首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Osteoarthritis (OA) is a disease of high ethical and economical importance. In advanced stages, the patients suffer from severe pain and restriction of mobility. The consequence in many cases is an inability to work and often the substitution of the diseased joint with an artificial implant becomes inevitable. As cartilage tissue itself has only very limited capacities of self-renewing, the development of this disorder is chronic and progressive. Generally, OA is diagnosed in more advanced stages, when clinical and radiographic signs become evident. At this time point the options for therapeutic intervention without surgery are limited. It is, therefore, crucial to know about the basic incidents in the course of OA and especially in early stages to develop new diagnostic and therapeutic strategies. Numerous studies on human osteoarthritic tissue and in animal models have addressed various aspects of OA progression to get a better understanding of the pathophysiology of this disease. This review presents an overview on different aspects of OA research and the cellular and molecular alterations in degenerating cartilage.  相似文献   

2.
3.
4.
In spite of the importance of somatic embryogenesis for basic research in plant embryology as well as for crop improvement and plant propagation, it is still unclear which mechanisms and cell signals are involved in acquiring embryogenic competence by a somatic cell. The aim of this work was to study cellular and molecular changes involved in the induction stage in calli of Agave tequilana Weber cultivar azul in order to gain more information on the initial stages of somatic embryogenesis in this species. Cytochemical and immunocytochemical techniques were used to identify differences between embryogenic and non-embryogenic cells from several genotypes. Presence of granular structures was detected after somatic embryogenesis induction in embryogenic cells; composition of these structures as well as changes in protein and polysaccharide distribution was studied using Coomassie brilliant blue and Periodic Acid-Schiff stains. Distribution of arabinogalactan proteins (AGPs) and pectins was investigated in embryogenic and non-embryogenic cells by immunolabelling using anti-AGP monoclonal antibodies (JIM4, JIM8 and JIM13) as well as an anti-methyl-esterified pectin-antibody (JIM7), in order to evaluate major modifications in cell wall composition in the initial stages of somatic embryogenesis. Our observations pointed out that induction of somatic embryogenesis produced accumulation of proteins and polysaccharides in embryogenic cells. Presence of JIM8, JIM13 and JIM7 epitopes were detected exclusively in embryogenic cells, which supports the idea that specific changes in cell wall are involved in the acquisition of embryogenic competence of A. tequilana.  相似文献   

5.
The extracellular framework and two-thirds of the dry mass of adult articular cartilage are polymeric collagen. Type II collagen is the principal molecular component in mammals, but collagens III, VI, IX, X, XI, XII and XIV all contribute to the mature matrix. In developing cartilage, the core fibrillar network is a cross-linked copolymer of collagens II, IX and XI. The functions of collagens IX and XI in this heteropolymer are not yet fully defined but, evidently, they are critically important since mutations in COLIX and COLXI genes result in chondrodysplasia phenotypes that feature precocious osteoarthritis. Collagens XII and XIV are thought also to be bound to fibril surfaces but not covalently attached. Collagen VI polymerizes into its own type of filamentous network that has multiple adhesion domains for cells and other matrix components. Collagen X is normally restricted to the thin layer of calcified cartilage that interfaces articular cartilage with bone.  相似文献   

6.
The extracellular framework and two-thirds of the dry mass of adult articular cartilage are polymeric collagen. Type II collagen is the principal molecular component in mammals, but collagens III, VI, IX, X, XI, XII and XIV all contribute to the mature matrix. In developing cartilage, the core fibrillar network is a cross-linked copolymer of collagens II, IX and XI. The functions of collagens IX and XI in this heteropolymer are not yet fully defined but, evidently, they are critically important since mutations in COLIX and COLXI genes result in chondrodysplasia phenotypes that feature precocious osteoarthritis. Collagens XII and XIV are thought also to be bound to fibril surfaces but not covalently attached. Collagen VI polymerizes into its own type of filamentous network that has multiple adhesion domains for cells and other matrix components. Collagen X is normally restricted to the thin layer of calcified cartilage that interfaces articular cartilage with bone.  相似文献   

7.
Free-living amoebae are protozoa found in soil and water. Among them, some are pathogenic and many have been described as potential reservoirs of pathogenic bacteria. Their cell cycle is divided into at least two forms, the trophozoite and the cyst, and the differentiation process is named encystment. As cysts are more resistant to disinfection treatments than trophozoites, many studies focused on encystment, but until recently, little was known about cellular, biochemical, and molecular modifications operating during this process. Important signals and signaling pathways at play during encystment, as well as cell responses at the molecular level, have been described. This review summarizes our knowledge and focuses on new findings.  相似文献   

8.
Li Yu  Yang Chen 《Autophagy》2018,14(2):207-215
Macroautophagy/autophagy is an essential, conserved self-eating process that cells perform to allow degradation of intracellular components, including soluble proteins, aggregated proteins, organelles, macromolecular complexes, and foreign bodies. The process requires formation of a double-membrane structure containing the sequestered cytoplasmic material, the autophagosome, that ultimately fuses with the lysosome. This review will define this process and the cellular pathways required, from the formation of the double membrane to the fusion with lysosomes in molecular terms, and in particular highlight the recent progress in our understanding of this complex process.  相似文献   

9.
Articular cartilage and changes in Arthritis: Matrix degradation   总被引:1,自引:0,他引:1  
While many proteases in articular cartilage have been described, current studies indicate that members of two families of metalloproteases – MMPs and the ADAMTSs – are responsible for the degradation of the major components of this tissue. Collagenases (MMPs) make the first cleavage in triple-helical collagen, allowing its further degradation by other proteases. Aggrecanases (ADAMTSs), in conjunction with other MMPs, degrade aggrecan, a component of the proteoglycan aggregate. Anti-neoepitope antibodies that recognize the cleavage products of collagen and aggrecan generated by these enzymes are now available and are being used to detect the sites of action and to quantitate degradation products.  相似文献   

10.
The repair of articular cartilage needs a sufficient number of chondrocytes to replace the defect tissue, and therefore, expansion of cells is generally required. Chondrocytes derived by cellular reprogramming may provide a solution to the limitations of current (stem) cell-based therapies. In this article, two distinct approaches—induced pluripotent stem cell (iPSC)-mediated reprogramming and direct lineage conversion—are analysed and compared according to criteria that encompass the qualification of the method and the derived chondrocytes for the purpose of clinical application. Progress in iPSC generation has provided insights into the replacement of reprogramming factors by small molecules and chemical compounds. As follows, multistage chondrogenic differentiation methods have shown to improve the chondrocyte yield and quality. Nevertheless, the iPSC ‘detour’ remains a time- and cost-consuming approach. Direct conversion of fibroblasts into chondrocytes provides a slight advantage over these aspects compared to the iPSC detour. However, the requirement of constitutive transgene expression to inhibit hypertrophic differentiation limits this approach of being translated to the clinic. It can be concluded that the quality of the derived chondrocytes highly depends on the characteristics of the reprogramming method and that this is important to keep in mind during the experimental set-up. Further research into both reprogramming approaches for clinical cartilage repair has to include proper control groups and epigenetic profiling to optimize the techniques and eventually derive functionally stable articular chondrocytes.  相似文献   

11.
Cellular interactions during cartilage and bone development.   总被引:1,自引:0,他引:1  
Both interactions between like cells, as between chondrogenic cells in a developing cartilaginous rudiment, and between unlike cells, as in epithelial-mesenchymal interactions, are dealt with in this review. Such interactions may involve direct apposition of cell membranes or may be mediated via interaction with peri- or extracellular matrices. An ontogenetic approach is taken in which cellular interactions involved in five processes of the development of cartilage and bone are discussed, the five being (1) origin of the cells, (2) migration of the cells within the embryo, (3) localization of the cells at their final embryonic site, (4) differentiation, and (5) morphogenesis. Some emphasis is placed on interactions affecting neural crest-derived cells both before and during their migration and on interactions, especially epithelial-mesenchymal interactions, that precede cytodifferentiation of chondroblasts or osteoblasts. Whether epithelial or mesenchymal specificity is required for such interactions to occur is discussed with reference to the otic vesicle-otic mesenchyme interaction that leads to differentiation and morphogenesis of the cartilaginous otic capsule.  相似文献   

12.
13.
Cellular communication network factor (CCN) 3 is one of the classical members of the CCN family, which are characterized by common molecular structures and multiple functionalities. Although this protein was discovered as a gene product overexpressed in a truncated form in nephroblastoma, recent studies have revealed its physiological roles in the development and homeostasis of mammalian species, in addition to its pathological association with a number of diseases. Cartilage is a tissue that creates most of the bony parts and cartilaginous tissues that constitute the human skeleton, in which CCN3 is also differentially produced to exert its molecular missions therein. In this review article, after the summary of the molecular structure and function of CCN3, recent findings on the regulation of ccn3 expression and the roles of CCN3 in endochondral ossification, cartilage development, maintenance and disorders are introduced with an emphasis on the metabolic regulation and function of this matricellular multifunctional molecule.  相似文献   

14.
In the review, it is presented an analysis of experimental data about cellular and molecular mechanisms of focal epileptogenesis. Basic principals of synchronized burst activity development in epileptogenic focus are considered. The roles of synaptic activities and extrasynaptic membrane excitability for epileptiform activity development are discussed. The various pathways of Ca2+ entry into neurones as well as an involvement of Ca2+/calmodulin-dependent protein phosphorylation in mechanisms of epileptogenesis are analyzed. In vitro and in vivo experimental models of epileptogenesis (especially, kindling and audiogenic seizures) allowing to study the predisposition of neuronal circuit to epileptiform activity development are discussed.  相似文献   

15.
Cartilage contains numerous noncollagenous proteins in its extracellular matrix, including proteoglycans. At least 40 such molecules have been identified, differing greatly in structure, distribution, and function. Some are present in only selected cartilages or cartilage zones, some vary in their presence with a person's development and age, and others are more universal in their expression. Some may not even be made by the chondrocytes, but may arise by absorption from the synovial fluid. In many cases, the molecules' function is unclear, but the importance of others is illustrated by their involvement in genetic disorders. This review provides a selective survey of these molecules and discusses their structure, function, and involvement in inherited and arthritic disorders.  相似文献   

16.
17.
18.
19.
20.
Summary Observations were made on the frog lens epithelium after culture of the entire lens or of capsular explants. General deviations from normal lens structure as well as specific changes in two media were studied. DNA synthesis and mitosis were induced in the central epithelial cells. Disruption of the orderly, single, epithelial layer that is characteristic of normal lenses was accompanied by the appearance of multilayered plaques of epithelial cells and invasion of vacuolated regions of the lens fibers by epithelial cells. Cells that are fibroblast-like in appearance were observed in regions of the capsule depleted of cells and at the free edges of epithelial sheets in cell culture. Epithelial cells were surrounded by capsule-like material even when situated in the lens interior. Nuclei derived from central epithelial cells of lenses cultured in L-15 medium and medium 199 had served as donors in previous nuclear transfer experiments in this laboratory. In our current observation of L-15-cultured lenses, cells were sparsely distributed on the capsule and nuclei were abnormally shaped; in 199-cultured lenses, cells were more densely distributed and nuclei resembled those of normal lenses. Medium 199 without serum could better maintain normal lens structure than L-15 medium without serum. In addition, the percentage of epithelial explants demonstrating cellular outgrowth was greater in medium 199. The differences in cellular behavior were shown not to be the result of different sugars, pH, or the presence of CO2. The nuclear transfer results may reflect the structural changes in the epithelium after lens culture in the two media. This work was supported by grants 2RO1 EY 00555-06 and 5SO1 RR 05510-10 from the National Institutes of Health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号