首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.

Rationale

There is a need for a readily available, non-invasive source of biomarkers that predict poor asthma control.

Objectives

We sought to determine if there is an association between the salivary inflammatory profile and disease control in children and adults with asthma.

Methods

In this cross-sectional study, we collected demographic and clinical information from two independent populations at different sites, resulting in convenience samples of 58 pediatric and 122 adult urban asthmatics. Control was assessed by symptom questionnaire (children) and by Asthma Control Questionnaire and current exacerbation (adults). Saliva was collected in all subjects. We applied principal component analysis to a 10-plex panel of relevant inflammatory markers to characterize marker profiles and determined if profiles were associated with asthma control.

Results

There were similar, strong correlations amongst biologically related markers in both populations: eosinophil-related: eotaxin-1/CCL11, RANTES/CCL5, and IL-5 (p<.001); myeloid/innate: IL-1β, IL-6, MCP-1/CCL2, and IL-8/CXCL8 (p<.001). The first three principal components captured ≥74% of variability across all ten analytes in both populations. In adults, the Principal Component 1 score, broadly reflective of all markers, but with greater weight given to myeloid/innate markers, was associated with Asthma Control Questionnaire score and exacerbation. The Principal Component 3 score, reflective of IP-10/CXCL10, was associated with current exacerbation. In children, the Principal Component 1, 2, and 3 scores were associated with recent asthma symptoms. The Principal Component 2 score, reflective of higher eosinophil markers, was inversely correlated with symptoms. The Principal Component 3 score was positively associated with all symptom outcomes.

Conclusion

The salivary inflammatory profile is associated with disease control in children and adults with asthma.  相似文献   

2.

Objective

Multiple chemical sensitivity (MCS) is a chronic medical condition characterized by symptoms that the affect an individual’s response to low-level chemical exposure. In this study, we identified a chemical sensitive population (CSP) and investigated the effect of genetic polymorphisms on their risk of chemical sensitivity.

Methods

A quick environment exposure sensitivity (QEESI) questionnaire was used to survey 324 Japanese male workers whose DNA samples had been collected and stored. The following genes, which encode enzymes affecting the metabolic activation of a large number of xenobiotic compounds, were selected and analyzed in order to determine their influence on genetic predisposition to CSP: cytochrome P450 (CYP) 2E1, N-acetyl transferase (NAT) 2, glutathione S-transferase (GST) M1, GSTT1, GSTP1, low Km aldehyde dehydrogenase (ALDH2), and superoxide dismutase (SOD) 2.

Results

Significant case-control distributed differences were observed in SOD2 polymorphisms and allele frequency distribution in high chemical sensitive subjects. Both the significant adjusted OR of 4.30 (95% CI, 1.23–15.03) and 4.53 (95% CI, 1.52-13.51) were observed in SOD2 Ala/Ala and Val/Ala compared to Val/Val and in SOD2 Ala/Ala compared to Val/Ala compared to Val/Val genetic analysis in the high chemical sensitivity case-control study.

Conclusions

We observed that high chemical sensitive individuals diagnosed by using Japanese criteria as MCS patients were more significantly associated with SOD2 polymorphisms.  相似文献   

3.
Heman airway preparations at resting tone were relaxed with either the leukotriene synthesis inhibitor BAY x1005 (3 muM), chlorpheniramine (1 muM) or the thromboxane receptor antagonist BAY u3405 (0.1 muM). The response to anti-IgE (1:1000) was 58 +/- 8% of acetylcholine pre-contraction (2.19 +/- 0.28 g). Indomethacin (3 muM) enhanced the anti-IgE-induced contraction by 28%. The anti-IgE maximal response was not modified by either chlorpheniramine, BAY x1005 or BAY u3405. When the tissues were treated with either BAY xl005/indomethacin or BAY x1005/chlorpheniramine, the anti-IgE-induced contraction was reduced. In addition, in presence of BAY xl005/indomethacin/chlorpheniramine the response was completely blocked. These results suggest that mediatots released during anti-IgE challenge cause airway contraction which may mask the evaluation of the leukotriene component.  相似文献   

4.

Background

Asthma is a common disease characterised by reversible airflow obstruction, bronchial hyperresponsiveness and chronic inflammation, which is commonly treated using corticosteroids such as budesonide. MicroRNAs (miRNAs) are a recently identified family of non-protein encoding genes that regulate protein translation by a mechanism entitled RNA interference. Previous studies have shown lung-specific miRNA expression profiles, although their importance in regulating gene expression is unresolved. We determined whether miRNA expression was differentially expressed in mild asthma and the effect of corticosteroid treatment.

Methodology/Principal Findings

We have examined changes in miRNA using a highly sensitive RT-PCR based approach to measure the expression of 227 miRNAs in airway biopsies obtained from normal and mild asthmatic patients. We have also determined whether the anti-inflammatory action of corticosteroids are mediated through miRNAs by determining the profile of miRNA expression in mild asthmatics, before and following 1 month twice daily treatment with inhaled budesonide. Furthermore, we have analysed the expression of miRNAs from individual cell populations from the airway and lung.We found no significant difference in the expression of 227 miRNAs in the airway biopsies obtained from normal and mild asthmatic patients. In addition, despite improved lung function, we found no significant difference in the miRNA expression following one month treatment with the corticosteroid, budesonide. However, analysis of bronchial and alveolar epithelial cells, airway smooth muscle cells, alveolar macrophages and lung fibroblasts demonstrate a miRNA expression profile that is specific to individual cell types and demonstrates the complex cellular heterogeneity within whole tissue samples.

Conclusions

Changes in miRNA expression do not appear to be involved in the development of a mild asthmatic phenotype or in the anti-inflammatory action of the corticosteroid budesonide.  相似文献   

5.

Background

Structural genomic variation study, along with microarray technology development has provided many genomic resources related with architecture of human genome, and led to the fact that human genome structure is a lot more complicated than previously thought.

Methodology/Principal Findings

In the case of International HapMap Project, Epstein-Barr various immortalized cell lines were preferably used over blood in order to get a larger number of genomic DNA. However, genomic aberration stemming from immortalization process, biased representation of the donor tissue, and culture process may influence the accuracy of SNP genotypes. In order to identify chromosome aberrations including loss of heterozygosity (LOH), large-scale and small-scale copy number variations, we used Illumina HumanHap500 BeadChip (555,352 markers) on Korean HapMap individuals (n = 90) to obtain Log R ratio and B allele frequency information, and then utilized the data with various programs including Illumina ChromoZone, cnvParition and PennCNV. As a result, we identified 28 LOHs (>3 mb) and 35 large-scale CNVs (>1 mb), with 4 samples having completely duplicated chromosome. In addition, after checking the sample quality (standard deviation of log R ratio <0.30), we selected 79 samples and used both signal intensity and B allele frequency simultaneously for identification of small-scale CNVs (<1 mb) to discover 4,989 small-scale CNVs. Identified CNVs in this study were successfully validated using visual examination of the genoplot images, overlapping analysis with previously reported CNVs in DGV, and quantitative PCR.

Conclusion/Significance

In this study, we describe the result of the identified chromosome aberrations in Korean HapMap individuals, and expect that these findings will provide more meaningful information on the human genome.  相似文献   

6.
The etiology of respiratory allergies (RA) can be partly explained by DNA methylation changes caused by adverse environmental and lifestyle factors experienced early in life. Longitudinal, prospective studies can aid in the unravelment of the epigenetic mechanisms involved in the disease development. High compliance rates can be expected in these studies when data is collected using non-invasive and convenient procedures. Saliva is an attractive biofluid to analyze changes in DNA methylation patterns. We investigated in a pilot study the differential methylation in saliva of RA (n = 5) compared to healthy controls (n = 5) using the Illumina Methylation 450K BeadChip platform. We evaluated the results against the results obtained in mononuclear blood cells from the same individuals. Differences in methylation patterns from saliva and mononuclear blood cells were clearly distinguishable (PAdj<0.001 and |Δβ|>0.2), though the methylation status of about 96% of the cg-sites was comparable between peripheral blood mononuclear cells and saliva. When comparing RA cases with healthy controls, the number of differentially methylated sites (DMS) in saliva and blood were 485 and 437 (P<0.05 and |Δβ|>0.1), respectively, of which 216 were in common. The methylation levels of these sites were significantly correlated between blood and saliva. The absolute levels of methylation in blood and saliva were confirmed for 3 selected DMS in the PM20D1, STK32C, and FGFR2 genes using pyrosequencing analysis. The differential methylation could only be confirmed for DMS in PM20D1 and STK32C genes in saliva. We show that saliva can be used for genome-wide methylation analysis and that it is possible to identify DMS when comparing RA cases and healthy controls. The results were replicated in blood cells of the same individuals and confirmed by pyrosequencing analysis. This study provides proof-of-concept for the applicability of saliva-based whole-genome methylation analysis in the field of respiratory allergy.  相似文献   

7.
The functional state of the forearm muscles in individuals exposed to long-term vibration (dressers with a duration of current employment of 7–15 years, n = 12) was assessed using turn–amplitude analysis of the integrated surface electromyogram (EMG), the nerve conduction velocity test, and the conventional motor unit action potential electromyographic test. A significant increase in the EMG amplitude and the number of turns upon graded effort, as well as a decrease in the maximal ratio of the number of turns to the average amplitude of the electromyogram from the right m. flexor carpi radialis of the dressers, was revealed, which is indicative of secondary muscular disorders connected with the specific features of the occupational movement pattern and long-term exposure to vibration.  相似文献   

8.
9.
Changes in the airway microbiome may be important in the pathophysiology of chronic lung disease in patients with cystic fibrosis. However, little is known about the microbiome in early cystic fibrosis lung disease and the relationship between the microbiomes from different niches in the upper and lower airways. Therefore, in this cross-sectional study, we examined the relationship between the microbiome in the upper (nose and throat) and lower (sputum) airways from children with cystic fibrosis using next generation sequencing. Our results demonstrate a significant difference in both α and β-diversity between the nose and the two other sampling sites. The nasal microbiome was characterized by a polymicrobial community while the throat and sputum communities were less diverse and dominated by a few operational taxonomic units. Moreover, sputum and throat microbiomes were closely related especially in patients with clinically stable lung disease. There was a high inter-individual variability in sputum samples primarily due to a decrease in evenness linked to increased abundance of potential respiratory pathogens such as Pseudomonas aeruginosa. Patients with chronic Pseudomonas aeruginosa infection exhibited a less diverse sputum microbiome. A high concordance was found between pediatric and adult sputum microbiomes except that Burkholderia was only observed in the adult cohort. These results indicate that an adult-like lower airways microbiome is established early in life and that throat swabs may be a good surrogate in clinically stable children with cystic fibrosis without chronic Pseudomonas aeruginosa infection in whom sputum sampling is often not feasible.  相似文献   

10.
11.
Multiple chemical sensitivity (MCS) is characterized by somatic distress upon exposure to odors. Patients with MCS process odors differently from controls. This odor-processing may be associated with activation in the prefrontal area connecting to the anterior cingulate cortex, which has been suggested as an area of odorant-related activation in MCS patients. In this study, activation was defined as a significant increase in regional cerebral blood flow (rCBF) because of odorant stimulation. Using the well-designed card-type olfactory test kit, changes in rCBF in the prefrontal cortex (PFC) were investigated after olfactory stimulation with several different odorants. Near-infrared spectroscopic (NIRS) imaging was performed in 12 MCS patients and 11 controls. The olfactory stimulation test was continuously repeated 10 times. The study also included subjective assessment of physical and psychological status and the perception of irritating and hedonic odors. Significant changes in rCBF were observed in the PFC of MCS patients on both the right and left sides, as distinct from the center of the PFC, compared with controls. MCS patients adequately distinguished the non-odorant in 10 odor repetitions during the early stage of the olfactory stimulation test, but not in the late stage. In comparison to controls, autonomic perception and negative affectivity were poorer in MCS patients. These results suggest that prefrontal information processing associated with odor-processing neuronal circuits and memory and cognition processes from past experience of chemical exposure play significant roles in the pathology of this disorder.  相似文献   

12.
Circulating levels of inflammatory markers predict the risk of cardiovascular disease (CVD), mediated perhaps in part by dietary fat intake, through mechanisms only partially understood. To evaluate post‐fat load changes in inflammatory markers and genetic influences on these changes, we administered a standardized high‐fat meal to 838 related Amish subjects as part of the Heredity and Phenotype Intervention (HAPI) Heart Study and measured a panel of inflammatory markers, including C‐reactive protein (CRP), interleukin‐1β (IL‐1β), matrix metalloproteinase‐1 and ‐9 (MMP‐1 and MMP‐9), and white blood cell (WBC) count, before and 4 h after fat challenge (CRP prechallenge only). Heritabilities (h2 ± s.d.) of basal inflammatory levels ranged from 16 ± 8% for MMP‐9 (P = 0.02) to 90 ± 7% for MMP‐1 (P < 0.0001). Post‐fat load, circulating levels of WBC, MMP‐1, and MMP‐9 increased by 16, 32, and 43% (all P < 0.0001), with no significant changes in IL‐1β. Postprandial changes over the 4‐h period were modestly heritable for WBC (age‐ and sex‐adjusted h2 = 14 ± 9%, P = 0.04), but the larger MMP‐1 and MMP‐9 changes appeared to be independent of additive genetic effects. These results reveal that a high‐fat meal induces a considerable inflammatory response. Genetic factors appear to play a significant role influencing basal inflammatory levels but to have minimal influence on post‐fat intake inflammatory changes.  相似文献   

13.

Background

The aim of this study was to establish the sputum inflammatory profile and changes in levels of leukotriene B4 (LTB4) and a panel of Th1/Th2 cytokines in subjects with suspected occupational asthma (OA) following specific inhalation challenge (SIC) to high-molecular-weight (HMW) and low-molecular-weight (LMW) agents.

Material and Methods

Fifty-one consecutive subjects undergoing SIC for suspected OA were enrolled. Sputum induction was performed the day before and 24 h after exposure to the offending agent. Total and differential cell counts were assessed. LTB4 and a 10 Th1/Th2 cytokines were measured in sputum supernatant.

Results

Thirty-four patients tested positive to SIC and were diagnosed with OA (in 10 due to HMW agents and in 24 to LMW agents). SIC was negative in 17 subjects. As compared to baseline an increase was found in the percentage of sputum eosinophils and neutrophils, and in IL-10 concentration after SIC (p = 0.0078, p = 0.0195, and p = 0.046, respectively), and a decrease was seen in LTB4 level (p = 0.0078) in patients with OA due to HMW agents. An increase in the percentage of sputum neutrophils after SIC (p = 0.0040) was observed in subjects without OA exposed to LMW agents. IL-8 levels after SIC were higher in patients without OA compared with patients with OA (p = 0.0146).

Conclusion

When conducting airway inflammation studies in OA, patients should be divided according to the causal agent (HMW or LMW). In OA patients exposed to HMW agents, an increase in the number of neutrophils can be found in parallel to the increase of eosinophils, although this does not contradict an IgE-mediated mechanism. Exposure to LMW agents can result in increased neutrophilic inflammation in patients with airway diseases unrelated to OA. There is variability in the responses observed in patients with OA exposed to LMW agents.  相似文献   

14.
Target identification is one of the most critical steps following cell-based phenotypic chemical screens aimed at identifying compounds with potential uses in cell biology and for developing novel disease therapies. Current in silico target identification methods, including chemical similarity database searches, are limited to single or sequential ligand analysis that have limited capabilities for accurate deconvolution of a large number of compounds with diverse chemical structures. Here, we present CSNAP (Chemical Similarity Network Analysis Pulldown), a new computational target identification method that utilizes chemical similarity networks for large-scale chemotype (consensus chemical pattern) recognition and drug target profiling. Our benchmark study showed that CSNAP can achieve an overall higher accuracy (>80%) of target prediction with respect to representative chemotypes in large (>200) compound sets, in comparison to the SEA approach (60–70%). Additionally, CSNAP is capable of integrating with biological knowledge-based databases (Uniprot, GO) and high-throughput biology platforms (proteomic, genetic, etc) for system-wise drug target validation. To demonstrate the utility of the CSNAP approach, we combined CSNAP''s target prediction with experimental ligand evaluation to identify the major mitotic targets of hit compounds from a cell-based chemical screen and we highlight novel compounds targeting microtubules, an important cancer therapeutic target. The CSNAP method is freely available and can be accessed from the CSNAP web server (http://services.mbi.ucla.edu/CSNAP/).  相似文献   

15.
Background:Etiology of multiple sclerosis is non-clarified. It seems that environmental factors impact epigenetic in this disease. Micro-RNAs (MIR) as epigenetic factors are one of the most important factors in non-genetically neurodegenerative diseases. It has been found MIR-144 plays a main role in the regulation of many processes in the central nervous system. Here, we aimed to investigation of MIR-144 expression alteration in Multiple sclerosis (MS) patients.Methods:In this study 32 healthy and 32 MS patient''s blood sample were analyzed by quantitative Real-Time PCR method and obtained data analyzed by REST 2009 software.Results:Analysis of Real-Time PCR data revealed that miR-144 Increase significantly in MS patients compared to healthy controls.Conclusion:The increase of MIR-144 expression in MS patients is obvious. MIR-144 can be used as a biomarker of MS and help to early diagnosis and treatment of this disease.Key Words: MicroRNA (miRNA), MiRNA-144, Multiple Sclerosis (MS)  相似文献   

16.

Introduction

Cystic fibrosis (CF) airways are colonized by a polymicrobial community of organisms, termed the CF microbiota. We sought to define the microbial constituents of the home environment of individuals with CF and determine if it may serve as a latent reservoir for infection.

Methods

Six patients with newly identified CF pathogens were included. An investigator collected repeat sputum and multiple environmental samples from their homes. Bacteria were cultured under both aerobic and anaerobic conditions. Morphologically distinct colonies were selected, purified and identified to the genus and species level through 16S rRNA gene sequencing. When concordant organisms were identified in sputum and environment, pulsed-field gel electrophoresis (PFGE) was performed to determine relatedness. Culture-independent bacterial profiling of each sample was carried out by Illumina sequencing of the V3 region of the 16s RNA gene.

Results

New respiratory pathogens prompting investigation included: Mycobacterium abscessus(2), Stenotrophomonas maltophilia(3), Pseudomonas aeruginosa(3), Pseudomonas fluorescens(1), Nocardia spp.(1), and Achromobacter xylosoxidans(1). A median 25 organisms/patient were cultured from sputum. A median 125 organisms/home were cultured from environmental sites. Several organisms commonly found in the CF lung microbiome were identified within the home environments of these patients. Concordant species included members of the following genera: Brevibacterium(1), Microbacterium(1), Staphylococcus(3), Stenotrophomonas(2), Streptococcus(2), Sphingomonas(1), and Pseudomonas(4). PFGE confirmed related strains (one episode each of Sphinogomonas and P. aeruginosa) from the environment and airways were identified in two patients. Culture-independent assessment confirmed that many organisms were not identified using culture-dependent techniques.

Conclusions

Members of the CF microbiota can be found as constituents of the home environment in individuals with CF. While the majority of isolates from the home environment were not genetically related to those isolated from the lower airways of individuals with CF suggesting alternate sources of infection were more common, a few genetically related isolates were indeed identified. As such, the home environment may rarely serve as either the source of infection or a persistent reservoir for re-infection after clearance.  相似文献   

17.
18.

Background

Immune evasion is one of the recognized hallmarks of cancer. Inflammatory responses to cancer can also contribute directly to oncogenesis. Since the immune system is hardwired to protect the host, there is a possibility that cancers, regardless of their histological origins, endow themselves with a common and shared inflammatory cancer-associated molecular pattern (iCAMP) to promote oncoinflammation. However, the definition of iCAMP has not been conceptually and experimentally investigated.

Methods and Findings

Genome-wide cDNA expression data was analyzed for 221 normal and 324 cancer specimens from 7 cancer types: breast, prostate, lung, colon, gastric, oral and pancreatic. A total of 96 inflammatory genes with consistent dysregulation were identified, including 44 up-regulated and 52 down-regulated genes. Protein expression was confirmed by immunohistochemistry for some of these genes. The iCAMP contains proteins whose roles in cancer have been implicated and others which are yet to be appreciated. The clinical significance of many iCAMP genes was confirmed in multiple independent cohorts of colon and ovarian cancer patients. In both cases, better prognosis correlated strongly with high CXCL13 and low level of GREM1, LOX, TNFAIP6, CD36, and EDNRA. An “Inflammatory Gene Integrated Score” was further developed from the combination of 18 iCAMP genes in ovarian cancer, which predicted overall survival. Noticeably, as a selective nuclear import protein whose immuno-regulatory function just begins to emerge, karyopherin alpha 2 (KPNA2) is uniformly up-regulated across cancer types. For the first time, the cancer-specific up-regulation of KPNA2 and its clinical significance were verified by tissue microarray analysis in colon and head-neck cancers.

Conclusion

This work defines an inflammatory signature shared by seven epithelial cancer types and KPNA2 as a consistently up-regulated protein in cancer. Identification of iCAMP may not only serve as a novel biomarker for prognostication and individualized treatment of cancer, but also have significant biological implications.  相似文献   

19.
20.
Although most viral infections of the upper respiratory tract can predispose to bacterial otitis media, human respiratory syncytial virus (HRSV) is the predominant viral copathogen of this highly prevalent pediatric polymicrobial disease. Rigorous study of the specific mechanisms by which HRSV predisposes to otitis media has been hindered by lack of a relevant animal model. We recently reported that the chinchilla, the preferred rodent host for studying otitis media, is semipermissive for upper-airway HRSV infection. In the current study, we defined the anatomy and kinetics of HRSV infection and spread in the upper airway of chinchilla hosts. Chinchillas were challenged intranasally with a fluorescent-protein–expressing HRSV. Upper-airway tissues were recovered at multiple time points after viral challenge and examined by confocal microscopy and immunohistochemistry. HRSV replication was observed from the rostral- to caudalmost regions of the nasal cavity as well as throughout the Eustachian tube in a time-dependent manner. Although fluorescence was not observed and virus was not detected in nasopharyngeal lavage fluids 14 d after infection, the latest time point examined in this study, occasional clusters of immunopositive cells were present, suggesting that the nasal cavity may serve as a reservoir for HRSV. These data provide important new information concerning the time course of HRSV infection of the uppermost airway and suggest that chinchillas may be useful for modeling the HRSV-induced changes that predispose to secondary bacterial infection.Abbreviations: HRSV, human respiratory syncytial virus; rrHRSV, recombinant red fluorescent human respiratory syncytial virus; URT, upper respiratory tractHuman respiratory syncytial virus (HRSV), an enveloped, negative-strand, nonsegmented RNA virus of the family Paramyxoviridae, is the single greatest causative agent of acute respiratory tract infections in infants and children worldwide.23 Although HRSV infection generally is limited to the upper respiratory tract (URT), in the United States, primary HRSV infection is associated with a 0.5% hospitalization rate for those children who develop severe bronchiolitis or pneumonia.9 One of the most interesting aspects of HRSV is its ubiquity: there are annual winter–spring outbreaks in temperate climates,5 and approximately 90% of all children have experienced infection by their second birthday.9 Although immunity to HRSV is sufficient to prevent reinfection of the lower airway in most human patients, this response is incomplete, resulting in reinfection of the upper airway throughout life.9 Although URT infection by HRSV alone does not constitute a serious problem for healthy adults, its association with the development of bacterial otitis media in children11-13,17-19,21,25,28,29,34 and exacerbation of asthma in all age groups16 make it an important health concern.Despite the ubiquity of the virus, the epidemiology of HRSV is not well understood. There is no known animal reservoir, and although new strains emerge over time, many remain in circulation over several seasons or reappear many years after they were first detected.27,33 Therefore, although antigenic variation driven by development of HRSV immunity in a given population is possible, this hypothesis has not yet been proven. In fact, in one study,10 human subjects could be infected repeatedly with the same HRSV strain, and the presence of virus-specific antibody provided only short-lived and incomplete protection. Therefore, HRSV may circulate among seropositive persons, and it has been suggested that persistently infected persons may harbor the virus between seasonal outbreaks.30,32 Therefore, in addition to the important clinical issues surrounding the prevention of HRSV disease, basic scientific questions regarding HRSV circulation and mechanisms of viral immunoevasion remain unanswered.A key hurdle in the study of HRSV pathogenesis has been the lack of a suitable animal model. Most published studies have used BALB/c mice, which have the advantage of many reagents available for the study of immune responses but the disadvantage of relative resistance to HRSV infection.22 Although pulmonary infection is easily detected in HRSV-infected mice, primary infection of the upper airway in this species is minimal6,7 and secondary infection of the URT does not occur. More susceptible rodent species include the cotton rat (Sigmidon hispidus)26 and chinchilla (Chinchilla lanigera),6 which are both relatively permissive for HRSV infection of the upper airway. Given the paucity of URT specimens encountered in general pathology practice, the development of a robust small animal model for the study of HRSV infection and spread in the uppermost airway is particularly important. Moreover, effective vaccine development depends on a better understanding of why this compartment remains susceptible to reinfection in immune hosts.Here we describe the anatomy of HRSV infection in the chinchilla URT over a 2-wk period, using confocal microscopy to monitor the retrograde spread of a recombinant red fluorescent protein-expressing HRSV construct (rrHRSV)8 from the site of inoculation. Although rrHRSV has previously been used to study the susceptibility of various cell types to virus infection in vitro,8,36 our current report is the first wherein this biologic agent has been used to trace the route and extent of infection after intranasal instillation of virus in vivo. To establish the usefulness of our approach, immunohistochemistry and plaque assay were used to verify the sensitivity and specificity of fluorescence detected at 2, 3, 5, and 14 d after infection. By these combined methods, we were able to follow the retrograde spread of virus infection from the respiratory epithelium of the nasoturbinates and nasopharynx (at the earliest time point) to the Eustachian tubes and ethmoid turbinates at later time points. The ability to visualize the anatomy and kinetics of HRSV replication in the uppermost airway can now form the basis for future studies of upper-airway susceptibility to virus reinfection and bacterial coinfection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号