首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The creation of haploid gametes in yeast, termed spores, requires the de novo formation of membranes within the cytoplasm. These membranes, called prospore membranes, enclose the daughter nuclei generated by meiosis. Proper growth and closure of prospore membranes require the highly conserved Vps13 protein. Mutation of SPO71, a meiosis-specific gene first identified as defective in spore formation, was found to display defects in membrane morphogenesis very similar to those seen in vps13Δ cells. Specifically, prospore membranes are smaller than in the wild type, they fail to close, and membrane vesicles are present within the prospore membrane lumen. As in vps13Δ cells, the levels of phophatidylinositol-4-phosphate are reduced in the prospore membranes of spo71Δ cells. SPO71 is required for the translocation of Vps13 from the endosome to the prospore membrane, and ectopic expression of SPO71 in vegetative cells results in mislocalization of Vps13. Finally, the two proteins can be coprecipitated from sporulating cells. We propose that Spo71 is a sporulation-specific partner for Vps13 and that they act in concert to regulate prospore membrane morphogenesis.  相似文献   

2.
During meiosis II in the yeast Saccharomyces cerevisiae, the cytoplasmic face of the spindle pole body changes from a site of microtubule initiation to a site of de novo membrane formation. These membranes are required to package the haploid meiotic products into spores. This functional change in the spindle pole body involves the expansion and modification of its cytoplasmic face, termed the outer plaque. We report here that SPO21 is required for this modification. The Spo21 protein localizes to the spindle pole in meiotic cells. In the absence of SPO21 the structure of the outer plaque is abnormal, and prospore membranes do not form. Further, decreased dosage of SPO21 leaves only two of the four spindle pole bodies competent to generate membranes. Mutation of CNM67, encoding a known component of the mitotic outer plaque, also results in a meiotic outer plaque defect but does not block membrane formation, suggesting that Spo21p may play a direct role in initiating membrane formation.  相似文献   

3.
The mechanisms that control the size and shape of membranes are not well understood, despite the importance of these structures in determining organelle and cell morphology. The prospore membrane, a double lipid bilayer that is synthesized de novo during sporulation in S. cerevisiae, grows to surround the four meiotic products. This membrane determines the shape of the newly formed spores and serves as the template for spore wall deposition. Ultimately, the inner leaflet of the prospore membrane will become the new plasma membrane of the cell upon germination. Here we show that Spo71, a pleckstrin homology domain protein whose expression is induced during sporulation, is critical for the appropriate growth of the prospore membrane. Without SPO71, prospore membranes surround the nuclei but are abnormally small, and spore wall deposition is disrupted. Sporulating spo71Δ cells have prospore membranes that properly localize components to their growing leading edges yet cannot properly localize septin structures. We also found that SPO71 genetically interacts with SPO1, a gene with homology to the phospholipase B gene that has been previously implicated in determining the shape of the prospore membrane. Together, these results show that SPO71 plays a critical role in prospore membrane development.  相似文献   

4.
5.
Vps13 family proteins are proposed to function in bulk lipid transfer between membranes, but little is known about their regulation. During sporulation of Saccharomyces cerevisiae, Vps13 localizes to the prospore membrane (PSM) via the Spo71–Spo73 adaptor complex. We previously reported that loss of any of these proteins causes PSM extension and subsequent sporulation defects, yet their precise function remains unclear. Here, we performed a genetic screen and identified genes coding for a fragment of phosphatidylinositol (PI) 4-kinase catalytic subunit and PI 4-kinase noncatalytic subunit as multicopy suppressors of spo73Δ. Further genetic and cytological analyses revealed that lowering PI4P levels in the PSM rescues the spo73Δ defects. Furthermore, overexpression of VPS13 and lowering PI4P levels synergistically rescued the defect of a spo71Δ spo73Δ double mutant, suggesting that PI4P might regulate Vps13 function. In addition, we show that an N-terminal fragment of Vps13 has affinity for the endoplasmic reticulum (ER), and ER-plasma membrane (PM) tethers localize along the PSM in a manner dependent on Vps13 and the adaptor complex. These observations suggest that Vps13 and the adaptor complex recruit ER-PM tethers to ER-PSM contact sites. Our analysis revealed that involvement of a phosphoinositide, PI4P, in regulation of Vps13, and also suggest that distinct contact site proteins function cooperatively to promote de novo membrane formation.  相似文献   

6.
7.
ADP-ribosylation factor (ARF) proteins in Saccharomyces cerevisiae are encoded by two genes, ARF1 and ARF2. The addition of the c-myc epitope at the C terminus of Arf1 resulted in a mutant (arf1-myc arf2) that supported vegetative growth and rescued cells from supersensitivity to fluoride, but homozygous diploids failed to sporulate. arf1-myc arf2 mutants completed both meiotic divisions but were unable to form spores. The SPO14 gene encodes a phospholipase D (PLD), whose activity is essential for mediating the formation of the prospore membrane, a prerequisite event for spore formation. Spo14 localized normally to the developing prospore membrane in arf1-myc arf2 mutants; however, the synthesis of the membrane was attenuated. This was not a consequence of reduced PLD catalytic activity, because the enzymatic activity of Spo14 was unaffected in meiotic arf1-myc arf2 mutants. Although potent activators of mammalian PLD1, Arf1 proteins did not influence the catalytic activities of either Spo14 or ScPld2, a second yeast PLD. These results demonstrate that ARF1 is required for sporulation, and the mitotic and meiotic functions of Arf proteins are not mediated by the activation of any known yeast PLD activities. The implications of these results are discussed with respect to current models of Arf signaling.  相似文献   

8.
Spore formation in yeast is an unusual form of cell division in which the daughter cells are formed within the mother cell cytoplasm. This division requires the de novo synthesis of a membrane compartment, termed the prospore membrane, which engulfs the daughter nuclei. The effect of mutations in late-acting genes on sporulation was investigated. Mutation of SEC1, SEC4, or SEC8 blocked spore formation, and electron microscopic analysis of the sec4-8 mutant indicated that this inability to produce spores was caused by a failure to form the prospore membrane. The soluble NSF attachment protein 25 (SNAP-25) homologue SEC9, by contrast, was not required for sporulation. The absence of a requirement for SEC9 was shown to be due to the sporulation-specific induction of a second, previously undescribed, SNAP-25 homologue, termed SPO20. These results define a developmentally regulated branch of the secretory pathway and suggest that spore morphogenesis in yeast proceeds by the targeting and fusion of secretory vesicles to form new plasma membranes in the interior of the mother cell. Consistent with this model, the extracellular proteins Gas1p and Cts1p were localized to an internal compartment in sporulating cells. Spore formation in yeast may be a useful model for understanding secretion-driven cell division events in a variety of plant and animal systems.  相似文献   

9.
Identification and characterization of an SPO11 homolog in the mouse   总被引:4,自引:0,他引:4  
The SPO11/TOPVIA family includes proteins from archaebacteria and eukaryotes. The protein member from the archaebacterium Sulfulobus shibatae is the catalytic subunit of TopoVI DNA topoisomerase. In Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans and Drosophila melanogaster, SPO11 is required for meiotic recombination, suggesting a conserved mechanism for the initiation step of this process. Indeed, S. cerevisiae SPO11 has been shown to be directly involved in the formation of meiotic DNA double-strand breaks that initiate meiotic recombination. Here, we report the identification of a Mus musculus Spo11 cDNA, which encodes a protein closely related to all members of the SPO11/TOPVIA family. cDNAs resulting from alternative splicing were detected, suggesting that there are potential variants of the mouse SPO11 protein. By RNA-blotting analysis, expression of the mouse Spo11 gene was detected only in the testis, in agreement with its predicted function in the initiation of meiotic recombination. We mapped the mouse Spo11 gene to chromosome 2, band H2–H4. Received: 11 August 1999; in revised form; 11 October 1999 / Accepted: 13 October 1999  相似文献   

10.
Saccharomyces cerevisiae contains two SNAP25 paralogues, Sec9 and Spo20, which mediate vesicle fusion at the plasma membrane and the prospore membrane, respectively. Fusion at the prospore membrane is sensitive to perturbation of the central ionic layer of the SNARE complex. Mutation of the central glutamine of the t-SNARE Sso1 impaired sporulation, but does not affect vegetative growth. Suppression of the sporulation defect of an sso1 mutant requires expression of a chimeric form of Spo20 carrying the SNARE helices of Sec9. Mutation of two residues in one SNARE domain of Spo20 to match those in Sec9 created a form of Spo20 that restores sporulation in the presence of the sso1 mutant and can replace SEC9 in vegetative cells. This mutant form of Spo20 displayed enhanced activity in in vitro fusion assays, as well as tighter binding to Sso1 and Snc2. These results demonstrate that differences within the SNARE helices can discriminate between closely related SNAREs for function in vivo.  相似文献   

11.
In mammalian meiotic prophase, the initial steps in repair of SPO11-induced DNA double-strand breaks (DSBs) are required to obtain stable homologous chromosome pairing and synapsis. The X and Y chromosomes pair and synapse only in the short pseudo-autosomal regions. The rest of the chromatin of the sex chromosomes remain unsynapsed, contains persistent meiotic DSBs, and the whole so-called XY body undergoes meiotic sex chromosome inactivation (MSCI). A more general mechanism, named meiotic silencing of unsynapsed chromatin (MSUC), is activated when autosomes fail to synapse. In the absence of SPO11, many chromosomal regions remain unsynapsed, but MSUC takes place only on part of the unsynapsed chromatin. We asked if spontaneous DSBs occur in meiocytes that lack a functional SPO11 protein, and if these might be involved in targeting the MSUC response to part of the unsynapsed chromatin. We generated mice carrying a point mutation that disrupts the predicted catalytic site of SPO11 (Spo11YF/YF), and blocks its DSB-inducing activity. Interestingly, we observed foci of proteins involved in the processing of DNA damage, such as RAD51, DMC1, and RPA, both in Spo11YF/YF and Spo11 knockout meiocytes. These foci preferentially localized to the areas that undergo MSUC and form the so-called pseudo XY body. In SPO11-deficient oocytes, the number of repair foci increased during oocyte development, indicating the induction of S phase-independent, de novo DNA damage. In wild type pachytene oocytes we observed meiotic silencing in two types of pseudo XY bodies, one type containing DMC1 and RAD51 foci on unsynapsed axes, and another type containing only RAD51 foci, mainly on synapsed axes. Taken together, our results indicate that in addition to asynapsis, persistent SPO11-induced DSBs are important for the initiation of MSCI and MSUC, and that SPO11-independent DNA repair foci contribute to the MSUC response in oocytes.  相似文献   

12.
Coluccio A  Malzone M  Neiman AM 《Genetics》2004,166(1):89-97
SEC9 and SPO20 encode SNARE proteins related to the mammalian SNAP-25 family. Sec9p associates with the SNAREs Sso1/2p and Snc1/2p to promote the fusion of vesicles with the plasma membrane. Spo20p functions with the same two partner SNAREs to mediate the fusion of vesicles with the prospore membrane during sporogenesis. A chimeric molecule, in which the helices of Sec9p that bind to Sso1/2p and Snc1/2p are replaced with the homologous regions of Spo20p, will not support vesicle fusion in vegetative cells. The phosphatidylinositol-4-phosphate-5-kinase MSS4 was isolated as a high-copy suppressor that permits this chimera to rescue the temperature-sensitive growth of a sec9-4 mutant. Suppression by MSS4 is specific to molecules that contain the Spo20p helical domains. This suppression requires an intact copy of SPO14, encoding phospholipase D. Overexpression of MSS4 leads to a recruitment of the Spo14 protein to the plasma membrane and this may be the basis for MSS4 action. Consistent with this, deletion of KES1, a gene that behaves as a negative regulator of SPO14, also promotes the function of SPO20 in vegetative cells. These results indicate that elevated levels of phosphatidic acid in the membrane may be required specifically for the function of SNARE complexes containing Spo20p.  相似文献   

13.
Spore formation in Saccharomyces cerevisiae occurs via the de novo synthesis of the prospore membrane during the second meiotic division. Prospore membrane formation is triggered by assembly of a membrane-organizing center, the meiotic outer plaque (MOP), on the cytoplasmic face of the spindle pole body (SPB) during meiosis. We report here the identification of two new components of the MOP, Ady4p and Spo74p. Ady4p and Spo74p interact with known proteins of the MOP and are localized to the outer plaque of the SPB during meiosis II. MOP assembly and prospore membrane formation are abolished in spo74Δ/spo74Δ cells and occur aberrantly in ady4Δ/ady4Δ cells. Spo74p and the MOP component Mpc70p are mutually dependent for recruitment to SPBs during meiosis. In contrast, both Ady4p and Spo74p are present at SPBs, albeit at reduced levels, in cells that lack the MOP component Mpc54p. Our findings suggest a model for the assembled MOP in which Mpc54p, Mpc70p, and Spo74p make up a core structural unit of the scaffold that initiates synthesis of the prospore membrane, and Ady4p is an auxiliary component that stabilizes the plaque.  相似文献   

14.
Ascospore formation in yeast is accomplished through a cell division in which daughter nuclei are engulfed by newly formed plasma membranes, termed prospore membranes. Closure of the prospore membrane must be coordinated with the end of meiosis II to ensure proper cell division. AMA1 encodes a meiosis-specific activator of the anaphase promoting complex (APC). The activity of APCAma1 is inhibited before meiosis II, but the substrates specifically targeted for degradation by Ama1 at the end of meiosis are unknown. We show here that ama1Δ mutants are defective in prospore membrane closure. Ssp1, a protein found at the leading edge of the prospore membrane, is stabilized in ama1Δ mutants. Inactivation of a conditional form of Ssp1 can partially rescue the sporulation defect of the ama1Δ mutant, indicating that an essential function of Ama1 is to lead to the removal of Ssp1. Depletion of Cdc15 causes a defect in meiotic exit. We find that prospore membrane closure is also defective in Cdc15 and that this defect can be overcome by expression of a form of Ama1 in which multiple consensus cyclin-dependent kinase phosphorylation sites have been mutated. These results demonstrate that APCAma1 functions to coordinate the exit from meiosis II with cytokinesis.  相似文献   

15.
Calmodulin in Schizosaccharomyces pombe is encoded by the cam1+ gene, which is indispensable for both vegetative growth and sporulation. Here, we report how Cam1 functions in spore formation. We found that Cam1 preferentially localized to the spindle pole body (SPB) during meiosis and sporulation. Formation of the forespore membrane, a precursor of the plasma membrane in spores, was blocked in a missense cam1 mutant, which was viable but unable to sporulate. Three SPB proteins necessary for the onset of forespore membrane formation, Spo2, Spo13, and Spo15, were unable to localize to the SPB in the cam1 mutant although five core SPB components that were tested were present. Recruitment of Spo2 and Spo13 is known to require the presence of Spo15 in the SPB. Notably, Spo15 was unstable in the cam1 mutant, and as a result, SPB localization of Spo2 and Spo13 was lost. Overexpression of Spo15 partially alleviated the sporulation defect in the cam1 mutant. These results indicate that calmodulin plays an essential role in forespore membrane formation by stably maintaining Spo15, and thus Spo2 and Spo13, at the SPB in meiotic cells.Calmodulin is a calcium-binding protein that is ubiquitously distributed and highly conserved among eukaryotes. It contains four EF-hand Ca2+-binding sites, which are required for function. Calmodulin controls a variety of cellular processes mostly related to calcium signaling. When bound to calcium, calmodulin undergoes a characteristic conformational change to an active configuration. Activated calmodulin then binds effector proteins and transmits the signal to downstream regulators.Yeast is a genetically tractable model organism suitable for studying the biological function of calmodulin, using conditional-lethal calmodulin mutants (4). In the budding yeast Saccharomyces cerevisiae, calmodulin is encoded by the CMD1 gene (5). Cmd1p is implicated in a wide variety of cellular processes, including initiation of budding and mitotic spindle formation (24). The fission yeast Schizosaccharomyces pombe has a typical calmodulin encoded by the cam1+ gene, which plays an indispensable role in cell proliferation, dependent on its Ca2+-binding activity (18, 19, 30). A green fluorescent protein (GFP)-Cam1 fusion protein localizes to sites of polarized cell growth and to the spindle pole body (SPB) in vegetative cells (19). Thus, an essential role of Cam1 might be its regulatory function in chromosome segregation (19). The role of calmodulin in the sexual cycle has been documented to a lesser extent in previous studies. A missense mutant, cam1-117, in which the Arg117 codon is changed to a Phe codon, exhibits reduced sporulation efficacy (29), suggesting that calmodulin plays a role in sporulation in fission yeast.Spore formation in fission yeast initiates with assembly of the forespore membrane (FSM), composed of double-unit membranes within the cytoplasm of a diploid zygote cell (10, 27, 28, 34). The FSM expands to encapsulate each haploid nucleus generated by meiosis and then forms a nucleated prespore. The inner bilayer of the FSM subsequently becomes the plasma membrane of the newborn spores. During meiosis II, the SPB undergoes morphological alteration from a compact single plaque to a multilayered expanded structure (10). Such modification of the SPB is a prerequisite for FSM assembly, which occurs close to the outermost layer of the modified SPB (9, 10, 20, 21).Three SPB component proteins, Spo2, Spo13, and Spo15, have been identified as essential for SPB modification and formation of the FSM (11, 23). Spo15, a large coiled-coil protein, is associated with the SPB throughout the life cycle and is indispensable for recruitment of Spo2 and Spo13 to the cytoplasmic surface of the meiotic SPB. The latter two proteins are produced only during meiosis (23). These observations imply that the SPB serves as a platform for assembly of the FSM. Cam1 has been reported to localize to the SPB during vegetative growth (19), raising the intriguing possibility that fission yeast calmodulin is involved in sporulation through proper construction of a modified meiotic SPB. To test this possibility, we report herein a detailed analysis of Cam1 localization during meiosis and the consequence of a missense mutation of cam1 on SPB modification and FSM formation.  相似文献   

16.
SPO14, encoding the major Saccharomyces cerevisiae phospholipase D (PLD), is essential for sporulation and mediates synthesis of the new membrane that encompasses the haploid nuclei that arise through meiotic divisions. PLD catalyzes the hydrolysis of phosphatidylcholine to phosphatidic acid (PA) and choline. PA stimulates Arf-GTPase-activating proteins (Arf-GAPs), which are involved in membrane trafficking events and actin cytoskeletal function. To determine if Spo14p-generated PA mediates its biological response through Arf-GAPs, we analyzed the sporulation efficiencies of cells deleted for each of the five known and potential yeast Arf-GAPs. Only gcs1delta mutants display a sporulation defect similar to that of spo14 mutants: cells deleted for GCS1 initiate the sporulation program but are defective in synthesis of the prospore membrane. Endosome-to-vacuole transport is also impaired in gcs1delta cells during sporulation. Furthermore, Arf-GAP catalytic activity, but not the pleckstrin homology domain, is required for both prospore membrane formation and endosome-to-vacuole trafficking. An examination of Gcs1p-green fluorescent protein revealed that it is a soluble protein. Interestingly, cells deleted for GCS1 have reduced levels of Spo14p-generated PA. Taken together, these results indicate that GCS1 is essential for sporulation and suggest that GCS1 positively regulates SPO14.  相似文献   

17.
Neiman AM  Katz L  Brennwald PJ 《Genetics》2000,155(4):1643-1655
Saccharomyces cerevisiae cells contain two homologues of the mammalian t-SNARE protein SNAP-25, encoded by the SEC9 and SPO20 genes. Although both gene products participate in post-Golgi vesicle fusion events, they cannot substitute for one another; Sec9p is active primarily in vegetative cells while Spo20p functions only during sporulation. We have investigated the basis for the developmental stage-specific differences in the function of these two proteins. Localization of the other plasma membrane SNARE subunits, Ssop and Sncp, in sporulating cells suggests that these proteins act in conjunction with Spo20p in the formation of the prospore membrane. In vitro binding studies demonstrate that, like Sec9p, Spo20p binds specifically to the t-SNARE Sso1p and, once bound to Sso1p, can complex with the v-SNARE Snc2p. Therefore, Sec9p and Spo20p interact with the same binding partners, but developmental conditions appear to favor the assembly of complexes with Spo20p in sporulating cells. Analysis of chimeric Sec9p/Spo20p molecules indicates that regions in both the SNAP-25 domain and the unique N terminus of Spo20p are required for activity during sporulation. Additionally, the N terminus of Spo20p is inhibitory in vegetative cells. Deletion studies indicate that activation and inhibition are separable functions of the Spo20p N terminus. Our results reveal an additional layer of regulation of the SNARE complex, which is necessary only in sporulating cells.  相似文献   

18.
19.
Phospholipase D (PLD) enzymes catalyze the hydrolysis of phosphatidylcholine and are involved in membrane trafficking and cytoskeletal reorganization. The Saccharomyces cerevisiae SPO14 gene encodes a PLD that is essential for meiosis. We have analyzed the role of PLD in meiosis by examining two mutant proteins, one with a point mutation in a conserved residue (Spo14pK→ H) and one with an amino-terminal deletion (Spo14pΔN), neither of which can restore meiosis in a spo14 deletion strain. Spo14pK→ H is enzymatically inactive, indicating that PLD activity is required, whereas Spo14pΔN retains PLD catalytic activity in vitro, indicating that PLD activity is not sufficient for meiosis. To explore other aspects of Spo14 function, we followed the localization of the enzyme during meiosis. Spo14p is initially distributed throughout the cell, becomes concentrated at the spindle pole bodies after the meiosis I division, and at meiosis II localizes to the new spore membrane as it surrounds the nuclei and then expands to encapsulate the associated cytoplasm during the formation of spores. The catalytically inactive protein also undergoes relocalization during meiosis; however, in the absence of PLD activity, no membrane is formed. In contrast, Spo14pΔN does not relocalize properly, indicating that the failure of this protein to complement a spo14 mutant is due to its inability to localize its PLD activity. Furthermore, we find that Spo14p movement is correlated with phosphorylation of the protein. These experiments indicate that PLD participates in regulated membrane formation during meiosis, and that both its catalytic activity and subcellular redistribution are essential for this function.  相似文献   

20.
Sporulation of Saccharomyces cerevisiae is a developmental process in which four haploid spores are generated inside a diploid cell. Gip1, a sporulation-specific targeting subunit of protein phosphatase type 1, together with its catalytic subunit, Glc7, colocalizes with septins along the extending prospore membrane and is required for septin organization and spore wall formation. However, the mechanism by which Gip1-Glc7 phosphatase promotes these events is unclear. We show here that Ysw1, a sporulation-specific coiled-coil protein, has a functional relationship to Gip1-Glc7 phosphatase. Overexpression of YSW1 partially suppresses the sporulation defect of a temperature-sensitive allele of gip1. Ysw1 interacts with Gip1 in a two-hybrid assay, and this interaction is required for suppression. Ysw1 tagged with green fluorescent protein colocalizes with septins and Gip1 along the extending prospore membrane during spore formation. Sporulation is partially defective in ysw1Δ mutant, and cytological analysis revealed that septin structures are perturbed and prospore membrane extension is aberrant in ysw1Δ cells. These results suggest that Ysw1 functions with the Gip1-Glc7 phosphatase to promote proper septin organization and prospore membrane formation.Diploid cells of Saccharomyces cerevisiae subjected to nitrogen limitation in the presence of a nonfermentable carbon source undergo the developmental process of sporulation (14, 23, 35). Four nuclei produced by two rounds of nuclear division, meiosis I and II, are encapsulated by newly formed double-membrane structures, called prospore membranes, and are finally packaged into spores covered with layered spore walls (35).In this process, prospore membrane formation is one of the most dynamic events. Early in meiosis II, the cytoplasmic surface of the meiotic spindle pole body (SPB) is modified by the recruitment of sporulation-specific protein complex that acts as a site of vesicle recruitment (2, 22, 39). Post-Golgi secretory vesicles dock to the surface of the SPBs and fuse with each other, generating prospore membranes (33, 34). The prospore membranes then grow to engulf daughter nuclei through a series of stages that are categorized by the membranes'' appearance in the fluorescence microscope (12). Initially, the membranes appear as small horseshoes that enlarge to become small round membrane structures. The prospore membranes then extend into a tube-like shape, engulfing the nucleus, as well as some cytosol and organelles (12). After this extension, prospore membrane undergoes a rapid change to a mature round form. This rounding of the membrane is coordinated with membrane closure (12). Spore wall materials are then deposited into the luminal space created by closure of the prospore membrane (9).In addition to the meiotic plaque of the SPB, two protein complexes are associated with the prospore membrane as it forms. One is the leading edge protein complex, which exists at the lip of the prospore membranes and consists of three components: Ssp1, Ady3, and Don1 (27, 30, 38). Ssp1 is the most important of the three and is required for proper extension of the prospore membrane (30). The second complex is a sporulation-specific septin structure. The septins are a family of cytoskeletal proteins, which form filaments (18, 50). Septins are conserved from yeast to mammals. They were originally found and have been extensively studied in S. cerevisiae. In vegetatively growing S. cerevisiae cells, five septin proteins—Cdc3, Cdc10, Cdc11, Cdc12, and Shs1—form a ring at the bud neck that serves as a scaffold for many additional proteins, as well as a barrier to diffusion of proteins between the mother and the bud (19, 29, 50). In sporulating cells, the set of septin proteins is changed. Cdc3 and Cdc10, along with two sporulation-specific septins, Spr3 and Spr28, form a pair of parallel bars or sheets associated with each prospore membrane (11, 15, 29). Although deletion of sporulation-specific septins has only modest effects on sporulation (11, 15), their specific localization suggests that they have some function during prospore membrane formation. Septin organization in vegetatively growing cells is regulated by phosphorylation and dephosphorylation of septin components and septin-associated proteins (29). In sporulating cells, a sporulation-specific protein phosphatase type 1 (PP1) complex Gip1-Glc7 is required for the formation of septin structures (46), although whether this phosphatase acts directly on the septin proteins is unknown.The PP1 catalytic subunit is highly conserved in eukaryotes and is involved in a variety of cellular processes (8, 44). In S. cerevisiae it is encoded by an essential gene, GLC7, and functions in glycogen synthesis, glucose repression, chromosome segregation, cell wall organization, endocytosis, mating, and sporulation (3, 17, 24, 42, 44, 47, 53). The specificity of this enzyme is determined by targeting subunits. GIP1 was originally isolated in a two-hybrid screen by using GLC7 as a bait, and this interaction was confirmed by coimmunoprecipitation of the two proteins (48). GIP1 is a sporulation-specific gene required for sporulation. Further analysis revealed that Gip1 and Glc7 colocalize with septins during sporulation and are required for both septin organization and spore wall formation (46). The specific targets or cofactors of this PP1 complex are unknown.To elucidate the role of Gip1-Glc7 phosphatase, we screened for high-copy suppressors of a temperature-sensitive allele of gip1 and isolated YSW1. Ysw1 interacts with Gip1 and colocalizes with septins similar to Gip1. Furthermore, a ysw1Δ mutant displays aberrant septin structures and prospore membrane extension. These results suggest that Ysw1 may function with Gip1-Glc7 to regulate proper septin organization and prospore membrane formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号