首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Dendritic cells (DCs) respond to microbial infections by undergoing phenotypic maturation and by producing multiple cytokines. In the present study, we analyzed the ability of influenza A and Sendai viruses to induce DC maturation and activate tumor necrosis factor alpha (TNF-alpha), alpha/beta interferon (IFN-alpha/beta), and IFN-like interleukin-28A/B (IFN-lambda2/3) and IL-29 (IFN-lambda1) gene expression in human monocyte-derived myeloid DCs (mDC). The ability of influenza A virus to induce mDC maturation or enhance the expression of TNF-alpha, IFN-alpha/beta, interleukin-28 (IL-28), and IL-29 genes was limited, whereas Sendai virus efficiently induced mDC maturation and enhanced cytokine gene expression. Influenza A virus-induced expression of TNF-alpha, IFN-alpha, IFN-beta, IL-28, and IL-29 genes was, however, dramatically enhanced when cells were pretreated with IFN-alpha. IFN-alpha priming led to increased expression of Toll-like receptor 3 (TLR3), TLR7, TLR8, MyD88, TRIF, and IFN regulatory factor 7 (IRF7) genes and enhanced influenza-induced phosphorylation and DNA binding of IRF3. Influenza A virus also enhanced the binding of NF-kappaB to the respective NF-kappaB elements of the promoters of IFN-beta and IL-29 genes. In mDC IL-29 induced MxA protein expression and possessed antiviral activity against influenza A virus, although this activity was lower than that of IFN-alpha or IFN-beta. Our results show that in human mDCs viruses can readily induce the expression of IL-28 and IL-29 genes whose gene products are likely to contribute to the host antiviral response.  相似文献   

2.
3.
4.
Dendritic cells (DCs) capture and process Ag in the periphery. Thus, traffic through lymphatic vessels is mandatory before DCs relocate to lymph nodes where they are dedicated to T-cell priming. Here, we show that the ubiquitous self-marker CD47 selectively regulates DC, but not T and B cell trafficking across lymphatic vessels and endothelial barriers in vivo. We find an altered skin DC migration and impaired T-cell priming in CD47-deficient mice at steady state and under inflammatory conditions. Competitive DC migration assays and active immunization with myeloid DCs demonstrate that CD47 expression is required on DCs but not on the endothelium for efficient DC trafficking and T-cell responses. This migratory defect correlates with the quasi-disappearance of splenic marginal zone DCs in nonmanipulated CD47-deficient mice. Nonetheless, CCR7 expression and CCL19-driven chemotaxis remain intact. Our data reveal that CD47 on DCs is a critical factor in controlling migration and efficient initiation of the immune response.  相似文献   

5.
The interferon (IFN)-induced transmembrane protein 3 (IFITM3) is a cellular restriction factor that inhibits infection by influenza virus and many other pathogenic viruses. IFITM3 prevents endocytosed virus particles from accessing the host cytoplasm although little is known regarding its regulatory mechanisms. Here we demonstrate that IFITM3 localization to and antiviral remodeling of endolysosomes is differentially regulated by S-palmitoylation and lysine ubiquitination. Although S-palmitoylation enhances IFITM3 membrane affinity and antiviral activity, ubiquitination decreases localization with endolysosomes and decreases antiviral activity. Interestingly, autophagy reportedly induced by IFITM3 expression is also negatively regulated by ubiquitination. However, the canonical ATG5-dependent autophagy pathway is not required for IFITM3 activity, indicating that virus trafficking from endolysosomes to autophagosomes is not a prerequisite for influenza virus restriction. Our characterization of IFITM3 ubiquitination sites also challenges the dual-pass membrane topology predicted for this protein family. We thus evaluated topology by N-linked glycosylation site insertion and protein lipidation mapping in conjunction with cellular fractionation and fluorescence imaging. Based on these studies, we propose that IFITM3 is predominantly an intramembrane protein where both the N and C termini face the cytoplasm. In sum, by characterizing S-palmitoylation and ubiquitination of IFITM3, we have gained a better understanding of the trafficking, activity, and intramembrane topology of this important IFN-induced effector protein.  相似文献   

6.
The lymphatic system is not only essential for maintenance of normal fluid balance, but also for proper immunologic function by providing an extensive network of vessels, important for cell trafficking and antigen delivery, as well as an exclusive environment, the lymph node (LN), where antigen-presenting cells (APCs) and lymphocytes can encounter and interact. Among APCs, dendritic cells (DCs) have a remarkable capacity to traffic from peripheral tissues to the draining LN, which is critical for execution of their functions. To reach the LN, DCs must migrate towards and enter lymphatic vessels. Here, the authors review what is known about the factors that drive this process. They touch particularly on the topic of how DC migration is affected by inflammation and discuss this in the context of lymphatic function. Traditionally, inflammatory mediators are regarded to support DC migration to LNs because they induce molecules on DCs known to guide them to lymphatics. The authors recently showed that inflammatory signals present in a strong vaccine adjuvant induce swelling in LNs accompanied by lymphangiogenesis in the draining LN and radius of peripheral tissue. These increased lymphatics, at least for several days, lead to a more robust migration of DCs. However, the density of lymphatic vessels can become overly extended and/or their function impaired as observed during lymphedema and various chronic inflammatory reactions. Diseases characterized by chronic inflammation often present with impaired DC migration and adaptive immunity. Gaining a better understanding of how lymphatic vessel function may impact adaptive immunity by, for example, altering DC migration will benefit clinical research aiming to manipulate immune responses and manage chronic inflammatory diseases.  相似文献   

7.
8.
The fatty acid-binding protein (FABP) family consists of a number of conserved cytoplasmic proteins with roles in intracellular lipid transport, storage, and metabolism. Examination of a comprehensive leukocyte gene expression database revealed strong expression of the adipocyte FABP aP2 in human monocyte-derived dendritic cells (DCs). We isolated bone marrow-derived DC from aP2-deficient mice, and showed that expression of DC cytokines including IL-12 and TNF was significantly impaired in these cells. Degradation of IkappaBalpha was also impaired in aP2-deficient DCs, indicative of reduced signaling through the IkappaB kinase-NF-kappaB pathway. The cytokine defect was selective because there was no effect on Ag uptake or expression of MHC class II, CD40, CD80, or CD86. In an MLR, aP2-deficient DCs stimulated markedly lower T cell proliferation and cytokine production than did wild-type DCs. Moreover, aP2-deficient mice immunized with keyhole limpet hemocyanin/CFA showed reduced production of IFN-gamma by restimulated draining lymph node cells, suggesting a similar defect in DC function in vivo. Similarly, infection of aP2-deficient mice with the natural mouse pathogen ectromelia virus resulted in substantially lower production of IFN-gamma by CD8+ T cells. Thus, FABP aP2 plays an important role in DC function and T cell priming, and provides an additional link between metabolic processes and the regulation of immune responses.  相似文献   

9.
CD8alpha(+) dendritic cells (DCs) have been shown to be the principal DC subset involved in priming MHC class I-restricted CTL immunity to a variety of cytolytic viruses, including HSV type 1, influenza, and vaccinia virus. Whether priming of CTLs by CD8alpha(+) DCs is limited to cytolytic viruses, which may provide dead cellular material for this DC subset, or whether these DCs selectively present intracellular Ags, is unknown. To address this question, we examined Ag presentation to a noncytolytic virus, lymphocytic choriomeningitis virus, and to an intracellular bacterium, Listeria monocytogenes. We show that regardless of the type of intracellular infection, CD8alpha(+) DCs are the principal DC subset that initiate CD8(+) T cell immunity.  相似文献   

10.
Dendritic cells (DCs) play a central role in initiating immune responses. Despite this, there is little understanding how different DC subsets contribute to immunity to different pathogens. CD8alpha(+) DC have been shown to prime immunity to HSV. Whether this very limited capacity of a single DC subset priming CTL immunity is restricted to HSV infection or is a more general property of anti-viral immunity was examined. Here, we show that the CD8alpha(+) DCs are the principal DC subset that initiates CTL immunity to s.c. infection by influenza virus, HSV, and vaccinia virus. This same subset also dominated immunity after i.v. infection with all three viruses, suggesting a similar involvement in other routes of infection. These data highlight the general role played by CD8alpha(+) DCs in CTL priming to viral infection and raises the possibility that this DC subset is specialized for viral immunity.  相似文献   

11.
The transport of antigen from the periphery to the draining lymph node (DLN) is critical for T-cell priming but remains poorly studied during infection with Mycobacterium bovis Bacille Calmette-Guérin (BCG). To address this we employed a mouse model to track the traffic of Dendritic cells (DCs) and mycobacteria from the BCG inoculation site in the skin to the DLN. Detection of BCG in the DLN was concomitant with the priming of antigen-specific CD4+ T cells at that site. We found EpCAMlow CD11bhigh migratory skin DCs to be mobilized during the transport of BCG to the DLN. Migratory skin DCs distributed to the T-cell area of the LN, co-localized with BCG and were found in close apposition to antigen-specific CD4+ T cells. Consequently, blockade of skin DC traffic into DLN dramatically reduced mycobacterial entry into DLN and muted T-cell priming. Interestingly, DC and mycobacterial entry into the DLN was dependent on IL-1R-I, MyD88, TNFR-I and IL-12p40. In addition, we found using DC adoptive transfers that the requirement for MyD88 in BCG-triggered migration was not restricted to the migrating DC itself and that hematopoietic expression of MyD88 was needed in part for full-fledged migration. Our observations thus identify a population of DCs that contribute towards the priming of CD4+ T cells to BCG infection by transporting bacilli into the DLN in an IL-1R-MyD88-dependent manner and reveal both DC-intrinsic and -extrinsic requirements for MyD88 in DC migration.  相似文献   

12.
The role of interferon regulatory factor 3 (IRF3) in the innate immune response to infection has been well studied. However, less is known about IRF3 signaling in shaping the adaptive T cell response. To determine the role of IRF3 in the generation and maintenance of effective anti-viral T cell responses, mice deficient in IRF3 were infected with a potentially persistent virus, Theiler's murine encephalomyelitis virus (TMEV) or with a model acute infection, influenza A virus (IAV). IRF3 was required to prevent TMEV persistence and induce robust TMEV specific effector T cell responses at the site of infection. This defect was more pronounced in the memory phase with an apparent lack of TMEV-specific memory T cells expressing granzyme B (GrB) in IRF3 deficient mice. In contrast, IRF3 had no effect on antigen specific T cell responses at the effector stage during IAV infection. However, memory T cell responses to IAV were also impaired in IRF3 deficient mice. Furthermore, addition of cytokines during peptide restimulation could not restore GrB expression in IRF3 deficient memory T cells. Taken together, IRF3 plays an important role in the maintenance of effective anti-viral T cell memory responses.  相似文献   

13.
The mammalian Toll-like receptor 4, TLR4, is an important component in the innate immune response to gram-negative bacterial infection. The role of TLR4 in antiviral immunity has been largely unexplored. In this study, the in vivo immune responses to respiratory syncytial virus (RSV) and influenza virus infection were examined in TLR4-deficient (C57BL/10ScNCr) and TLR4-expressing (C57BL/10Sn) mice. TLR4-deficient mice challenged with RSV, but not influenza virus, exhibited impaired natural killer (NK) cell and CD14(+) cell pulmonary trafficking, deficient NK cell function, impaired interleukin-12 expression, and impaired virus clearance compared to mice expressing TLR4. These findings suggest that Toll signaling pathways have an important role in innate immunity to RSV.  相似文献   

14.
CCL21, a lymphatic endothelial cell (LEC)-derived chemokine, and its receptor CCR7 regulate dendritic cell (DC) trafficking to lymph nodes (LN), but it is unclear how CCL21 expression is regulated. Oncostatin M (OSM) is an IL-6-like cytokine synthesized by activated DC and other leukocytes. In vitro, OSM (but not TNF-alpha) stimulated CCL21 mRNA and protein expression by human dermal microvascular EC (DMEC) in an ERK1/2-dependent fashion. Conditioned medium from OSM-treated DMEC stimulated CCL21-dependent chemotaxis of mouse bone marrow-derived DC (BMDC). Cultured BMDC expressed OSM, which was increased with the addition of LPS. Topical application of the contact-sensitizing hapten, trinitrochlorobenzene, resulted in enhanced OSM expression in the skin, whereas cutaneous injection of TNF-alpha did not. Injection of OSM into the footpad increased CCL21 mRNA expression in the draining LN by approximately 10-fold and in mouse skin by approximately 4-fold without increasing CCR7 mRNA. In vitro, OSM increased the permeability of DMEC and lung microvascular EC monolayers to FITC-dextran beads, and, in vivo, it enhanced accumulation of Evans blue dye in draining LN by approximately 3-fold (p = 0.0291). Of note, OSM increased trafficking of BMDC injected in footpads to draining LN by 2-fold (p = 0.016). In summary, OSM up-regulates CCL21 expression in skin and draining regional LN. We propose that OSM is a regulator of CCL21 expression and endothelial permeability in skin, contributing to efficient migration of DC to regional LN.  相似文献   

15.
Interferon-inducible transmembrane protein 3 (IFITM3) inhibits influenza virus infection by blocking viral membrane fusion, but the exact mechanism remains elusive. Here, we investigated the function and key region of IFITM3 in blocking influenza virus entry mediated by hemagglutinin (HA). The restriction of IFITM3 on HA-mediated viral entry was confirmed by pseudovirus harboring HA protein from H5 and H7 influenza viruses. Subcellular co-localization and immunocoprecipitation analyses revealed that IFITM3 partially co-located with the full-length HA protein and could directly interact with HA2 subunit but not HA1 subunit of H5 and H7 virus. Truncated analyses showed that the transmembrane domain of the IFITM3 and HA2 subunit might play an important role in their interaction. Finally, this interaction of IFITM3 was also verified with HA2 subunits from other subtypes of influenza A virus and influenza B virus. Overall, our data demonstrate for the first time a direct interaction between IFITM3 and influenza HA protein via the transmembrane domain, providing a new perspective for further exploring the biological significance of IFITM3 restriction on influenza virus infection or HA-mediated antagonism or escape.  相似文献   

16.
An increasing number of studies suggest that individual subsets of dendritic cells (DC) exhibit distinct capabilities with regard to the generation of the adaptive immune response. In this study, we evaluated the properties of a relatively unexplored DC subset present in the lung-draining mediastinal lymph node. This subset expresses the airway dendritic cell marker CD103 together with CD8. These DC were of interest given that our previous studies using a model of respiratory infection with vaccinia virus revealed a distinct difference in the ability of CD103(+) DC to prime T cells that correlated inversely with the expression of CD8, suggesting a differential role of these DC in the context of respiratory virus infection. To expand our understanding of the role of this DC population, we performed analyses to elucidate the phenotype, migratory capacity, responsiveness to innate stimuli, and priming capacity of CD8(+) CD103(+) DC. We found that expression of surface markers on these DC was similar to that of CD8(-) CD103(+) DC, supporting their close relationship. Further, the two DC types were similar with regard to antigen uptake. However, although both CD103(+) subsets originated from the lung, CD8-bearing CD103(+) DC appeared in the lymph node with delayed kinetics following virus infection. While this subset exhibited increased responsiveness to a number of Toll-like receptor (TLR) agonists, their response to infection was virus specific, demonstrating poor responsiveness to vaccinia virus infection but robust maturation following infection with parainfluenza virus 5 or influenza virus. These findings show that CD8 marks a population of lung airway-derived DC with distinct migratory and maturation responses that likely contribute differentially to the immune response depending on the infecting pathogen.  相似文献   

17.
Dendritic cells (DCs) are well known as professional antigen-presenting cells (APC) able to initiate specific T-cell responses to pathogens in lymph nodes (LN) draining the site of infection. However, the respective contribution of migratory and LN-resident DCs in this process remains unclear. As DC subsets represent important targets for vaccination strategies, more precise knowledge of DC subsets able to present vaccine antigens to T cells efficiently is required. To investigate the capacities of DCs migrating in the lymph (L-DCs) to initiate a specific T-cell response, we used physiologically generated DCs collected from a pseudoafferent lymphatic cannulation model in sheep. The CD1b+ L-DCs were assessed for presenting antigens from the vaccine attenuated strain of Salmonella enterica serovar Abortusovis. CD1b+ L-DCs were able to phagocytose, process and to present efficiently Salmonella antigens to effector/memory T cells in vitro. They were shown to be efficient APC for the priming of allogeneic naive T cells associated with inducing both IFN-γ and IL-4 responses. They were also efficient in presenting Salmonella antigens to autologous naive T cells associated with inducing both IFN-γ and IL-10 responses. The capacities of L-DCs to process and present Salmonella antigens to T cells were investigated in vivo after conjunctival inoculation of Salmonella. The CD1b+ L-DCs collected after inoculation were able to induce the proliferative response of CD4+ T cells suggesting the in vivo capture of Salmonella antigens by the CD1b+ L-DCs, and their potential to present them directly to CD4+ T cells. In this study, CD1b+ L-DCs present potential characteristics of APC to initiate by themselves T cell priming in the LN. They could be used as target cells for driving immune activation in vaccinal strategies.  相似文献   

18.
19.
Li H  Oliver T  Jia W  He YW 《The EMBO journal》2006,25(17):4097-4107
Rho guanosine triphosphatases (GTPases) regulate multiple aspects of dendritic cell (DC) function, but what regulates the expression of Rho GTPases in DCs is unknown. Here, we show that the extracellular matrix protein mindin regulates the expression of Rho GTPases in DCs. Mindin(-/-) mice displayed defective CD4+ T-cell priming and impaired humoral immune responses to T-dependent antigens. Mindin(-/-) DCs had reduced expression of Rac1/2 and impaired priming capacity owing to inefficient engagement with T lymphocytes. Ectopic Rac1 expression restored the priming capability of Mindin(-/-) DCs. Furthermore, we show that DC adhesion to mindin matrix was blocked by antibodies to alpha4, alpha5 and beta1 integrins. DCs lacking beta1 integrin had reduced adhesion to mindin matrix, decreased expression of Rac1/2 and impaired priming capacity. These results suggest that mindin-integrin interactions play a key role in regulating Rho GTPase expression in DCs and DC priming of T lymphocytes.  相似文献   

20.
Dendritic cells (DC) play a key role in antiviral immunity, functioning both as innate effector cells in early phases of the immune response and subsequently as antigen-presenting cells that activate the adaptive immune response. In the murine respiratory tract, there are several respiratory dendritic cell (RDC) subsets, including CD103(+) DC, CD11b(hi) DC, monocyte/macrophage DC, and plasmacytoid DC. However, little is known about the interaction between these tissue-resident RDC and viruses that are encountered during natural infection in the respiratory tract. Here, we show both in vitro and in vivo that the susceptibility of murine RDC to infection with type A influenza virus varies with the level of MHC class II expression by RDC and with the virus strain. Both CD103(+) and CD11b(hi) RDC, which express the highest basal level of major histocompatibility complex (MHC) class II, are highly susceptible to infection by type A influenza virus. However, efficient infection is restricted to type A influenza virus strains of the H2N2 subtype. Furthermore, enhanced infectivity by viruses of the H2N2 subtype is linked to expression of the I-E MHC class II locus product. These results suggest a potential novel role for MHC class II molecules in influenza virus infection and pathogenesis in the respiratory tract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号