首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Total steroidal saponins extracted from the rhizome of Paris polyphylla Sm. var. yunnanensis (TSSPs) have been widely used in China for the treatment of abnormal uterine bleeding. We previously studied the main active constituents of TSSPs and their structure-activity relationships with respect to rat myometrial contractions. Tg (pennogenin tetraglycoside) was identified as one of the active ingredients in TSSPs able to induce rat myometrial contractions. However, the mechanisms underlying the pharmacological actions on uterine activity have not been described clearly.

Methods

Here Tg was screened for effects on contractile activity in isolated uterine strips from estrogen-primed rats and on MLC20 phosphorylation and related signaling pathways in cultured rat myometrial cells as determined by Western blot. Intracellular calcium ([Ca2+]i) was monitored under a confocal microscope using Fluo-4 AM-loaded myometrial cells.

Results

Tg dose-dependently stimulated rat myometrial contractions as well as MLC20 phosphorylation in vitro, which could be completely suppressed by an inhibitor of myosin light chain kinase (MLCK). Use of Ca2+ channel blockers and kinase inhibitors demonstrated that Tg-induced myometrial contractions are mediated by activation of the phospholipase C (PLC)-inositol triphosphate (IP3) signaling pathway, resulting in increased MLC20 phosphorylation. Furthermore, Y27632, a specific inhibitor of Rho kinase (ROK), notably suppressed Tg-stimulated myometrial contractions and decreased MLC20 phosphorylation.

Conclusions

These data provide evidence that rat myometrial contractility induced by Tg results from enhanced MLC20 phosphorylation, while both PLC-IP3 and RhoA/ROK signaling pathways mediate the process. These mechanisms may be responsible for the therapeutic effects of TSSPs on abnormal uterine bleeding.  相似文献   

2.
Uterine contractility is generated by contractions of myometrial smooth muscle cells (SMCs) that compose most of the myometrial layer of the uterine wall. Calcium ion (Ca2+) entry into the cell can be initiated by depolarization of the cell membrane. The increase in the free Ca2+ concentration within the cell initiates a chain of reactions, which lead to formation of cross bridges between actin and myosin filaments, and thereby the cell contracts. During contraction the SMC shortens while it exerts forces on neighboring cells. A mathematical model of myometrial SMC contraction has been developed to study this process of excitation and contraction. The model can be used to describe the intracellular Ca2+ concentration and stress produced by the cell in response to depolarization of the cell membrane. The model accounts for the operation of three Ca2+ control mechanisms: voltage-operated Ca2+ channels, Ca2+ pumps, and Na+/Ca2+ exchangers. The processes of myosin light chain (MLC) phosphorylation and stress production are accounted for using the cross-bridge model of Hai and Murphy (Am J Physiol Cell Physiol 254: C99–C106, 1988) and are coupled to the Ca2+ concentration through the rate constant of myosin phosphorylation. Measurements of Ca2+, MLC phosphorylation, and force in contracting cells were used to set the model parameters and test its ability to predict the cell response to stimulation. The model has been used to reproduce results of voltage-clamp experiments performed in myometrial cells of pregnant rats as well as the results of simultaneous measurements of MLC phosphorylation and force production in human nonpregnant myometrial cells. cellular calcium control mechanisms; myometrial contractions; myosin light chain phosphorylation  相似文献   

3.
Canonical transient receptor potential (TRPC) proteins may play a role in regulating changes in intracellular calcium ([Ca2+]i). Human myometrium expresses TRPC4, TRPC1 and TRPC6 mRNAs in greatest relative abundance. Contributions of TRPC4 to increases in [Ca2+]i were assessed in PHM1–41 and primary human uterine smooth muscle (UtSMC) cells using short hairpin RNAs (shRNAs). Based on a reporter assay screen, one shRNA was selected to construct an adenoviral expression vector (TC4sh1). TC4sh1 induced both mRNA and protein TRPC4 knockdown in PHM1–41 cells without affecting expression of other TRPCs. Signal-regulated Ca2+ entry (SRCE), defined as a stimulus- and extracellular Ca2+-dependent increase in [Ca2+]i, was measured in PHM1–41 cells treated with oxytocin (G-protein coupled receptor (GPCR)-stimulated), thapsigargin (store depletion-stimulated), and OAG (diacylglycerol-stimulated), using Fura-2. Cells infected with TC4sh1 exhibited attenuated oxytocin-, ATP- and PGF2α-mediated SRCE, but no change in thapsigargin- or OAG-stimulated SRCE. Similar results were obtained in primary uterine smooth muscle cells. Additionally, cells expressing TC4sh1 exhibited a significantly smaller increase in channel activity in response to oxytocin administration than did cells infected with empty virus. These data show that, in human myometrial cells, knockdown of endogenous TRPC4 specifically attenuates GPCR-stimulated, but not thapsigargin- or OAG-stimulated extracellular calcium-dependent increases in [Ca2+]i. These data imply that, in this cellular context, the mechanisms regulating extracellular Ca2+-dependent increases in [Ca2+]i are differentially affected by different signaling pathways.  相似文献   

4.
Better tocolytics are required to help prevent preterm labour. The gaseotransmitter Hydrogen sulphide (H2S) has been shown to reduce myometrial contractility and thus is of potential interest. However previous studies used NaHS, which is toxic and releases H2S as a non-physiological bolus and thus alternative H2S donors are sought. GYY4137 has been developed to slowly release H2S and hence better reflect endogenous physiological release. We have examined its effects on spontaneous and oxytocin-stimulated contractility and compared them to NaHS, in human and rat myometrium, throughout gestation. The effects on contractility in response to GYY4137 (1 nM–1 mM) and NaHS (1 mM) were examined on myometrial strips from, biopsies of women undergoing elective caesarean section or hysterectomy, and from non-pregnant, 14, 18, 22 day (term) gestation or labouring rats. In pregnant rat and human myometrium dose-dependent and significant decreases in spontaneous contractions were seen with increasing concentrations of GYY4137, which also reduced underlying Ca transients. GYY4137 and NaHS significantly reduced oxytocin-stimulated and high-K depolarised contractions as well as spontaneous activity. Their inhibitory effects increased as gestation advanced, but were abruptly reversed in labour. Glibenclamide, an inhibitor of ATP-sensitive potassium (KATP) channels, abolished the inhibitory effect of GYY4137. These data suggest (i) H2S contributes to uterine quiescence from mid-gestation until labor, (ii) that H2S affects L-type calcium channels and KATP channels reducing Ca entry and thereby myometrial contractions, (iii) add to the evidence that H2S plays a physiological role in relaxing myometrium, and thus (iv) H2S is an attractive target for therapeutic manipulation of human myometrial contractility.  相似文献   

5.
Although it iswell known that progesterone alters uterine contractility and plays animportant role in maintenance of pregnancy, the biochemical mechanismsby which progesterone alters uterine contractility in human gestationare less clear. In this investigation we sought to identifyprogesterone-induced adaptations in human myometrial smooth musclecells that may alter Ca2+signaling in response to contractile agents. Cells were treated withvehicle or the progesterone analog medroxyprogesterone acetate (MPA)for 5 days, and intracellular freeCa2+ concentration([Ca2+]i)was quantified after treatment with oxytocin (OX) or endothelin (ET)-1.OX- and ET-1-induced increases in[Ca2+]iwere significantly attenuated in cells pretreated with MPA in adose-dependent manner. Progesterone receptor antagonists prevented theattenuated Ca2+ transients inducedby MPA. ETA andETB receptor subtypes were expressed in myometrial cells, and treatment with MPA resulted insignificant downregulation of ETAand ETB receptor binding. MPA didnot alter ionomycin-stimulated increases in[Ca2+]iand had no effect on inositol trisphosphate-dependent or -independent release of Ca2+ from internalCa2+ stores. We conclude thatadaptations of Ca2+ homeostasis inmyometrial cells during pregnancy may include progesterone-inducedmodification of receptor-mediated increases in[Ca2+]i.  相似文献   

6.
The basal outputs of prostaglandin (PG) F and PGE2 from the Day 15 guinea-pig uterus superfused in vitro were unaffected by omitting Ca2+ from the Krebs' solution. In contrast, this omission of Ca2+ reduced the basal output of 6-oxo-PGF (which reflects PGI2 production) from the uterus by an average of 50%. Spontaneous and A23187-stimulated contractions of, and the stimulation by A23187 of PGF, PGE2 and 6-oxoPGF outputs from the Day 15 guinea-pig uterus were all abolished by superfusing the tissue with Krebs' solution lacking Ca2+. It is concluded that the basal output of 6-oxo-PGF, the occurrence of spontaneous contractions, and the effects of A23187 on PG output and contractility of the Day 15 guinea-pig uterus are dependent on extracellular Ca2+. However, the increase in PGF output from the guinea-pig uterus on Day 15 compared to days much earlier in the cycle is apparently not dependent upon extracellular Cat+. The implications of these findings regarding the biochemical mechanisms involved in the increased synthesis of PGF (the uterine luteolytic hormone) by the guinea-pig endometrium during the last one-third of the cycle are discussed.  相似文献   

7.
Mechanisms regulating uterine contractility are poorly understood. We hypothesized that a specific isoform of small conductance Ca2+-activated K+ (SK) channel, SK3, promotes feedback regulation of myometrial Ca2+ and hence relaxation of the uterus. To determine the specific functional impact of SK3 channels, we assessed isometric contractions of uterine strips from genetically altered mice (SK3T/T), in which SK3 is overexpressed and can be suppressed by oral administration of doxycycline (SK3T/T+Dox). We found SK3 protein in mouse myometrium, and this expression was substantially higher in SK3T/T mice and lower in SK3T/T+Dox mice compared with wild-type (WT) controls. Sustained contractions elicited by 60 mM KCl were not different among SK3T/T, SK3T/T+Dox, and WT mice. However, the rate of onset and magnitude of spontaneously occurring phasic contractions was muted significantly in isolated uterine strips from SK3T/T mice compared with those from WT mice. These spontaneous contractions were augmented greatly by blockade of SK channels with apamin or by suppression of SK3 expression. Phasic but not tonic contraction in response to oxytocin was depressed in uterine strips from SK3T/T mice, whereas suppression of SK3 channel expression or treatment with apamin promoted the predominance of large coordinated phasic events over tone. Spontaneous contractions and the phasic component of oxytocin contractions were blocked by nifedipine but not by cyclopiazonic acid. Our findings suggest that SK3 channels play an important role in regulating uterine function by limiting influx through L-type Ca2+ channels and disrupting the development of concerted phasic contractile events. uterus; Ca2+-activated K+ channel; doxycycline; mouse  相似文献   

8.
Purinergic receptor expression and involvement in steroidogenesis were examined in NCI-H295R (H295R), a human adrenal cortex cell line which expresses all the key enzymes necessary for steroidogenesis. mRNA/protein for multiple P1 (A2A and A2B), P2X (P2X5 and P2X7), and P2Y (P2Y1, P2Y2, P2Y6, P2Y12, P2Y13, and P2Y14) purinergic receptors were detected in H295R. 2MeS-ATP (10–1000 µM), a P2Y1 agonist, induced glucocorticoid (GC) secretion in a dose-dependent manner, while other extracellular purine/pyrimidine agonists (1–1000 µM) had no distinct effect on GC secretion. Extracellular purines, even non-steroidogenic ones, induced Ca2+-mobilization in the cells, independently of the extracellular Ca2+ concentration. Increases in intracellular Ca2+ concentration induced by extracellular purine agonists were transient, except when induced by ATP or 2MeS-ATP. Angiotensin II (AngII: 100 nM) and dibutyryl-cyclic AMP (db-cAMP: 500 µM) induced both GC secretion and Ca2+-mobilization in the presence of extracellular Ca2+ (1.2 mM). GC secretion by AngII was reduced by nifedipine (10–100 µM); whereas the Ca2+ channel blocker did not inhibit GC secretion by 2MeS-ATP. Thapsigargin followed by extracellular Ca2+ exposure induced Ca2+-influx in H295R, and the cells expressed mRNA/protein of the component molecules for store-operated calcium entry (SOCE): transient receptor C (TRPC) channels, calcium release-activated calcium channel protein 1 (Orai-1), and the stromal interaction molecule 1 (STIM1). In P2Y1-knockdown, 2MeS-ATP-induced GC secretion was significantly inhibited. These results suggest that H295R expresses a functional P2Y1 purinergic receptor for intracellular Ca2+-mobilization, and that P2Y1 is linked to SOCE-activation, leading to Ca2+-influx which might be necessary for glucocorticoid secretion.  相似文献   

9.
The structure-activity relationship of highly potent special ergolines which selectively block the chemokine receptor CXCR3 is reported. The most potent compounds showed IC50 values below 10 nM in both ligand binding and Ca2+-mobilization assays. However, these compounds were poorly active in an assay that measures receptor occupancy in blood. Introduction of polar substituents led to derivatives with IC50 values below 10 nM in this assay. Among them was compound 11a which showed both a favorable PK profile and cross reactivity with rodent CXCR3 making it a promising tool compound to further explore the role of CXCR3 in animal models.  相似文献   

10.
Protein kinases have an important role in signal transduction in the cellular system via protein phosphorylation. RhoA activated Rho-kinases have a pivotal role in the regulation of smooth muscle contraction. ROCK I and ROCK II phosphorylate myosin-phosphatase and myosin-kinase, which induces contraction in the myometrium. Several studies have investigated the affinity of isoquinoline alkaloids (HA-1077, H1152P) to Rho-kinases, and these compounds notably inhibited the Ca2+-independent process.We measured the efficiency of 25 original, newly synthesized isoquinoline derivatives for the Rho-kinase activity using Rho-associated kinase activity assay and determined their effects on the non-pregnant, 20-day pregnant and parturient rat myometrial contraction in vitro.The IC50 values of 11 from among the 25 derivatives were significantly lower on the oxytocin-induced non-pregnant rat uterine contraction compared with Y-27632 and fasudil, although their maximal inhibitory effects were weaker than those of Y-27632 and fasudil. We measured the effects of 11 isoquinoline molecules with significant IC50 values on ROCK II activity. We found two isoquinolines out of 11 compounds (218 and 852) which decreased the active ROCK II level similarly as Y-27632. Then we found that 218 and 852 relaxed the 20th-day pregnant and parturient rat uterus with greater potency as compared with fasudil.The majority of the synthesized isoquinoline derivatives have uterus relaxant effects and two of them significantly suppress the Rho-kinase mediated myosin light chain phosphorylation. Our results may suggest that the isoquinoline structure has a promising prospect for the development of new and effective inhibitors of uterine contractions in preterm birth.  相似文献   

11.
We studied the effect of antiprogesterone RU 486 on spontaneous uterine contractility and PGI2 release with human myometrial strips superfused “in vitro”. A decrease of PGI2 release into the superfusion medium was observed after 20 min superfusion. The inhibition was dose-dependent and reversible. After 20 min washing with tyrode medium without RU 486, the uterine strips recovered their initial rate of release. R5020, a progesterone agonist, did not affect PGI2 release nor dexamethasone and testosterone. Parallel to the decrease of PGI2 observed during RU 486 superfusion, the uterine spontaneous contraction frequency decreased, while the amplitude and duration of contractions increased. The alteration of uterine contractility was also rapid, dose-dependent and reversible. Modifications of uterine strip spontaneous contractility, similar to those induced by RU 486, were also observed with superfusions of R5020 at concentrations as low as 10−9M, dexamethasone (10−8M), but not with superfusions of testosterone. These observations are not in favour of a progesterone-receptor mediated effect of RU 486 in our model. The mechanism of action may be related to the antiprogesterone specific structure i.e. the bulky substituent at the C-11 position. The RU 486 effect on uterine strip contractility, mimicked by other steroids, could point to a non-specific lipid/membrane interaction. However, the fact that testosterone did not affect motility, may indicate a possible specificity of steroids having a 3 oxo pregnene structure.  相似文献   

12.
In the labouring uterus, millions of myocytes forming the complex geometrical structure of myometrium contract in synchrony to increase intrauterine pressure, dilate the cervix and eventually expel the foetus through the birth canal. The mechanisms underlying the precise coordination of contractions in human myometrium are not completely understood. In the present study, we have characterized the spatio‐temporal properties of tissue‐level [Ca2+]i transients in thin slices of intact human myometrium. We found that the waveform of [Ca2+]i transients and isotonic contractions recorded from thin slices was similar to the waveform of isometric contractions recorded from the larger strips in traditional organ bath experiments, suggesting that the spatio‐temporal information obtained from thin slices is representative of the whole tissue. By comparing the time course of [Ca2+]i transients in individual cells to that recorded from the bundles of myocytes we found that the majority of myocytes produce rapidly propagating long‐lasting [Ca2+]i transients accompanied by contractions. We also found a small number of cells showing desynchronized [Ca2+]i oscillations that did not trigger contractions. The [Ca2+]i oscillations in these cells were insensitive to nifedipine, but readily inhibited by the T‐type Ca2+ channel inhibitor NNC55‐0396. In conclusion, our data suggest that the spread of [Ca2+]i signals in human myometrium is achieved via propagation of long‐lasting action potentials. The propagation was fast when action potentials propagated along bundles of myocytes and slower when propagating between the bundles of uterine myocytes.  相似文献   

13.
Responses of a holothurian smooth muscle to a range of muscarinic (M1 to M5) acetylcholine receptor (mAChR) agonists and antagonists were surveyed using calcium (Ca2+)-selective electrodes and a mechanical recording technique. Most of the mAChR agonists and antagonists tested increased both contractility and net Ca2+ efflux, with M1-specific agents like oxotremorine M being the most potent in their action. To investigate the possible sources of Ca2+ used during mAChR activation, agents that disrupt intracellular Ca2+ ion sequestration [cyclopiazonic acid (CPA), caffeine, ryanodine], the phosphoinositide signaling pathway [lithium chloride (LiCl)], and L-type Ca2+ channels (diltiazem and verapamil) were used to challenge contractions induced by oxotremorine M. These contractions were blocked by treatment with CPA, caffeine, LiCl, and by channel blockers, diltiazem and verapamil, but were unaltered by ryanodine. Our data suggest that this smooth muscle had an M1,3,5-like receptor that was associated with the phosphoinositide signaling pathway that relied on intracellular Ca2+ stores, but secondarily used extracellular Ca2+ via the opening of L-type channels.  相似文献   

14.
15.
A mitochondria-free membrane fraction prepared from rat myometrium accumulated 45Ca2+ in the presence of oxalic acid and ATP. The rate of transport of Ca2+ into the membranous vesicles was increased by greater than 50% in the presence of 3′,5′-cyclic AMP, but not by 2′,3′-cyclic AMP or 5′-AMP. Membrane ATPase activity was stimulated by cyclic AMP in a manner similar to Ca2+-transport. ATPase activity was stimulated by Mg2+; slight additional stimulation was obtained in the presence of Na+ and K+ but not in the presence of Ca2+. Despite the cyclic AMP sensitivity of membrane ATPase activity, the absence of any effect of inhibitors of Ca2+-transport suggest it has little to do with Ca2+ accumulation by the membranes.Cyclic AMP-induced increase in Ca2+-transport and membrane ATPase activity was duplicated in vivo by incubating uteri in 10−4 M isoproterenol prior to membrane isolation. Isoproterenol has been previously shown to increase myometrial cyclic AMP levels, and changes in Ca2+-transport by cell membranes in relation to intracellular cyclic AMP levels may be the mechanism through which hormones modulate uterine contractility.  相似文献   

16.
The effect of estrogens on the myometrial contractility of 70 isolated uterine horns of rats was investigated; 40 of the rats had been treated with progesterone and 30 with estrogen. Contractions were recorded isotonically in solutions with extracellular potassium concentration of 2.5 to 40 mM. The contractility of the myometrium of rats treated with estrogens was observed to be similar to the optimum contractility during labor, with the characteristic high amplitude of tension, low initial tension, and good coordination of contractions. The contractility of the uterine horns treated with progesterone was almost 1/2 lower and showed worse coordination of contractions. The difference between progesterone and estrogen is expressed through the quantitatively and qualitatively different influences on the motor function of the uterus.  相似文献   

17.
The effects of the lipoxygenase products of arachidonic acid, 5- and 12-hydroxyeicosatetraenoic acid (5- and 12-HETE) and leukotriene B4 (LTB4), on the spontaneous contractility of lower uterine segment human myometrial strips obtained prior to labour have been studied . 5-HETE gave a dose- dependent (10–500ng) increase in both the rate of contractions and overall contractility of myometrial strips while 12-HETE and LTB4 had no effect at the same concentrations. Prostaglandin F2 (50ng) contracted all myometrial strips in a similar pattern to 5-HETE but was approximately 10 times more potent. The effect of 5-HETE may be direct or perhaps indirect via interaction with the cyclo-oxygenase pathway. The findings do not disprove the contention that the onset of parturition may be characterized by a switch in arachidonic acid metabolism in intra-uterine tissues from lipoxygenase to cyclo-oxygenase products.  相似文献   

18.
19.
《Biophysical journal》2022,121(17):3286-3294
Cardiomyocytes are contractile cells that regulate heart contraction. Ca2+ flux via Ca2+ channels activates actomyosin interactions, leading to cardiomyocyte contraction, which is modulated by physical factors (e.g., stretch, shear stress, and hydrostatic pressure). We evaluated the mechanism triggering slow contractions using a high-pressure microscope to characterize changes in cell morphology and intracellular Ca2+ concentration ([Ca2+]i) in mouse cardiomyocytes exposed to high hydrostatic pressures. We found that cardiomyocytes contracted slowly without an acute transient increase in [Ca2+]i, while a myosin ATPase inhibitor interrupted pressure-induced slow contractions. Furthermore, transmission electron microscopy showed that, although the sarcomere length was shortened upon the application of 20 MPa, this pressure did not collapse cellular structures such as the sarcolemma and sarcomeres. Our results suggest that pressure-induced slow contractions in cardiomyocytes are driven by the activation of actomyosin interactions without an acute transient increase in [Ca2+]i.  相似文献   

20.
Binding of ouabain to Na+/K+-ATPase activated multiple signal transduction pathways including stimulation of Src, Ras, p42/44 MAPKs and production of reactive oxygen species (ROS) in rat cardiac myocytes. Inhibition of either Src or Ras ablated ouabain-induced increase in both [Ca2+]i and contractility. While PD98059 abolished the effects of ouabain on [Ca2+]i, it only caused a partial inhibition of ouabain-induced increases in contractility. On the other hand, pre-incubation of myocytes with N-acetyl cysteine (NAC) reduced the effects of ouabain on contractility, but not [Ca2+]i. Furthermore, 5-hydroxydecanoate (5-HD) blocked ouabain-induced ROS production and partially inhibited ouabain-induced increases in contractility in cardiac myocytes. Pre-incubation of myocytes with both 5-HD and PD98059 completely blocked ouabain's effect on contractility. Finally, we found that opening of mitochondrial KATP channel by diazoxide increased intracellular ROS and significantly raised contractility in cardiac myocytes. These new findings indicate that ouabain regulates cardiac contractility via both [Ca2+]i and ROS. While activation of MAPKs leads to increases in [Ca2+]i, opening of mitochondrial KATP channel relays the ouabain signal to increased ROS production in cardiac myocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号