首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 769 毫秒
1.
We exposed cuttings of two poplar species, Populus cathayana Rehder and Populus przewalskii Maximowicz, from Sect. Tacamahaca Spach to two watering regimes (well-watered and water-stressed conditions) and to two nutrient regimes (with or without fertilization) in a greenhouse to determine how fertilization affects the growth, morphology and physiology of poplars under different water conditions. Under stress conditions, changes in early growth and dry matter allocation, and decrease in gas exchange and the related functions are usually observed. Moreover, the measurement of carbon isotope composition (δ13C) provides an integrated measurement of water use efficiency. And abscisic acid (ABA) is a phytohormone which plays a prominent role in various physiological and biochemical processes related to environmental stresses. So we determine these characteristics and related parameters, and our results showed the following: (1) Fertilization promoted the growth of poplars under well-watered conditions, while under water-stressed conditions its effect on growth was negative. (2) Fertilization increased δ13C, total N concentration, chlorophyll a/b and intrinsic efficiency of photosystem II (Fv/Fm) but decreased relative water content of leaves, stomatal conductance, transpiration rate and C/N ratio under both well-watered and water-stressed conditions. (3) Fertilization appeared to increase net photosynthesis rate and decrease ABA content under well-watered conditions, while it decreased net photosynthesis rate and increased ABA content under water-stressed conditions. Moreover, compared to P. cathayana, collected from a lower altitude region, P. przewalskii, collected from a high-altitude region, has a slower growth rate and stronger adaptability to drought stress, which perhaps resulted from its chronic adaptability to the low water availability of high-altitude region; but to the nutrient stress, there was no difference between the two species.  相似文献   

2.
Cuttings of Populus przewalskii and P. cathayana, which originated from high and low altitudes in southwest China, were used to examine the effect of water stress on the morphological, physiological and biochemical traits of plants in a greenhouse for one growing season. The dry mass accumulation and allocation, gas exchanges, extent of peroxidation damage, osmotic adjustment and antioxidative defenses, and amounts of pigments were measured to characterize the differences in peroxidation damage and protective mechanisms of two poplar species that contrast in drought tolerance. Under water stress, poplars showed a series of biochemical adjustments and morphological changes as follows: a decrease in leaf relative water content, gas exchanges, plant growth and dry mass accumulation; an increase in relative allocation to roots; an increase in the osmolyte contents (e.g. total amino acids). Additionally, water deficit induced an increase in peroxidation damage [as indicated by an increase in electrolyte leakage, malondialdehyde (MDA), carbonyl (C = O ) and hydrogen peroxide (H2O2) content], enhanced activities or contents of antioxidants (e.g. ascorbate peroxidase, guaiacol peroxidase, glutathione redutase and ascorbic acid) and reduced amounts of leaf pigments (e.g. chlorophyll and carotenoid). Furthermore, there were significant differences in the extent of morphological and biochemical changes between the two poplar species. Compared with P. cathayana, P. przewalskii responded to water stress by allocating relatively more to root dry mass, possessing a higher net photosynthesis rate, and having more efficient protective mechanisms, such as more osmolyte accumulation, stronger antioxidant activities and lower chlorophyll/carotenoid ratio. Thus, P. przewalskii suffered less damage as deduced from lower levels of electrolyte leakage, MDA, C=O and H2O2 content. Therefore, P. przewalskii originating from high altitude could possess more efficient protective mechanisms than P. cathayana, which is from low‐altitude habitats.  相似文献   

3.
We measured dry matter accumulation and allocation to the roots, leaf gas exchange, chlorophyll fluorescence, antioxidant enzymes, and ABA and polyamine (PA) contents in Populus przewalskii under three different watering regimes (100, 50, and 25% of the field capacity) to investigate the morphological and physiological responses to water deficit in woody plants. The results showed that drought stress retarded P. przewalskii as evident from a decreased biomass accumulation and the reduced increment of shoot height and basal diameter. Drought stress also affected the biomass partition by higher biomass allocated to the root systems for water uptake. The contents of ABA and PAs especially were increased under stressful conditions. Drought stress caused oxidative burst indicated by the accumulation of peroxide (H2O2), and fluorimetric detection also confirmed the increased accumulation of H2O2. The antioxidant enzymes, including superoxide dimutase, peroxidase, ascorbate peroxidase, and reductase, were activated to bring the reactive oxygen species to their homeostasis; however, oxidative damages to lipids, proteins, and membranes were significantly manifested by the increase in total carbonyl (C=O) and electric conductance (EC).  相似文献   

4.
 Arbuscular mycorrhizal fungi (AMF) living symbiotically with host plants enhance plant growth by improving the acquisition of mineral nutrients and water relations. This study determined the effects of AMF inoculation on growth, benefit/cost and water-use efficiency (grams dry matter produced per kilogram water evapotranspired) in two durum wheat genotypes (drought sensitive and drought tolerant) under water-stressed and well-watered conditions. Plants were grown in a low-P silty clay (Typic Xerochrept) soil mix in a greenhouse. Shoot and root dry matter (DM) and root AMF colonization were higher for well-watered than for water-stressed plants. The mycorrhizal plants were more water-use efficient than nonmycorrhizal plants. Shoot DM differences between mycorrhizal and nonmycorrhizal plants represent the benefit derived by plants from AMF-root associations. Shoot DM differences between mycorrhizal and nonmycorrhizal plants under similar conditions of water treatment represent the cost to the plant of AMF-root associations. Values of benefit/cost for AMF-root associations were highest when plants were water-stressed and decreased under well-watered conditions. Genotypic differences in calculated costs and benefits were pronounced. Benefit/cost analysis may be helpful in evaluating host plant genotypes in order to optimize efficiencies of AMF symbiosis under different environmental conditions. Accepted: 4 April 1998  相似文献   

5.

Background and aims

The frequency of rain is predicted to change in high latitude areas with more precipitation in heavy, intense events interspersed by longer dry periods. These changes will modify soil drying cycles with unknown consequences for plant performance of temperate species.

Methods

We studied plant growth and root traits of juveniles of four grasses and four dicots growing in a greenhouse, when supplying the same total amount of water given either regular every other day or pulsed once a week.

Results

Pulsed water supply replenished soil moisture immediately after watering, but caused substantial drought stress at the end of the watering cycle, whereas regular watering caused more moderate but consistent drought. Grasses had lower water use efficiency in the pulsed watering compared to regular watering, whereas dicots showed no difference. Both grasses and dicots developed thinner roots, thus higher specific root length, and greater root length in the pulsed watering. Growth of dicots was slightly increased under pulsed watering.

Conclusions

Temperate species coped with pulsed water supply by eliciting two responses: i) persistent shoot growth, most likely by maximizing growth at peaks of soil moisture, thus compensating for slower growth during drought periods; ii) plasticity of root traits related to increased resource uptake. Both responses likely account for subtle improvement of growth under changed water supply conditions.  相似文献   

6.
Responses of canola (Brassica napus L.) seedlings to three ultraviolet (UV)-B levels [0 (zero), 5 (ambient) and 10 (enhanced) kJ m?2 d?1], two watering regimes (well-watered and water-stressed), and two abscisic acid (ABA) levels (with and without application) were investigated. Overall, enhanced UVB and water stress negatively affected plant growth and physiology, but ABA had very little effect. Enhanced UVB decreased stem height, leaf area, plant dry matter, water use efficiency and wax content, but increased concentrations of chlorophyll a, carotenoids and flavonoids, and ethylene evolution. Water stress reduced stem height and diameter, leaf area, plant dry matter, leaf weight ratio and shoot:root weight ratio under zero and ambient UVB. Water stress also reduced chlorophyll a and carotenoids in plants exposed to enhanced UVB. ABA with watering regime had significant interactive effects only on leaf dry matter and wax content. We found that enhanced UVB and water stress adversely affected B. napus seedlings. Interaction between these two factors affected plant performance. In this interaction, ABA had little significant role. Also, optimum vegetative growth and biomass were achieved under ambient UVB.  相似文献   

7.
Li  Chunyang 《Plant and Soil》1999,214(1-2):165-171
Variation in carbon isotope composition (δ13C), water-use efficiency (WUE) and biomass productivity were compared among three populations of Eucalyptus microtheca F. Muell. in a greenhouse. Seedlings were maintained under one well-watered (Control, keeping the soil at field capacity) and two different water deficit conditions (Drought stress I, keeping the same soil water content; Drought stress II, keeping the same soil water supply). In each treatment, significant population differences in δ13C, WUE, and dry matter accumulation and allocation were detected. A negative correlation between WUE and biomass productivity was detected under control and drought stress I, but a positive correlation under drought stress II. The results suggested that there were different water-use strategies among the populations, the southeastern population with lower WUE may employ a prodigal water-use strategy, whereas the northwestern and central populations with higher WUE may employ a conservative water-use strategy. This knowledge may be useful as criteria for genotype selection within a breeding program for this species. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Dioecious plant species and those occupying diverse habitats may present special analytical problems to determine effects of environmental stress. Here, sex-specific physiological and growth responses of two contrasting sea buckthorn (Hippophae rhamnoides L.) populations were recorded after exposure to different watering regimes. The populations used were from wet and dry climate regions in China, respectively. In the semi-controlled environmental study, the well-watered and water-deficiency plants which were watered to 100 % and 50 % field capacity were used, respectively. Sexual differences in height growth (HT), dry matter accumulation (DMA), root/shoot ratio (RS), specific leaf area (SLA), net photosynthesis (A), transpiration (E), instantaneous water use efficiency (WUEi) and carbon isotope composition (δ13C) between the male and female individuals were detected under water-deficiency treatment in both populations tested. However, these sexual differences were not detected under well-watered treatment. On the other hand, compared with the wet climate population, the dry climate population showed lower HT, DMA, SLA, A and E, and higher RS under both watering regimes. The dry climate population also showed higher WUEi and δ13C as affected by water deficit than the wet climate population. These morphological and physiological responses to drought showed that the different populations and the different sexual individuals may employ different survival strategies under environmental stress. The male individuals and the dry climate population would have a conservative water-use strategy in response to drought stress.  相似文献   

9.
10.
Drought stress responses and sensitivity of dioecious plants, such as Populus cathayana Rehd., are determined by different mechanisms in each sex. In general, males tend to be more resistant while females are more sensitive. Here, we used reciprocal grafting between males and females to determine the relative importance of roots and shoots when plants are exposed to drought stress. Total dry matter accumulation (DMA), photosynthetic capacity, long‐term water‐use efficiency (Δ), water potential and ultrastructure of mesophyll cells were evaluated to determine the different roles of root and shoot in sex‐related drought responses. Plants with male roots were found to be more resistant and less sensitive to water stress than those with female roots under drought conditions. On the contrary, plants with female shoots grew better than those with male shoots under well‐watered conditions. These results indicated that the sensitivity of males and females to water stress is primarily influenced by root processes, while under well‐watered conditions sexual differences in growth are primarily driven by shoot processes. Furthermore, grafting female shoot scion onto male rootstock was proved to be an effective mean to improve resistance to water stress in P. cathayana females.  相似文献   

11.

Background

Populus is an ecologically and economically important genus of trees, but distinguishing between wild species is relatively difficult due to extensive interspecific hybridization and introgression, and the high level of intraspecific morphological variation. The DNA barcoding approach is a potential solution to this problem.

Methodology/Principal Findings

Here, we tested the discrimination power of five chloroplast barcodes and one nuclear barcode (ITS) among 95 trees that represent 21 Populus species from western China. Among all single barcode candidates, the discrimination power is highest for the nuclear ITS, progressively lower for chloroplast barcodes matK (M), trnG-psbK (G) and psbK-psbI (P), and trnH-psbA (H) and rbcL (R); the discrimination efficiency of the nuclear ITS (I) is also higher than any two-, three-, or even the five-locus combination of chloroplast barcodes. Among the five combinations of a single chloroplast barcode plus the nuclear ITS, H+I and P+I differentiated the highest and lowest portion of species, respectively. The highest discrimination rate for the barcodes or barcode combinations examined here is 55.0% (H+I), and usually discrimination failures occurred among species from sympatric or parapatric areas.

Conclusions/Significance

In this case study, we showed that when discriminating Populus species from western China, the nuclear ITS region represents a more promising barcode than any maternally inherited chloroplast region or combination of chloroplast regions. Meanwhile, combining the ITS region with chloroplast regions may improve the barcoding success rate and assist in detecting recent interspecific hybridizations. Failure to discriminate among several groups of Populus species from sympatric or parapatric areas may have been the result of incomplete lineage sorting, frequent interspecific hybridizations and introgressions. We agree with a previous proposal for constructing a tiered barcoding system in plants, especially for taxonomic groups that have complex evolutionary histories (e.g. Populus).  相似文献   

12.
Water availability is a principal factor limiting the distribution of closed-canopy forest in the seasonal tropics, suggesting that forest tree species may not be well adapted to cope with seasonal drought. We studied 11 congeneric species pairs, each containing one forest and one savanna species, to test the hypothesis that forest trees have a lower capacity to maintain seasonal homeostasis in water relations relative to savanna species. To quantify this, we measured sap flow, leaf water potential (ΨL), stomatal conductance (g s), wood density, and Huber value (sapwood area:leaf area) of the 22 study species. We found significant differences in the water relations of these two species types. Leaf area specific hydraulic conductance of the soil/root/leaf pathway (G t) was greater for savanna species than forest species. The lower G t of forest trees resulted in significantly lower ΨL and g s in the late dry season relative to savanna trees. The differences in G t can be explained by differences in biomass allocation of savanna and forest trees. Savanna species had higher Huber values relative to forest species, conferring greater transport capacity on a leaf area basis. Forest trees have a lower capacity to maintain homeostasis in ΨL due to greater allocation to leaf area relative to savanna species. Despite significant differences in water relations, relationships between traits such as wood density and minimum ΨL were indistinguishable for the two species groups, indicating that forest and savanna share a common axis of water-use strategies involving multiple traits.  相似文献   

13.
Restoration of degraded Mediterranean areas often requires the reintroduction of key-stone woody species but the establishment of seedlings of native species is frequently poor. This is partly due to insufficient knowledge of the ecology of these species at the seedling stage. Fast rooting and efficient water supply under water limiting conditions may be crucial to withstand summer drought and ensure establishment. However, knowledge of the relationship between root morphology and the water transport capacity of Mediterranean woody species in response to drought is still scarce. We evaluated the effect of low water availability on biomass allocation, root morphology and transpiration of a common Mediterranean shrub species, Pistacia lentiscus L. Seedlings of this species were grown in pots filled with soil under glasshouse conditions for 6 months, and irrigated either weekly (W+) or monthly (W?). Low water availability strongly reduced all fractions of biomass, and decreased relative biomass allocation belowground. Average diameter of fine roots colonising the soil was higher in W+ plants, but this resulted in only marginal effects on specific root length. Water limitation did not affect the topology of secondary roots colonising the soil. Surprisingly, the ratio of leaf area to coloniser roots surface area was higher in W? seedlings. Sapwood area was strongly correlated with leaf area, secondary roots cross-sectional area, and surface area of fine roots colonising the soil when all seedlings were pooled. In agreement with the pipe stem theory, the ratio of sapwood area to leaf area was not affected by watering regime. Plant water loss when soils were taken to field capacity was significantly correlated with leaf area, sapwood area, secondary roots cross-section area and coloniser roots surface area. Water loss at high water availability was greatly reduced in W? plants, as leaf area decreased and transpiration rates on a leaf area basis were similar in W+ and W? seedlings. P. lentiscus showed limited capacity to acclimate to low water availability by modifying biomass allocation and root morphology. Thus, parallel to what has been observed aboveground, this species can benefit from periods of high water availability by showing relatively high root growth rates, but may respond poorly to water scarcity.  相似文献   

14.
Gas exchange, water-use efficiency (WUE), carbon isotope composition ( Δ 13C) and growth traits were compared among 5 populations of Eucalyptus microtheca F. Muell. Seedlings grown from seed collected across the natural distribution of the species were maintained under water-stressed and well-watered conditions. Gas exchange was measured in terms of net photosynthesis (A) and transpiration (E); WUE was measured in terms of instantaneous water-use efficiency (WUEi) and transpiration efficiency (WUET); growth traits were measured in terms of total biomass (TB), root/shoot ratio (RS), and specific leaf area density (DEN). Significant differences in all traits were detected among the populations. Overall population variation was 1.68–2.50 and 1.48–2.26 μmol CO2 uptake per mmol H2O transpired (WUEi), 1.97–3.04 and 1.64–2.36 g dry matter accumulation per kg water transpired (WUET), and Δ 13C was −28.81 to −26.75‰ and −30.56 to −30.04‰ under the water-stressed and well-watered conditions, respectively. In addition, WUEi, WUET and Δ 13C were significantly correlated with A, E, RS, DEN and TB. The study indicated that measurement of WUE may be a useful trait for selecting genotypes with improved drought adaptation and biomass productivity under different environmental conditions.  相似文献   

15.
Increased municipal solid waste generation in North America has prompted the use of Populus for phytoremediation of waste waters including landfill leachate. Populus species and hybrids are ideal for such applications because of their high water usage rates, fast growth, and extensive root systems. Adventitious rooting (i.e., lateral rooting from primordia and basal rooting from callus) of Populus is important for phytotechnologies to ensure successful plantation establishment with genotypes that thrive when irrigated with highly variable or specific contaminants. We evaluated differences in root system morphology following establishment with high-salinity municipal solid waste landfill leachate or uncontaminated well water (control). Populus clones (NC13460, NC14018, NC14104, NC14106, DM115, DN5, NM2, and NM6) were irrigated during 2005 and 2006 in northern Wisconsin, USA and tested for differences in morphology of lateral and basal root types, as well as fine (0–2 mm diameter), small (2–5 mm), and coarse (>5 mm) roots. Across treatments and clones, trees averaged five roots per root type. Leachate-irrigated trees had 87% (lateral) and 105% (basal) as many roots as those irrigated with water. Leachate-irrigated trees had 96% as many fine roots as watering with irrigation water, whereas trees with leachate had 112% (small) and 88% (coarse) as many roots versus water. Despite root necrosis and regrowth in 23% of the trees, leachate irrigation did not negatively affect root diameter or dry mass. Given that adequate rooting is necessary for plantation establishment, leachate and similar waste waters are viable irrigation and fertilization sources of Populus crops used as feedstocks for biofuels, bioenergy, and bioproducts.  相似文献   

16.
The effect of simulated rainfall frequency on the pathogenicity of Pratylenchus zeae and P. brachyurus was studied in four greenhouse experiments. Corn and grain sorghum were watered at different intervals during predetermined cycles to create a gradient of water-stressed plants. Each experiment included nematode and uninoculated treatments. Growth reaction of plants to different frequencies of watering was significant but was not affected by the presence of nematodes. Pratylenchus zeae numbers differed among watering regimens on corn but not on sorghum. Numbers of P. brachyurus did not differ among watering regimens on corn or sorghum. Both lesion nematode species were harmful to corn, but sorghum increased plant growth in response to P. brachyurus. It is concluded that water stress is not the only environmental factor that influences the pathogenicity of these two species on corn and sorghum.  相似文献   

17.
In tropical forests light and water availability are the most important factors for seedling growth and survival but an increasing frequency of drought may affect tree regeneration. One central question is whether drought and shade have interactive effects on seedling growth and survival. Here, we present results of a greenhouse experiment, in which seedlings of 10 Ghanaian tree species were exposed to combinations of strong seasonal drought (continuous watering versus withholding water for nine weeks) and shade (5% irradiance versus 20% irradiance). We evaluated the effects of drought and shade on seedling survival and growth and plasticity of 11 underlying traits related to biomass allocation, morphology and physiology. Seedling survival under dry conditions was higher in shade than in high light, thus providing support for the “facilitation hypothesis” that shade enhances plant performance through improved microclimatic conditions, and rejecting the trade-off hypothesis that drought should have stronger impact in shade because of reduced root investment. Shaded plants had low biomass fraction in roots, in line with the trade-off hypothesis, but they compensated for this with a higher specific root length (i.e., root length per unit root mass), resulting in a similar root length per plant mass and, hence, similar water uptake capacity as high-light plants. The majority (60%) of traits studied responded independently to drought and shade, indicating that within species shade- and drought tolerances are not in trade-off, but largely uncoupled. When individual species responses were analysed, then for most of the traits only one to three species showed significant interactive effects between drought and shade. The uncoupled response of most species to drought and shade should provide ample opportunity for niche differentiation and species coexistence under a range of water and light conditions. Overall our greenhouse results suggest that, in the absence of root competition shaded tropical forest tree seedlings may be able to survive prolonged drought.  相似文献   

18.
狭叶红景天幼苗对水分及遮阴的生长及生理生化响应   总被引:2,自引:0,他引:2  
研究植物对水分和遮阴胁迫的响应及其生理机制对制定合理的栽培管理措施十分必要。以红景天属植物为研究对象,设置土壤含水量分别为田间持水量的80%(过湿水分)、70%(正常水分)、60%(轻度干旱)、40%(中度干旱)、20%(重度干旱)5个水分梯度;设置2个遮阴处理,以全光照(遮阴率为0)为对照、黑色遮阴网遮阴(遮阴率为85%),研究狭叶红景天生长及生理生化指标的变化特征。结果表明:在不同水分处理下,与对照相比,叶绿素含量、茎干重和茎重比(SMR)显著增加(P0.05),株高、总生物量、叶面积、叶干重、叶重比(LMR)、比叶面积(SLA)、叶面积比(LAR)和叶面积根干重比(LARMR)增加,根冠比和根重比(RMR)减少;随着干旱程度加剧,丙二醛(MDA)、脯氨酸(Pro)和可溶性糖(Ss)含量增加,超氧化物歧化酶(SOD)活性总体呈先增加后减小的趋势。在遮阴处理下,株高、SMR、SLA、LAR和LARMR显著增加(P0.05),叶绿素SPAD值和叶面积增加,总生物量、根干重、根冠比和LMR显著减少(P0.05),茎干重和叶干重减少,MDA含量显著增加,Pro含量略有下降,Ss含量减少。在水分胁迫下,狭叶红景天中度干旱时通过增加酶活性抵御伤害,重度干旱超过其阈值,SOD活性下降,植物体受到伤害,Ss可能是主要的渗透调节物质。在遮阴处理下,狭叶红景天通过增加SLA避免遮阴伤害。狭叶红景天在受到环境胁迫时会通过形态改变、调节MDA含量、抗氧化酶活性和渗透调节物质来保证自身正常的生长发育。  相似文献   

19.
氮素对花铃期干旱再复水后棉花根系生长的影响   总被引:6,自引:0,他引:6       下载免费PDF全文
于2005~2006年在江苏南京农业大学卫岗试验站进行盆栽试验, 设置正常灌水(土壤含水量为田间持水量的75%左右)和棉花(Gossypium hirsutum)花铃期土壤短期干旱处理(将正常灌水的棉花自然干旱持续8 d, 以棉株出现萎蔫症状为标准, 之后复水至正常灌水水平), 每个处理再设置3个氮素水平(0、3.73、7.46 g N·pot-1, 分别相当于0、240、480 kg N·hm-2), 研究氮素对花铃期干旱及复水后棉花根系生长的影响。结果表明, 花铃期干旱条件下, 土壤相对含水量迅速减少, 并随氮素水平的提高而降低。在干旱处理结束时, 与正常灌水处理相比, 干旱处理棉花根重与氮素累积量显著降低, 但干物质根冠比(R/S)与氮素累积量根冠比(RN/SN)增大; 根系超氧化物歧化酶(SOD)和过氧化物酶(POD)活性明显升高, 而过氧化氢酶(CAT)活性降低, 同时, 丙二醛(MDA)含量相应增大。花铃期短期干旱亦显著降低棉花根系活力与叶片净光合速率。施氮可提高干旱处理棉花根重与氮素累积量, 降低SOD活性, 增强POD与CAT活性, 但以240 kg N·hm-2水平最有利于根系生长, 其内在生理机制表现为R/S与RN/SN最小, 膜脂过氧化程度最低, 而根系活力最强, 其叶片的净光合速率亦最高。复水后, 干旱处理棉花根重与氮素累积量显著高于正常灌水处理; 内源保护酶活性相应变化, 其根系MDA含量与正常灌水处理已无显著差异; 根系活力显著高于正常灌水处理。施氮有助于增加复水后棉花根重与氮素累积量, 提高POD与CAT活性, 降低膜脂过氧化程度, 增强棉花根系活力, 从而提高叶片净光合速率。综合分析认为, 过量施氮或施氮不足均不利于棉花根系生长, 两年的试验结果表明, 在本试验设置的3个氮素水平中, 花铃期干旱胁迫下以240 kg N·hm-2, 且基施50%, 初花期追施50%较适宜。  相似文献   

20.
Fang J M  Wu F Z  Yang W Q  Zhang J  Cai H X 《农业工程》2012,32(4):195-201
Anthropogenic activities and environmental changes have had a significant effect on the fishery ecosystem, biological characteristics, and population dynamics of marine fishes. Overfishing threatens the sustainability of many populations. We evaluated changes in the biological characteristics, distribution, and abundance of Cleisthenes herzensteini using bottom trawl survey data collected from 1985 to 2010 in the central and southern Yellow Sea. The dominant body length of C. herzensteini during spring was 80–160 mm in 1986, 60–160 mm in 1998, and 41–80 mm and 111–170 mm in 2010. During summer, the dominant body length was 80–180 mm and 130–169 mm in 2000 and 2007, respectively. During autumn, the dominant body length was 60–160 mm, 100–180 mm, and 90–149 mm in 1985, 2000, and 2009, respectively. During winter, the dominant body length was 80–200 mm, 120–220 mm, and 100–200 mm in 1985, 1999, and 2010, respectively. The dominant body length decreased gradually from 1985 to 2010 (excluding spring, 2010), illustrating the “miniaturization” of the C. herzensteini population. Growth was significantly different between male and female individuals, with male individuals forming a “smaller-size type”. The sex ratio of C. herzensteini was relatively stable during spring and summer, but significantly different during autumn and winter. The diet of C. herzensteini also changed significantly from 1985 to 2010. During 1985–1986, the diet consisted primarily of Crangon affinis, Eualus sinensis and Gammaridae species. C. affinis, Engraulis japonicus, and Ammodytes personatus were dominant during 1998–2000, whereas C. affinis was the dominant prey species during 2009–2010. Thus, there was a clear decrease in dietary diversity, with a shift to benthos shrimp, particularly C. affinis, which accounted for 82.58% of the total diet (by weight) in 2010. The gastric vacuous rate also decreased in every season and the gonad developmental stage changed with each season. The distribution of C. herzensteini shifted northward and offshore and became more concentrated. The average catch per haul of C. herzensteini decreased in spring and autumn. The average catch per haul ranged from 1.44 kg h-1 to 0.14 kg h-1 in spring and the percentage by weight ranged from 6.53% to 1.28%. The average catch per haul ranged from 3.03 kg h-1 to 0.26 kg h-1 in autumn and the percentage by weight ranged from 8.00% to 0.60%. The average catch per haul increased significantly during summer, ranging from 0.18 kg h-1 to 0.58 kg h-1, with a percentage by weight of 0.03–0.80%. The average catch per haul was relatively stable in winter (around 1.00 kg h-1), but the percentage by weight gradually increased during 1985–2010. Taken together, our results suggested that the population structure, diet composition, and distribution of C. herzensteini had been altered during the last three decades. To address this, it is essential to initiate measures to conserve the C. herzensteini resource.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号