首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The ATHB-2 gene encoding an homeodomain-leucine zipper protein is rapidly and strongly induced by changes in the ratio of red to far-red light which naturally occur during the daytime under the canopy and induce in many plants the shade avoidance response. Here, we show that elevated ATHB-2 levels inhibit cotyledon expansion by restricting cell elongation in the cotyledon-length and -width direction. We also show that elevated ATHB-2 levels enhance longitudinal cell expansion in the hypocotyl. Interestingly, we found that ATHB-2-induced, as well as shade-induced, elongation of the hypocotyl is dependent on the auxin transport system. In the root and hypocotyl, elevated ATHB-2 levels also inhibit specific cell proliferation such as secondary growth of the vascular system and lateral root formation. Consistent with the key role of auxin in these processes, we found that auxin is able to rescue the ATHB-2 lateral root phenotype. We also show that reduced levels of ATHB-2 result in reciprocal phenotypes. Moreover, we demonstrate that ATHB-2 functions as a negative regulator of gene expression in a transient assay. Remarkably, the expression in transgenic plants of a derivative of ATHB-2 with the same DNA binding specificity but opposite regulatory properties results in a shift in the orientation of hypocotyl cell expansion toward radial expansion, and in an increase in hypocotyl secondary cell proliferation. A model of ATHB-2 function in the regulation of shade-induced growth responses is proposed.  相似文献   

4.
5.
6.
Endocytosis and relocalization of auxin carriers represent important mechanisms for adaptive plant growth and developmental responses. Both root gravitropism and halotropism have been shown to be dependent on relocalization of auxin transporters. Following their homology to mammalian phospholipase Ds (PLDs), plant PLDζ-type enzymes are likely candidates to regulate auxin carrier endocytosis. We investigated root tropic responses for an Arabidopsis pldζ1-KO mutant and its effect on the dynamics of two auxin transporters during salt stress, that is, PIN2 and AUX1. We found altered root growth and halotropic and gravitropic responses in the absence of PLDζ1 and report a role for PLDζ1 in the polar localization of PIN2. Additionally, irrespective of the genetic background, salt stress induced changes in AUX1 polarity. Utilizing our previous computational model, we found that these novel salt-induced AUX1 changes contribute to halotropic auxin asymmetry. We also report the formation of “osmotic stress-induced membrane structures.” These large membrane structures are formed at the plasma membrane shortly after NaCl or sorbitol treatment and have a prolonged presence in a pldζ1 mutant. Taken together, these results show a crucial role for PLDζ1 in both ionic and osmotic stress-induced auxin carrier dynamics during salt stress.  相似文献   

7.
8.
Global environmental temperature changes threaten innumerable plant species. Although various signaling networks regulate plant responses to temperature fluctuations, the mechanisms unifying these diverse processes are largely unknown. Here, we demonstrate that an Arabidopsis monothiol glutaredoxin, AtGRXS17 (At4g04950), plays a critical role in redox homeostasis and hormone perception to mediate temperature-dependent postembryonic growth. AtGRXS17 expression was induced by elevated temperatures. Lines altered in AtGRXS17 expression were hypersensitive to elevated temperatures and phenocopied mutants altered in the perception of the phytohormone auxin. We show that auxin sensitivity and polar auxin transport were perturbed in these mutants, whereas auxin biosynthesis was not altered. In addition, atgrxs17 plants displayed phenotypes consistent with defects in proliferation and/or cell cycle control while accumulating higher levels of reactive oxygen species and cellular membrane damage under high temperature. Together, our findings provide a nexus between reactive oxygen species homeostasis, auxin signaling, and temperature responses.  相似文献   

9.
10.
11.
12.
13.
14.
As sessile organisms, plants need to continuously adjust their responses to external stimuli to cope with changing growth conditions. Since the seed dispersal range is often rather limited, exposure of progeny to the growth conditions of parents is very probable. The plasticity of plant phenotypes cannot be simply explained by genetic changes such as point mutations, deletions, insertions and gross chromosomal rearrangements. Since many environmental stresses persist for only one or several plant generations, other mechanisms of adaptation must exist. The heritability of reversible epigenetic modifications that regulate gene expression without changing DNA sequence makes them an attractive alternative mechanism. In this review, we discuss recent advances in understanding how changes in genome stability and epigenetically mediated changes in gene expression could contribute to plant adaptation. We provide examples of environmentally induced transgenerational epigenetic effects that include the appearance of new phenotypes in successive generations of stressed plants. We also describe several cases in which exposure to stress leads to nonrandom heritable but reversible changes in stress tolerance in the progeny of stressed plants.  相似文献   

15.
Under unfavorable environmental conditions, the stress phytohormone ABA inhibits the developmental transition from an embryo in a dry seed into a young seedling. We developed a genetic screen to isolate Arabidopsis thaliana mutants whose early seedling development is resistant to ABA. Here, we report the identification of a recessive mutation in AUXIN RESISTANT1 (AUX1), encoding a cellular auxin influx carrier. Although auxin is a major morphogenesis hormone in plants, little is known about ABA–auxin interactions during early seedling growth. We show that aux1 and pin2 mutants are insensitive to ABA-dependent repression of embryonic axis (hypocotyl and radicle) elongation. Genetic and physiological experiments show that this involves auxin transport to the embryonic axis elongation zone, where ABA enhances the activity of an auxin-responsive promoter. We propose that ABA represses embryonic axis elongation by potentiating auxin signaling in its elongation zone. This involves repression of the AUXIN INDUCIBLE (Aux/IAA) gene AXR2/IAA7, encoding a key component of ABA- and auxin-dependent responses during postgerminative growth.  相似文献   

16.
Modern corn (Zea mays L.) varieties have been selected for their ability to maintain productivity in dense plantings. We have tested the possibility that the physiological consequence of the selection involves changes in responsiveness to light and auxin.Etiolated seedlings of two older corn hybrids 307 and 3306 elongated significantly more than seedlings of a modern corn hybrid 3394. The level of endogenous auxin and activity of PAT in 307 and 3394 were similar. Hybrid 3394 shows resistance to auxin- and light-induced responses at the seedling, cell and molecular levels. Intact 3394 plants exhibited less responsiveness to the inhibitory effect of R, FR and W, auxin, anti-auxin and inhibitors of PAT. In excised mesocotyl tissue 3394 seedlings also showed essentially low responsiveness to NAA. Cells of 3394 were insensitive to auxin- and light-induced hyperpolarization of the plasma membrane. Expression of ABP4 was much less in 3394 than in 307, and in contrast to 307, it was not upregulated by NAA, R and FR. Preliminary analysis of abp mutants suggests that ABPs may be involved in development of leaf angle in corn.Our results confirm the understanding that auxin interacts with light in the regulation of growth and development of young seedlings and suggest that in corn ABPs may be involved in growth of maize seedlings and development of leaf angle. We hypothesize that ABP4 plays an important role in the auxin- and/or light-induced growth responses. We also hypothesize that in the modern corn hybrid 3394, ABP4 is “mutated,” which may result in the observed 3394 phenotypes, including upright leaves.Key Words: auxin, auxin-binding protein, growth, leaf angle, light, maize  相似文献   

17.
18.
19.
《遗传学报》2020,47(3):157-165
Indole-3-acetamide (IAM) is the first confirmed auxin biosynthetic intermediate in some plant pathogenic bacteria. Exogenously applied IAM or production of IAM by overexpressing the bacterial iaaM gene in Arabidopsis causes auxin overproduction phenotypes. However, it is still inconclusive whether plants use IAM as a key precursor for auxin biosynthesis. Herein, we reported the isolation IAM HYDROLASE 1 (IAMH1) gene in Arabidopsis from a forward genetic screen for IAM-insensitive mutants that display normal auxin sensitivities. IAMH1 has a close homolog named IAMH2 that is located right next to IAMH1 on chromosome IV in Arabidopsis. We generated iamh1 iamh2 double mutants using our CRISPR/Cas9 gene editing technology. We showed that disruption of the IAMH genes rendered Arabidopsis plants resistant to IAM treatments and also suppressed the iaaM overexpression phenotypes, suggesting that IAMH1 and IAMH2 are the main enzymes responsible for converting IAM into indole-3-acetic acid (IAA) in Arabidopsis. The iamh double mutants did not display obvious developmental defects, indicating that IAM does not play a major role in auxin biosynthesis under normal growth conditions. Our findings provide a solid foundation for clarifying the roles of IAM in auxin biosynthesis and plant development.  相似文献   

20.
Genome analyses have shown that plants contain gene families encoding various components of mitogen-activated protein kinase (MAPK) signaling pathways. Previous reports have described the involvement of MAPK pathways in stress and pathogen responses of leaves and suspension-cultured cells. Here we show that auxin treatment of Arabidopsis roots transiently induced increases in protein kinase activity with characteristics of mammalian ERK-like MAPKs. The MAPK response we monitored was the result of hormonal action of biologically active auxin, rather than a stress response provoked by auxin-like compounds. Auxin-induced MAPK pathway signaling was distinguished genetically in the Arabidopsis auxin response mutant axr4, in which MAPK activation by auxin, but not by salt stress, was significantly impaired. Perturbation of MAPK signaling in roots using inhibitors of a mammalian MAPKK blocked auxin-activated transgene expression in BA3-GUS seedlings, while potentiating higher than normal levels of MAPK activation in response to auxin. Data presented here indicate that MAPK pathway signaling is positively involved in auxin response, and further suggest that interactions among MAPK signaling pathways in plants influence plant responses to auxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号