首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
三元基序家族蛋白15 (tripartite motif-containing protein 15,TRIM15)是TRIM家族成员,该家族是一类具有E3泛素连接酶活性的蛋白质.TRIM15在肿瘤中的功能鲜有报导.本研究意在阐释TRIM15在肝细胞癌(hepatocellular carcinoma,HCC)中的作用...  相似文献   

2.
该文通过shRNA干扰技术敲低IscU2干扰细胞IscU2的表达,研究了干扰IscU2对非小细胞肺癌(NSCLC)细胞NCI-H520增殖、迁移及侵袭能力的影响。构建了稳定低表达IscU2的非小细胞肺癌细胞系NCI-H520;采用CCK-8和平板克隆实验检测细胞的增殖能力;流式细胞仪检测细胞周期、凋亡、ROS、线粒体膜电位变化情况;Transwell实验检测细胞迁移及侵袭能力;Western blot检测相关蛋白的表达。结果表明,干扰IscU2后,非小细胞肺癌细胞的增殖及克隆形成能力降低;细胞周期停滞在G1/G0期,同时伴随有p-AKT和Cyclin D1蛋白含量的下降;细胞晚期凋亡率明显增加,凋亡蛋白Cleaved-caspase3和Cleaved-PARP表达上调;细胞迁移和侵袭能力降低,上皮标志物E-Cadherin表达上调,间质标志物N-Cadherin和Snail表达下调;细胞ROS积累和线粒体膜电位下降。该研究结果表明,干扰IscU2显著抑制非小细胞肺癌的增殖、迁移、侵袭能力和上皮–间质转化,这为非小细胞肺癌的诊断和治疗提供了新的潜在靶点和视角。  相似文献   

3.
已知mir-615-5p可抑制癌细胞的增殖,然而其具体分子机制尚不明确。本研究证明,mir-615-5p通过负调节癌基因TRAF4,从而抑制NSCLC细胞的增殖。运用实时定量PCR检测NSCLC患者癌组织和癌旁正常组织、正常人肺支气管上皮细胞系HBE和3种人源NSCLC细胞系中mir-615-5p的表达,发现与正常的组织和细胞相比,mir-615-5p在NSCLC癌组织和癌细胞中表达水平显著降低;运用Western印迹检测HBE细胞和NSCLC细胞系中TRAF4蛋白的表达,发现TRAF4在NSCLC细胞中表达显著升高;MTT和CCK 8分析结果显示,转染mir-615-5p mimic 可显著降低NSCLC细胞的增殖能力;生物学信息分析和萤光素酶报告基因检测结果显示,mir-615-5p可靶定结合TRAF4 mRNA,并下调TRAF4蛋白的水平;pcDNA-TRAF4转染后细胞增殖检测结果显示,过表达TRAF4能够消除mir-615-5p引起的细胞增殖抑制作用。综上所述,mir-615-5p通过靶定结合癌基因TRAF4的mRNA,下调TRAF4蛋白的水平,从而抑制NSCLC细胞的增殖。  相似文献   

4.
Aberrant expression of the tripartite motif containing 59 (TRIM59) has been reported to participate in the development and progression of various human cancers. However, its expression pattern and cellular roles in pancreatic cancer (PC) remains unclear. In our study, we found that TRIM59 expression was significantly increased in PC tissues and was positively correlated with several malignant behaviors and poor overall survival of PC patients based on bioinformatics analysis and immunohistochemistry staining. Functionally, small interfering RNA–mediated TRIM59 depletion inhibited cell proliferation and migration in vitro, while TRIM59 overexpression promoted cell proliferation and migration in vitro and drove tumor growth and liver metastasis in vivo. Mechanically, TRIM59 was found to enhance glycolysis through activating the PI3K/AKT/mTOR pathway, ultimately contributing to PC progression. Taken together, our results demonstrate that TRIM59 may be a potential predictor for PC and promotes PC progression via the PI3K/AKT/mTOR-glycolysis signaling pathway, which establishes the rationale for targeting the TRIM59-related pathways to treat PC.  相似文献   

5.
6.
The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) protein is a key player in tumorigenesis of non–small cell lung cancer (NSCLC) and was recently found to be inactivated by tripartite motif containing 25 (TRIM25)–mediated K63-linked polyubiquitination. However, the deubiquitinase (Dub) coordinate TRIM25 in PTEN ubiquitination is still elusive. In the present study, we found that this K63-linked polyubiquitination could be ablated by the ubiquitin-specific protease 10 (USP10) in a screen against a panel of Dubs. We found using coimmununoprecipitation/immunoblotting that USP10 interacted with PTEN and reduced the K63-linked polyubiquitination of PTEN mediated by TRIM25 in NSCLC cells. Moreover, USP10, but not its inactive C424A deubiquitinating mutant or other Dubs, abolished PTEN from K63-linked polyubiquitination mediated by TRIM25. In contrast to TRIM25, USP10 restored PTEN phosphatase activity and reduced the production of the secondary messenger phosphatidylinositol-3,4,5-trisphosphate, thereby inhibiting AKT/mammalian target of rapamycin progrowth signaling transduction in NSCLC cells. Moreover, USP10 was downregulated in NSCLC cell lines and primary tissues, whereas TRIM25 was upregulated. Consistent with its molecular activity, re-expression of USP10 suppressed NSCLC cell proliferation and migration, whereas knockout of USP10 promoted NSCLC cell proliferation and migration. In conclusion, the present study demonstrates that USP10 coordinates TRIM25 to modulate PTEN activity. Specifically, USP10 activates PTEN by preventing its K63-linked polyubiquitination mediated by TRIM25 and suppresses the AKT/mammalian target of rapamycin signaling pathway, thereby inhibiting NSCLC proliferation, indicating that it may be a potential drug target for cancer treatment.  相似文献   

7.
The Wilms’ tumor suppressor gene (WT1) has been identified as an oncogene in many malignant diseases such as leukaemia, breast cancer, mesothelioma and lung cancer. However, the role of WT1 in non-small-cell lung cancer (NSCLC) carcinogenesis remains unclear. In this study, we compared WT1 mRNA levels in NSCLC tissues with paired corresponding adjacent tissues and identified significantly higher expression in NSCLC specimens. Cell proliferation of three NSCLC cell lines positively correlated with WT1 expression; moreover, these associations were identified in both cell lines and a xenograft mouse model. Furthermore, we demonstrated that up-regulation of Cyclin D1 and the phosphorylated retinoblastoma protein (p-pRb) was mechanistically related to WT1 accelerating cells to S-phase. In conclusion, our findings demonstrated that WT1 is an oncogene and promotes NSCLC cell proliferation by up-regulating Cyclin D1 and p-pRb expression.  相似文献   

8.
9.
目的:通过体外实验探讨miR-575对非小细胞肺癌(NSCLC)细胞增殖与侵袭能力的影响及相关机制。方法:采用实时定量PCR法检测不同非小细胞肺癌细胞系中miR-575、BLID的表达;CCK-8法检测转染miR-575模拟物、抑制因子后不同时间A549细胞增殖情况的变化;Transwell法检测A549细胞的侵袭情况;Targetcan法及双荧光素酶检测miR-575对BLID 3'UTR端的靶向作用;Western blot法检测BLID蛋白的表达。结果:A549、SPC-A1、H1299、H1650等人非小细胞肺癌细胞系中miR-575的表达均显著高于永生化的人支气管上皮细胞系16HBE(P0.001)。MiR-575模拟物转染的A549细胞miR-575的表达明显高于对照组(P0.001),同时细胞的增殖和侵袭力增强(P0.05);反之,miR-575抑制因子转染的A549细胞miR-575的表达显著降低,且细胞的增殖和侵袭力明显降低(P0.01)。Targetscan法预测BLID可能是miR-575的下游靶基因,荧光素酶结果显示miR-575不仅能够有效抑制野生型BLID 3'UTR端的荧光素酶反应(P0.01),而且能够降低BLID的蛋白表达量(P0.01)。实时定量PCR结果显示BLID在NSCLC细胞系中均呈现显著的低表达(P0.001),且转染BLID后,NSCLC细胞的增殖和细胞侵袭被明显抑制(P0.05),而当miR-575与BLID共转染时,miR-575能够逆转BLID所抑制的细胞增殖和侵袭(P0.01)。结论:在NSCLC细胞系中,miR-575的表达上调,且能够通过直接作用于下游靶点抑癌基因BLID从而促非小细胞肺癌细胞增殖及侵袭。  相似文献   

10.
Tripartite-motif containing 22 (TRIM22) is a direct p53 target gene and inhibits the clonogenic growth of leukemic cells. Its expression in Wilms tumors is negatively associated with disease relapse. This study addresses if TRIM22 expression is de-regulated in breast carcinoma. Western blotting analysis of a panel of 10 breast cancer cell lines and 3 non-malignant mammary epithelial cell lines with a well-characterized TRIM22 monoclonal antibody showed that TRIM22 protein is greatly under-expressed in breast cancer cells as compared to non-malignant cell lines. Similarly, TRIM22 protein is significantly down-regulated in breast tumors as compared to matched normal breast tissues. Study of cell lines with methylation inhibitor and bisulfite sequencing indicates that TRIM22 promoter hypermethylation may not be the cause for TRIM22 under-expression in breast cancer. Instead, we found that TRIM22 protein level correlates strongly (R = 0.79) with p53 protein level in normal breast tissue, but this correlation is markedly impaired (R = 0.48) in breast cancer tissue, suggesting that there is some defects in p53 regulation of TRIM22 gene in breast cancer. This notion is supported by cell line studies, which showed that TRIM22 was no longer inducible by p53-activating genotoxic drugs in breast cancer cell lines and in a p53 null cell line H1299 transfected with wild type p53. In conclusion, this study shows that TRIM22 is greatly under-expressed in breast cancer. p53 dysfunction may be one of the mechanisms for TRIM22 down-regulation.  相似文献   

11.
Resistance to chemotherapeutic drugs is a critical problem in cancer therapy, but the underlying mechanism has not been fully elucidated. TP53‐induced glycolysis regulatory phosphatase (TIGAR), an important glycolysis and apoptosis regulator, plays a crucial role in cancer cell survival by protecting cells against oxidative stress‐induced apoptosis. In the present study, we investigated whether TIGAR is involved in epithelial‐mesenchymal transition (EMT) in doxorubicin (DOX)‐resistant human non‐small cell lung cancer (NSCLC), A549/DOX cells. We found that the expression of TIGAR was significantly higher in A549/DOX cells than in the parent A549 cell lines. siRNA‐mediated TIGAR knockdown reduced migration, viability and colony survival of doxorubicin‐resistant lung cancer cells. Also, TIGAR knockdown decreased pro‐survival protein Bcl‐2 and increased pro‐apoptotic Bax and cleaved poly (ADP‐ribose) polymerase (PARP). Moreover, TIGAR depletion significantly up‐regulated both caspase‐3 and caspase‐9 expression. Furthermore, TIGAR depletion up‐regulated the expression of E‐cadherin and down‐regulated the expression of vimentin. These results indicate that TIGAR knockdown may inhibit EMT in doxorubicin (DOX)‐resistant human NSCLC and may represent a therapeutic target for a non‐small lung cancer cells chemoresistance.  相似文献   

12.
Although cisplatin is a very effective anticancer agent against several types of cancer including ovarian cancer, the mechanisms of acquired resistance are not fully understood. By chronically exposing cisplatin to ovarian cancer cell lines, we established two cisplatin-resistant cell lines OV433 and TOV112D. Our results indicate that the mechanisms underlying their cisplatin resistance are distinct. In OV433 cells, cisplatin resistance is associated with increased expression of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1). By knocking down MKP-1 expression by siRNA or inhibiting MKP-1 expression by its pharmacological inhibitor triptolide, cisplatin-resistant OV433 cells became cisplatin-sensitive and subsequently increased cisplatin-induced apoptosis. In TOV112D cells, on the other hand, acquired cisplatin resistance is associated with increased levels of Bcl-2 protein. By inhibiting the activity of Bcl-2 protein with its pharmacological inhibitor gossypol or knocking down Bcl-2 expression by siRNA, cisplatin-resistant TOV112D cells became cisplatin-sensitive and subsequently increased cisplatin-induced apoptosis. Therefore, our data suggest that the mechanisms of acquired cisplatin resistance vary among ovarian cancer cells, which involve up-regulation of molecules associated with the cell survival pathways.  相似文献   

13.
Previous studies suggested Ataxia-telangiectasia group D complementing gene (ATDC) as an oncogene in many types of cancer. However, its expression and biological functions in non-small cell lung cancer (NSCLC) remain unclear. Herein, we investigated its expression pattern in 109 cases of human NSCLC samples by immunohistochemistry and found that ATDC was overexpressed in 62 of 109 NSCLC samples (56.88%). ATDC overexpression correlated with histological type (p<0.0001), tumor status (p = 0.0227) and histological differentiation (p = 0.0002). Next, we overexpressed ATDC in normal human bronchial epithelial cell line HBE and depleted its expression in NSCLC cell lines A549 and H1299. MTT and colony formation assay showed that ATDC overexpression promoted cell proliferation while its depletion inhibited cell growth. Furthermore, cell cycle analysis showed that ATDC overexpression decreased the percentage of cells in G1 phase and increased the percentage of cells in S phase, while ATDC siRNA treatment increased the G1 phase percentage and decreased the S phase percentage. Further study revealed that ATDC overexpression could up-regulate cyclin D1 and c-Myc expression in HBE cells while its depletion down-regulated cyclin D1 and c-Myc expression in A549 and H1299 cells. In addition, ATDC overexpression was also associated with an increased proliferation index, cyclin D1 and c-Myc expression in human NSCLC samples. Further experiments demonstrated that ATDC up-regulated cyclin D1 and c-Myc expression independent of wnt/β-catenin or p53 signaling pathway. Interestingly, ATDC overexpression increased NF-κB reporter luciferase activity and p-IκB protein level. Correspondingly, NF-κB inhibitor blocked the effect of ATDC on up-regulation of cyclin D1 and c-Myc. In conclusion, we demonstrated that ATDC could promote lung cancer proliferation through NF-κB induced up-regulation of cyclin D1 and c-Myc.  相似文献   

14.
The human mitochondrial ATP-dependent Lon protease functions in regulating the metabolism and quality control of proteins and mitochondrial DNA (mtDNA). However, the role of Lon in cancer is not well understood. Therefore, this study was undertaken to investigate the importance of Lon in cervical cancer cells from patients and in established cell lines. Microarray analysis from 30 cancer and 10 normal cervical tissues were analyzed by immunohistochemistry for Lon protein levels. The expression of Lon was also examined by immunoblotting 16 fresh cervical cancer tissues and their respective non-tumor cervical tissues. In all cases, Lon expression was significantly elevated in cervical carcinomas as compared to normal tissues. Augmented Lon expression in tissue microarrays did not vary between age, tumor-node-metastasis grades, or lymph node metastasis. Knocking down Lon in HeLa cervical cancer cells by lentivrial transduction resulted in a substantial decrease in both mRNA and protein levels. Such down-regulation of Lon expression significantly blocked HeLa cell proliferation. In addition, knocking down Lon resulted in decreased cellular bioenergetics as determined by measuring aerobic respiration and glycolysis using the Seahorse XF24 extracellular flux analyzer. Together, these data demonstrate that Lon plays a potential role in the oncogenesis of cervical cancer, and may be a useful biomarker and target in the treatment of cervical cancer. Lon; immunohistochemistry; cervical cancer; cell proliferation; cellular bioenergetics.  相似文献   

15.
Non-small-cell lung cancer (NSCLC) is the most common malignancy along with high mortality rate worldwide. Recently, nucleolar and spindle-associated protein 1 (NUSAP1) has been reported to be involved in the malignant progression of several cancers. However, in NSCLC, the biological function of NUSAP1 and its molecular mechanism have not been reported. Here, our findings indicated that the NUSAP1 messenger RNA expression level was remarkably upregulated in NSCLC tissues compared with that of adjacent normal tissues. We also found that NUSAP1 gene expression was notably upregulated in NSCLC cell lines (A549, 95-D, H358, and H1299) compared with that of normal human bronchial epithelial cell line (16HBE). Subsequently, the biological function of NUSAP1 was investigated in A549 and H358 cells transfected with NUSAP1 small interfering RNA (siRNA), respectively. Results showed that NUSAP1 knockdown inhibited NSCLC cell proliferation, and promoted cell apoptosis. Furthermore, the number of cell migration and invasion was significantly suppressed by NUSAP1 knockdown. In addition, our results indicated that NUSAP1 knockdown increased the gene expression of B-cell translocation gene 2 (BTG2), but decreased the expression levels of phosphoinositide 3-kinase (PI3K) and phosphorylated serine/threonine kinase (p-AKT). BTG2 siRNA partly abrogates the effect of NUSAP1 knockdown on BTG2 gene expression. Fumonisin B1 (FB1), a AKT activator, reversed the effect of NUSAP1 knockdown on the biological function in NSCLC. Taken together, NUSAP1 knockdown promotes NSCLC cell apoptosis, and inhibits cell proliferation, cell migration, and invasion, which is associated with regulating BTG2/PI3K/Akt signal pathway. Our findings suggest that NUSAP1 is a promising molecular target for NSCLC treatment.  相似文献   

16.
Wnt and Notch signaling pathways both play essential roles and interact closely in development and carcinogenesis, but their interaction in non-small-cell lung cancer (NSCLC) is poorly unknown. Here we investigated the effects of CHIR99021, a Wnt signaling agonist, or Notch3-shRNA, or the combined application of CHIR99021 and Notch3-shRNA on cell proliferation and apoptosis, as well as the expressions of Notch3, its downstream genes, cyclinA and caspase-3. Our results showed that CHIR99021 up-regulated the expression of Notch3 protein and HES1 and HEYL mRNA. CHIR99021 promoted cell proliferation and the expression of cyclinA, which were inhibited by Notch3-shRNA in these three cell lines. Moreover, Notch3-shRNA significantly attenuated the positive effects of CHIR99021 on cell proliferation and cyclinA in H460 and H157. As for apoptosis, Notch3-shRNA induced cell apoptosis and increased the expression of caspase-3, whereas CHIR99021 showed the different effects in these three cell lines. The inhibitory effect of CHIR99021 on apoptosis was significantly weakened by Notch3-shRNA only in H460. Overall, although the effects of CHIR99021 and the combined application of CHIR99021 and Notch3-shRNA on the cell proliferation and apoptosis aren’t completely similar in the three cell lines, our findings still indicate that Notch3 signaling can be activated by canonical Wnt signaling and a functional link between Wnt and Notch signaling pathways exists in NSCLC, at least, which partially is associated with their regulations on the expressions of cyclinA and caspase-3.  相似文献   

17.
MicroRNAs play important roles in the development and progression of non-small cell lung cancer (NSCLC). miR-16 functions as a tumor-suppressor and is inhibited in several malignancies. Herein, we validated that miR-16 is downregulated in NSCLC tissue samples and cell lines. Ectopic expression of miR-16 significantly inhibited cell proliferation and colony formation. Moreover, miR-16 suppressed cell migration and invasion in NSCLC cells. Hepatoma-derived growth factor (HDGF) was found to be a direct target of miR-16 in NSCLC cell lines. Rescue experiments showed that the suppressive effect of miR-16 on cell proliferation, colony formation, migration, and invasion is partially mediated by inhibiting HDGF expression. This study indicates that miR-16 might be associated with NSCLC progression, and suggests an essential role for miR-16 in NSCLC.  相似文献   

18.
Lung cancer (LC) is a devastating malignancy with no effective treatments, due to its complex genomic profile. Using bioinformatics analysis and immunohistochemical of lung carcinoma tissues, we show that TRIM59 as a critical oncoprotein relating to LC proliferation and metastasis. In this study, high TRIM59 expression was significantly correlated with lymph node metastasis, distant metastasis, and tumour stage. Furthermore, up‐regulation of TRIM59 expression correlated with poorer outcomes in LC patients. Mechanistically, TRIM59 play a key role in promoting LC growth and metastasis through regulation of extracellular‐signal regulated protein kinase (ERK) signalling pathway and epithelial‐to‐mesenchymal transition (EMT)‐markers, as validated by loss‐of‐function studies. In‐depth bioinformatics analysis showed that there is preliminary evidence of co‐expression of TRIM59 and cyclin dependent kinase 6 (CDK6) in LC. Notably, CDK6 expression significantly decreased when TRIM59 was knocked down in the LC cells. In contrast, exogenous up‐regulation of TRIM59 expression also induced significant increases in the expression of CDK6. Moreover, the expression of CDK6 was also inhibited by the ERK signalling inhibitor, U0126. The results of both loss‐ and gain‐of‐function studies showed that TRIM59 could regulate the expression of CDK6. Collectively, these data provide evidence that TRIM59 is involved in lung carcinoma growth and progression possibly through the induction of CDK6 expression and EMT process by activation of ERK pathway.  相似文献   

19.
20.
Non-small-cell lung cancer (NSCLC) is a cancer with high morbidity and mortality. We aimed to define the effect of Go-Ichi-Ni-San complex subuint 2 (GINS2) acting on NSCLC. The expressions of GINS2 in NSCLC tissues and cells were detected using real-time quantitative polymerase chain reaction, western blot, and immunohistochemistry (IHC). The relationship between GINS2 expression and NSCLC prognosis or clinicopathologic features was analyzed through statistical analysis. The overexpressed or downexpressed plasmids of GINS2 were transfected into NSCLC cell lines, and then cell proliferation, invasion, and migration viability were, respectively, determined by Cell Counting Kit-8 assay, transwell, and wound healing assay. The epithelial–mesenchymal transition (EMT) was observed and the EMT-related proteins were measured using IHC and western blot. The function of GINS2 in vivo was assessed by mice model. The related proteins of mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) and phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) pathways were evaluated using western blot. GINS2 expression was upregulated in NSCLC tissues and cell lines, and its high expression was correlated with the poor prognosis and several clinicopathologic features, such as TMN stages (tumor size, lymph node, and metastasis) and clinical stages. GINS2 enhanced NSCLC cell proliferation, migration, and invasion viability in vivo and in vitro. GINS2 also promoted NSCLC cells EMT. In addition, GINS2 could regulate phosphorylated proteins of PI3K p85, Akt, MEK, and ERK expressions, it revealed that GINS2 effected on PI3K/Akt and MEK/ERK pathways. GINS2 promoted cell proliferation, migration, invasion, and EMT via modulating PI3K/Akt and MEK/ERK signaling pathways. It might be a target in NSCLC treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号