共查询到20条相似文献,搜索用时 31 毫秒
1.
Perfluorooctane sulfonate (PFOS) is a ubiquitous pollutant and found in the environment and in biota. The neurotoxicity of PFOS has received much concern among its various toxic effects when given during developing period of brain. However, little is known about the neurotoxic effects and potential mechanisms of PFOS in the mature brain. Our study demonstrated the neurotoxicity and the potential mechanisms of PFOS in the hippocampus of adult mice for the first time. The impairments of spatial learning and memory were observed by water maze studies after exposure to PFOS for three months. Significant apoptosis was found in hippocampal cells after PFOS exposure, accompanied with a increase of glutamate in the hippocampus and decreases of dopamine (DA) and 3,4-dihydrophenylacetic acid (DOPAC) in Caudate Putamen in the 10.75 mg/kg PFOS group. By two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE) analysis, seven related proteins in the hippocampus that responded to PFOS exposure were identified, among which, Mib1 protein (an E3 ubiquitin-protein ligase), Herc5 (hect domain and RLD 5 isoform 2) and Tyro3 (TYRO3 protein tyrosine kinase 3) were found down-regulated, while Sdha (Succinate dehydrogenase flavoprotein subunit), Gzma (Isoform HF1 of Granzyme A precursor), Plau (Urokinase-type plasminogen activator precursor) and Lig4 (DNA ligase 4) were found up-regulated in the 10.75 mg/kg PFOS-treated group compare with control group. Furthermore, we also found that (i) increased expression of caspase-3 protein and decreased expression of Bcl-2, Bcl-XL and survivin proteins, (ii) the increased glutamate release in the hippocampus. All these might contribute to the dysfunction of hippocampus which finally account for the impairments of spatial learning and memory in adult mice. 相似文献
2.
3.
Oroxylin A,a Flavonoid,Stimulates Adult Neurogenesis in the Hippocampal Dentate Gyrus Region of Mice
Seungjoo Lee Dong Hyun Kim Dong Hwa Lee Su Jin Jeon Chang Hwan Lee Kun Ho Son Ji Wook Jung Chan Young Shin Jong Hoon Ryu 《Neurochemical research》2010,35(11):1725-1732
Previously, we reported the cognitive enhancing effects of oroxylin A in unimpaired mice and its memory ameliorating activity
in various memory impaired mice. To elucidate the mechanism mediating the cognitive effects of oroxylin A, this study examined
the consequences of oroxylin A administration on neurogenesis in the hippocampal dentate gyrus using immunostaining for 5-bromo-2-deoxyuridine
(BrdU) incorporation. In addition, we determined whether the new cells adopted a neuronal or glial fate by examining the co-localization
of BrdU staining with neuronal or glial markers. Administration of oroxylin A in a dose-dependent and time-dependent manner
increased the number of BrdU-incorporating cells. Moreover, the percentage of BrdU-incorporating cells co-localized with neuronal
markers, neuronal nuclei, was significantly increased by the oroxylin A administration. These results suggest that the increased
neurogenesis induced by the administration of oroxylin A could be, at least in part, associated with its positive effects
on cognitive processing. 相似文献
4.
Depression is a serious mental disorder that affects a person’s mood, thoughts, behavior, physical health, and life in general. Despite our continuous efforts to understand the disease, the etiology of depressive behavior remains perplexing. Recently, aberrant early life or postnatal neurogenesis has been linked to adult depressive behavior; however, genetic evidence for this is still lacking. Here we genetically depleted the expression of huntingtin-associated protein 1 (Hap1) in mice at various ages or in selective brain regions. Depletion of Hap1 in the early postnatal period, but not later life, led to a depressive-like phenotype when the mice reached adulthood. Deletion of Hap1 in adult mice rendered the mice more susceptible to stress-induced depressive-like behavior. Furthermore, early Hap1 depletion impaired postnatal neurogenesis in the dentate gyrus (DG) of the hippocampus and reduced the level of c-kit, a protein expressed in neuroproliferative zones of the rodent brain and that is stabilized by Hap1. Importantly, stereotaxically injected adeno-associated virus (AAV) that directs the expression of c-kit in the hippocampus promoted postnatal hippocampal neurogenesis and ameliorated the depressive-like phenotype in conditional Hap1 KO mice, indicating a link between postnatal-born hippocampal neurons and adult depression. Our results demonstrate critical roles for Hap1 and c-kit in postnatal neurogenesis and adult depressive behavior, and also suggest that genetic variations affecting postnatal neurogenesis may lead to adult depression. 相似文献
5.
Rupert W. Overall Tara L. Walker Odette Leiter Sina Lenke Susann Ruhwald Gerd Kempermann 《PloS one》2013,8(12)
This study builds on the findings that physical activity, such as wheel running in mice, enhances cell proliferation and neurogenesis in the adult hippocampus of the common mouse strain C57BL/6, and that the baseline level of neurogenesis varies by strain, being considerably lower in DBA/2. Because C57BL/6 and DBA/2 are important as the parental strains of the BXD recombinant inbred cross which allows the detection of genetic loci regulating phenotypes such as adult neurogenesis, we performed the current study to investigate the gene x environment interactions regulating neurogenesis. At equal distances and times run DBA/2J mice lacked the acute increase in precursor cell proliferation known from C57BL/6. In DBA/2J proliferation even negatively correlated with the distance run. This was neither due to a stress response (to running itself or single housing) nor differences in estrous cycle. DBA/2 animals exhibited a delayed and weaker pro-neurogenic response with a significant increase in numbers of proliferating cells first detectable after more than a week of wheel running. The proliferative response to running was transient in both strains, the effect being undetectable by 6 weeks. There was also a small transient increase in the production of new neurons in DBA/2J, although these extra cells did not survive. These findings indicate that the comparison between C57BL/6 and DBA/2, and by extension the BXD genetic reference population derived from these strains, should provide a powerful tool for uncovering the complex network of modifier genes affecting the activity-dependent regulation of adult hippocampal neurogenesis. More generally, our findings also describe how the external physical environment interacts with the internal genetic environment to produce different responses to the same behavioral stimuli. 相似文献
6.
Séverine Ciré Sylvie Da Rocha Roseline Yao Sylvain Fisson Christian J. Buchholz Mary K. Collins Anne Galy 《PloS one》2014,9(7)
Gene transfer vectors such as lentiviral vectors offer versatile possibilities to express transgenic antigens for vaccination purposes. However, viral vaccines leading to broad transduction and transgene expression in vivo, are undesirable. Therefore, strategies capable of directing gene transfer only to professional antigen-presenting cells would increase the specific activity and safety of genetic vaccines. A lentiviral vector pseudotype specific for murine major histocompatibilty complex class II (LV-MHCII) was recently developed and the present study aims to characterize the in vivo biodistribution profile and immunization potential of this vector in mice. Whereas the systemic administration of a vector pseudotyped with a ubiquitously-interacting envelope led to prominent detection of vector copies in the liver of animals, the injection of an equivalent amount of LV-MHCII resulted in a more specific biodistribution of vector and transgene. Copies of LV-MHCII were found only in secondary lymphoid organs, essentially in CD11c+ dendritic cells expressing the transgene whereas B cells were not efficiently targeted in vivo, contrary to expectations based on in vitro testing. Upon a single injection of LV-MHCII, naive mice mounted specific effector CD4 and CD8 T cell responses against the intracelllular transgene product with the generation of Th1 cytokines, development of in vivo cytotoxic activity and establishment of T cell immune memory. The targeting of dendritic cells by recombinant viral vaccines must therefore be assessed in vivo but this strategy is feasible, effective for immunization and cross-presentation and constitutes a potentially safe alternative to limit off-target gene expression in gene-based vaccination strategies with integrative vectors. 相似文献
7.
8.
应用反向PCR克隆慢病毒介导的转基因小鼠整合位点序列 总被引:2,自引:0,他引:2
目的:为分析慢病毒介导的转基因小鼠中外源基因整合位点的信息,应用反向PCR克隆整合位点序列。方法:小鼠基因组总DNA酶解和自连接后,针对慢病毒载体的特点在LTR附近设计一组特异的PCR引物,优化半巢式PCR的各种参数,提高整合位点序列克隆的效率。结果:克隆了分别携带绿色荧光蛋白(GFP)和转铁蛋白(TF)基因的慢病毒介导的转基因小鼠家系7只小鼠中10个外源基因整合位点序列。结论:本方法可用于慢病毒介导的转基因小鼠整合位点序列的克隆,为分析整合位点与外源基因表达之间的关系等提供了科学依据。 相似文献
9.
10.
Shengli Zhao Yang Zhou Jimmy Gross Pei Miao Li Qiu Dongqing Wang Qian Chen Guoping Feng 《PloS one》2010,5(9)
Neurogenesis in the adult hippocampus is an important form of structural plasticity in the brain. Here we report a line of BAC transgenic mice (GAD67-GFP mice) that selectively and transitorily express GFP in newborn dentate granule cells of the adult hippocampus. These GFP+ cells show a high degree of colocalization with BrdU-labeled nuclei one week after BrdU injection and express the newborn neuron marker doublecortin and PSA-NCAM. Compared to mature dentate granule cells, these newborn neurons show immature morphological features: dendritic beading, fewer dendritic branches and spines. These GFP+ newborn neurons also show immature electrophysiological properties: higher input resistance, more depolarized resting membrane potentials, small and non-typical action potentials. The bright labeling of newborn neurons with GFP makes it possible to visualize the details of dendrites, which reach the outer edge of the molecular layer, and their axon (mossy fiber) terminals, which project to the CA3 region where they form synaptic boutons. GFP expression covers the whole developmental stage of newborn neurons, beginning within the first week of cell division and disappearing as newborn neurons mature, about 4 weeks postmitotic. Thus, the GAD67-GFP transgenic mice provide a useful genetic tool for studying the development and regulation of newborn dentate granule cells. 相似文献
11.
Ronald W. Oppenheim 《Developmental neurobiology》2019,79(3):268-280
The review is a critical appraisal of the history and present status of the phenomenon of adult hippocampal neurogenesis (AHN) in the mammalian and human brain. Previous as well as most current studies of AHN have focused on highly inbred domestic mice and rats that are examined in rigorously controlled laboratory environments using psychology‐based behavioral tests. However, this approach cannot reveal the adaptive significance of AHN, a key unresolved question in the field. After the publication of several thousand articles in the field over the last 20 years, little progress has been made in our understanding of the biological utility of AHN in the real world. To accomplish this will require comparative studies employing a greater diversity of species and species‐specific behaviors that are investigated in a more naturalistic, evolutionary context. Although efforts along these lines are on the rise, they remain “voices in the wilderness.” This review is an attempt to hasten and increase those efforts. 相似文献
12.
Jean-marie Billard 《PloS one》2010,5(3)
Background
The effects of low-frequency conditioning stimulation (LFS, 900 pulses at 1 Hz) of glutamatergic afferents in CA1 hippocampal area using slices from two different strains of adult (3–5 month-old) and aged (23–27 month-old) rats were reinvestigated regarding the discrepancies in the literature concerning the expression of long-term depression (LTD) in the aging brain.Methodology/Principal Findings
N-methyl-D-aspartate receptor (NMDA-R) dependent LTD was examined in both adult (n = 21) and aged (n = 22) Sprague-Dawley rats. While equivalent amounts of LTD could be obtained in both ages, there was significant variability depending upon the time between the slices were made and when they were tested. LTD was not apparent if slices were tested within 3 hours of dissection. The amount of LTD increased over the next three hours but more in adult than in aged rats. This age-related impairment was abolished by exogenous d-serine, thus reflecting the reduced activation of the NMDA-R glycine-binding site by the endogenous agonist in aged rats. Then, the amount of LTD reached asymptote at 5–7 hours following dissection. Similar temporal profiles of LTD expression were seen in young and aged Wistar rats.Conclusions/Significance
Taken together, these results sound a cautionary note regarding the existence of an experimental “window of opportunity” for studying the effects of aging on LTD expression in hippocampal slice preparation. 相似文献13.
14.
15.
16.
17.
To study gene function in neural progenitors and radial glia of the retina and hypothalamus, we developed a Rax-CreERT2 mouse line in which a tamoxifen-inducible Cre recombinase is inserted into the endogenous Rax locus. By crossing Rax-CreERT2 with the Cre-dependent Ai9 reporter line, we demonstrate that tamoxifen-induced Cre activity recapitulates the endogenous Rax mRNA expression pattern. During embryonic development, Cre recombinase activity in Rax-CreERT2 is confined to retinal and hypothalamic progenitor cells, as well as progenitor cells of the posterior pituitary. At postnatal time points, selective Cre recombinase activity is seen in radial glial-like cell types in these organs – specifically Müller glia and tanycytes – as well as pituicytes. We anticipate that this line will prove useful for cell lineage analysis and investigation of gene function in the developing and mature retina, hypothalamus and pituitary. 相似文献
18.
Pou4f1 and Pou4f2 Are Dispensable for the Long-Term Survival of Adult Retinal Ganglion Cells in Mice
Liang Huang Fang Hu Xiaoling Xie Jeffery Harder Kimberly Fernandes Xiang-yun Zeng Richard Libby Lin Gan 《PloS one》2014,9(4)
Purpose
To investigate the role of Pou4f1 and Pou4f2 in the survival of adult retinal ganglion cells (RGCs).Methods
Conditional alleles of Pou4f1 and Pou4f2 were generated (Pou4f1loxP and Pou4f2loxP respectively) for the removal of Pou4f1 and Pou4f2 in adult retinas. A tamoxifen-inducible Cre was used to delete Pou4f1 and Pou4f2 in adult mice and retinal sections and flat mounts were subjected to immunohistochemistry to confirm the deletion of both alleles and to quantify the changes in the number of RGCs and other retinal neurons. To determine the effect of loss of Pou4f1 and Pou4f2 on RGC survival after axonal injury, controlled optic nerve crush (CONC) was performed and RGC death was assessed.Results
Pou4f1 and Pou4f2 were ablated two weeks after tamoxifen treatment. Retinal interneurons and Müller glial cells are not affected by the ablation of Pou4f1 or Pou4f2 or both. Although the deletion of both Pou4f1 and Pou4f2 slightly delays the death of RGCs at 3 days post-CONC in adult mice, it does not affect the cell death progress afterwards. Moreoever, deletion of Pou4f1 or Pou4f2 or both has no impact on the long-term viability of RGCs at up to 6 months post-tamoxifen treatment.Conclusion
Pou4f1 and Pou4f2 are involved in the acute response to damage to RGCs but are dispensable for the long-term survival of adult RGC in mice. 相似文献19.
Eva María Medina-Rodríguez Francisco Javier Arenzana Ana Bribián Fernando de Castro 《PloS one》2013,8(11)
During development, oligodendrocytes are generated from oligodendrocyte precursor cells (OPCs), a cell type that is a significant proportion of the total cells (3-8%) in the adult central nervous system (CNS) of both rodents and humans. Adult OPCs are responsible for the spontaneous remyelination that occurs in demyelinating diseases like Multiple Sclerosis (MS) and they constitute an interesting source of cells for regenerative therapy in such conditions. However, there is little data regarding the neurobiology of adult OPCs isolated from mice since an efficient method to isolate them has yet to be established. We have designed a protocol to obtain viable adult OPCs from the cerebral cortex of different mouse strains and we have compared its efficiency with other well-known methods. In addition, we show that this protocol is also useful to isolate functional OPCs from human brain biopsies. Using this method we can isolate primary cortical OPCs in sufficient quantities so as to be able to study their survival, maturation and function, and to facilitate an evaluation of their utility in myelin repair. 相似文献
20.
Huansheng Dong Tarek M. Fahmy Su M. Metcalfe Steve L. Morton Xiao Dong Luca Inverardi David B. Adams Wenda Gao Hongjun Wang 《PloS one》2012,7(12)
Two major hurdles need to be surmounted for cell therapy for diabetes: (i) allo-immune rejection of grafted pancreatic islets, or stem/precursor cell-derived insulin-secreting cells; and (ii) continuing auto-immunity against the diabetogenic endogenous target antigen. Nanotherapeutics offer a novel approach to overcome these problems and here we ask if creation of “stealth” islets encapsulated within a thin cage of pegylated material of 100–200 nanometers thick provides a viable option for islet transplantation. The aims of this study were to test islet viability and functionality following encapsulation within the pegylated cage, and functional efficacy in vivo in terms of graft-derived control of normoglycemia in diabetic mice. We first demonstrated that pegylation of the islet surface, plus or minus nanoparticles, improved long-term islet viability in vitro compared to non-pegylated (naked) control islets. Moreover, pegylation of the islets with nanoparticles was compatible with glucose-stimulated insulin secretion and insulin biogenesis. We next looked for functionality of the created “stealth” DBA/2 (H-2d) islets in vivo by comparing glycemic profiles across 4 groups of streptozotozin-induced diabetic C57BL/6 (H-2b) recipients of (i) naked islets; (ii) pegylated islets; (iii) pegylated islets with nanoparticles (empty); and (iv) pegylated islets with nanoparticles loaded with a cargo of leukemia inhibitory factor (LIF), a factor both promotes adaptive immune tolerance and regulates pancreatic β cell mass. Without any other treatment, normoglycemia was lost after 17 d (+/−7.5 d) in control group. In striking contrast, recipients in groups (ii), (iii), and (iv) showed long-term (>100 d) normoglycemia involving 30%; 43%, and 57% of the recipients in each respective group. In conclusion, construction of “stealth” islets by pegylation-based nanotherapeutics not only supports islet structure and function, but also effectively isolates the islets from immune-mediated destruction. The added value of nanoparticles to deliver immune modulators plus growth factors such as LIF expands the potential of this novel therapeutic approach to cell therapy for diabetes. 相似文献