, was measured in root extracts of Cd-exposed plants. Also, significant increases in the activities of several enzymes from the Krebs cycle were measured in root extracts of tomato plants grown with Cd. In leaf extracts, significant increases in citrate synthase, isocitrate dehydrogenase and malate dehydrogenase activities were also found at 100 μM Cd, whereas fumarase activity decreased. These data suggest that at low Cd supply (10 μM) tomato plants accumulate Cd in roots and this mechanism may be associated to an increased activity in the PEPC–MDH–CS metabolic pathway involved in citric acid synthesis in roots. Also, at low Cd supply some symptoms associated with a moderate Fe deficiency could be observed, whereas at high Cd supply (100 μM) effects on growth overrule any nutrient interaction caused by excess Cd. Cadmium excess also caused alterations on photosynthetic rates, photosynthetic pigment concentrations and chlorophyll fluorescence, as well as in nutrient homeostasis.  相似文献   

19.
The combined effects of salt stress and gibberellic acid (GA3) on plant growth and nutritional status of maize (Zea mays L. cv., DK 647 F1) were studied in a pot experiment. Treatments were (1) control (C): nutrient solution alone, (2) salt stress (S): 100 mM NaCl, (3) S + GA1: 100 mM NaCl and 50 ppm GA3 and (4) S + GA2: 100 mM NaCl and 100 ppm GA3. Salt stress (S) was found to reduce the total dry matter, chlorophyll content, relative water content (RWC), but to increase proline accumulation, superoxide dismutase (SOD; EC 1.15.1.1), peroxidase (POD; EC 1.11.1.7) and polyphenol oxidase (PPO; 1.10.3.1) enzyme activities and electrolyte leakage. GA3 treatments overcame to variable extents the adverse effects of NaCl stress on the above physiological parameters. GA3 treatments reduced the activities of enzyme in the salt-stressed plants. Salt stress reduced some macro and micronutrient concentrations but exogenous application of GA3 increased these to levels of control treatment. Foliar application of GA3 counteracted some of the adverse effects of NaCl salinity with the accumulation of proline which maintained membrane permeability and increased macro and micronutrient levels.  相似文献   

20.
The current study reports rapid and easy method for synthesis of eco-friendly silver nanoparticles (AgNPs) using Coriandrum sativum leaves extract as a reducing and covering agent. The bio-reductive synthesis of AgNPs was monitored using a scanning double beam UV-vis spectrophotometer. Transmission electron microscopy (TEM) was used to characterize the morphology of AgNPs obtained from plant extracts. X-ray diffraction (XRD) patterns of AgNPs indicate that the structure of AgNPs is the face centered cubic structure of metallic silver. The surface morphology and topography of the AgNPs were examined by scanning electron microscopy and the energy dispersive spectrum revealed the presence of elemental silver in the sample. The silver phyto nanoparticles were collected from plant extract and tested growth potential and metabolic pattern in (Lupinus termis L.) seedlings upon exposure to different concentrations of AgNPs. The seedlings were exposed to various concentrations of (0, 0.1, 0.3 and 0.5 mg L?1) AgNPs for ten days. Significant reduction in shoot and root elongation, shoot and root fresh weights, total chlorophyll and total protein contents were observed under the higher concentrations of AgNPs. Exposure to 0.5 mg L?1 of AgNPs decreased sugar contents and caused significant foliar proline accumulation which considered as an indicator of the stressful effect of AgNPs on seedlings. AgNPs exposure resulted in a dose dependent decrease in different growth parameters and also caused metabolic disorders as evidenced by decreased carbohydrates and protein contents. Further studies needed to find out the efficacy, longevity and toxicity of AgNPs toward photosynthetic system and antioxidant parameters to improve the current investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号