共查询到20条相似文献,搜索用时 15 毫秒
1.
Physical factors affecting the production of organic solvent-tolerant protease by Pseudomonas aeruginosa strain K 总被引:1,自引:0,他引:1
The physical factors affecting the production of an organic solvent-tolerant protease from Pseudomonas aeruginosa strain K was investigated. Growth and protease production were detected from 37 to 45 degrees C with 37 degrees C being the optimum temperature for P. aeruginosa. Maximum enzyme activity was achieved at static conditions with 4.0% (v/v) inoculum. Shifting the culture from stationary to shaking condition decreased the protease production (6.0-10.0% v/v). Extracellular organic solvent-tolerant protease was detected over a broad pH range from 6.0 to 9.0. However, the highest yield of protease was observed at pH 7.0. Neutral media increased the protease production compared to acidic or alkaline media. 相似文献
2.
Norazizah Shafee Chin-Chin Tan Shalihah Mahamad Raja Noor Zaliha Abd Rahman Mahiran Basri Abu Bakar Salleh 《Annals of microbiology》2006,56(1):29-34
An organic solvent-tolerant bacterium designated as 146 capable of producing an organic solvent-stable alkaline protease was isolated from contaminated soil of a wood factory. The strain was a Gram-positive, spore-forming, nitrate-positive, rod-shaped organism capable of hydrolysing gelatine, starch, skim milk and identified asBacillus cereus. Activity of the protease was drastically increased in the presence of 1–decanol, isooctane, n-dodecane and n-tetradecane, but reduced in the presence of ethyl acetate, benzene, toluene, 1-heptanol, ethylbenzene and hexane. The bacterium was shown to require lactose as a carbon source and peptone as a nitrogen source. The optimum fermentation condition for the production of alkaline protease was in the presence of beef and yeast extract. Optimum pH was determined to be at 10.0 at incubation temperature of 37 °C for 48 h. Results from the studies suggest that 146 is a new strain of Bacillus cereus capable of producing organic solvent-tolerant alkaline protease with potential use in industries. 相似文献
3.
Nutritional factors controlling exocellular protease production by Pseudomonas aeruginosa. 总被引:12,自引:4,他引:8 下载免费PDF全文
A defined medium capable of supporting growth and exocellular protease production by clinical isolates of Pseudomonas aeruginosa has been developed. Control of protease production is effected by a mixture of three amino acids and glucose. 相似文献
4.
《Process Biochemistry》2010,45(3):346-354
The gene coding for the intracellular organic solvent-tolerant lipase of Pseudomonas aeruginosa strain S5 was isolated from a genomic DNA library and cloned into pRSET. The cloned sequence included two open reading frames (ORF) of 1575 bp for the first ORF (ORF1), and 582 bp for the second ORF (ORF2). The ORF2, known as chaperone, plays an important role in the expression of the S5 gene. The ORF2 is located downstream of lipase gene, and functions as the act gene for ORF1. The conserved pentapeptide, Gly-X-Ser-X-Gly, is located in the ORF1. A sequence coding for a catalytic triad that resembles that of a serine protease, consisting of serine, histidine, and aspartic acid or glutamic acid residues, was present in the lipase gene. Expression of the S5 lipase gene in E. coli resulted in a 100-fold increase in enzyme activity 9 h after induction with 0.75 mM IPTG. The recombinant protein revealed a size of 60 kDa on SDS-PAGE. The Lip S5 gene was stable in the presence of 25% (v/v) n-dodecane and n-tetradecane after 2 h incubation at 37 °C. 相似文献
5.
Randa A Abusham RA Noor Zaliha Raja Rahman Abu Bakar Salleh Mahiran Basri 《Microbial cell factories》2009,8(1):20-9
Background
Many researchers have reported on the optimization of protease production; nevertheless, only a few have reported on the optimization of the production of organic solvent-tolerant proteases. Ironically, none has reported on thermostable organic solvent-tolerant protease to date. The aim of this study was to isolate the thermostable organic solvent-tolerant protease and identify the culture conditions which support its production. The bacteria of genus Bacillus are active producers of extra-cellular proteases, and the thermostability of enzyme production by Bacillus species has been well-studied by a number of researchers. In the present study, the Bacillus subtilis strain Rand was isolated from the contaminated soil found in Port Dickson, Malaysia. 相似文献6.
A solvent tolerant strain of Pseudomonas aeruginosa (PseA) was isolated from soil samples by cyclohexane enrichment in medium. The strain was able to sustain and grow in a wide range of organic solvents. The adaptation of P. aeruginosa cell towards solvents was seen at membrane level in transmission electron micrographs. It also secreted a novel protease, which exhibited remarkable solvent stability and retained most of the activity at least up to 10 days in the presence of hydrophobic organic solvents (log P > or = 2.0) at 25% (v/v) concentrations. The protease was able to withstand as high as 75% concentration of solvents at least up to 48 h. P. aeruginosa strain and its protease, both seem promising for solvent bioremediation, wastewater treatment and carrying out biotransformation in non-aqueous medium. 相似文献
7.
《Journal of Molecular Catalysis .B, Enzymatic》2010,67(3-4):264-269
An organic solvent-tolerant lipase from newly isolated Pseudomonas aeruginosa LX1 has been purified by ammonium sulfate precipitation and ion-exchange chromatography leading to 4.3-fold purification and 41.1% recovery. The purified lipase from P. aeruginosa LX1 was homogeneous as determined by SDS-PAGE, and the molecular mass was estimated to be 56 kDa. The optimum pH and temperature for lipase activity were found to be 7.0 and 40 °C, respectively. The lipase was stable in the pH range 4.5–12.0 and at temperatures below 50 °C. Its hydrolytic activity was found to be highest towards p-nitrophenyl palmitate (C16) among the various p-nitrophenol esters investigated. The lipase displayed higher stability in the presence of various organic solvents, such as n-hexadecane, isooctane, n-hexane, DMSO, and DMF, than in the absence of an organic solvent. The immobilized lipase was more stable in the presence of n-hexadecane, tert-butanol, and acetonitrile. The transesterification activity of the lipase from P. aeruginosa LX1 indicated that it is a potential biocatalyst for biodiesel production. 相似文献
8.
An organic solvent-tolerant S5 lipase was purified by affinity chromatography and anion exchange chromatography. The molecular mass of the lipase was estimated to be 60 kDa with 387 purification fold. The optimal temperature and pH were 45 degrees C and 9.0, respectively. The purified lipase was stable at 45 degrees C and pH 6-9. It exhibited the highest stability in the presence of various organic solvents such as n-dodecane, 1-pentanol, and toluene. Ca2+ and Mg2+ stimulated lipase activity, whereas EDTA had no effect on its activity. The S5 lipase exhibited the highest activity in the presence of palm oil as a natural oil and triolein as a synthetic triglyceride. It showed random positional specificity on the thin-layer chromatography. 相似文献
9.
铜绿假单胞菌产蛋白酶的发酵条件优化 总被引:2,自引:0,他引:2
【目的】鉴定一株来源于酱油曲能够分泌蛋白酶的铜绿假单胞菌CAU342A,优化其产蛋白酶的发酵条件。【方法】采用形态学观察、16S r RNA基因序列比对和生理生化方法鉴定菌株CAU342A;通过碳源、氮源、初始pH、温度、表面活性剂及发酵时间的单因素优化和正交试验获得最适发酵条件。【结果】菌株CAU342A被鉴定为铜绿假单胞菌(Pseudomonas aeruginosa),其最适发酵产酶条件为(质量体积比):3%酒糟,1.5%酵母浸提物,0.05%吐温-80,0.5%NaCl,0.7%K_2HPO_4,0.3%KH_2PO_4,0.04%MnSO_4,培养基初始pH 7.5,30°C培养72 h。在最适发酵条件下,该菌株最大产酶水平达到2 653.5 U/m L。蛋白酶酶谱分析表明该菌株能够产生至少4种具有蛋白酶活性的同工酶,其中两个主要酶谱带对应分子量分别为32 k D和50 k D。【结论】铜绿假单胞菌CAU342A高产蛋白酶,具有很大的工业应用潜力。 相似文献
10.
By using immobilized baker's yeast repeatedly in isooctane with occasional reactivation by cultivation, we succeeded in the preparation of an organic solvent-tolerant strain, named KK21, which could grow in the presence of isooctane. This is the first report on an organic solvent-tolerant strain from baker's yeast. Strain KK21 showed high tolerance to organic solvents and maintained a high and stable activity on continuous reduction of n-butyl 3-oxobutanoate in an isooctane-medium two-phase system. Although the morphology of strain KK21 was the same as that of baker's yeast, the saturated fatty acid occupancy (SFA occupancy), which is defined as the percentage of saturated fatty acids in the total fatty acids of phospholipids, of strain KK21 was significantly higher than that of parental baker's yeast when strain KK21 was grown in the presence of isooctane, suggesting that a decrease in fluidity of the cell membrane might play an important role in the tolerance to organic solvents. 相似文献
11.
Screening and isolation of an organic solvent-tolerant bacterium for high-yield production of organic solvent-stable protease 总被引:1,自引:0,他引:1
Forty-three strains were screened from crude oil-contaminated samples by toluene and cyclohexane enrichment in medium. Ten of these strains demonstrated high protease activity on skim-milk agar. Among them, the PT121 isolate, identified as Pseudomonas aeruginosa, was selected based on its extracellular protease stability in the presence of hydrophilic organic solvents. The crude protease also retained most of its activity up to at least 14 days in the presence of various organic solvents at 50% concentration, and the protease activity in production medium was 10,876U/ml after 72h incubation. This protease showed high activity as a catalyst for aspartame precursor Cbz-Asp-Phe-NH2 synthesis in the presence of 50% dimethylsulfoxide (DMSO). 相似文献
12.
The inducible cholinesterase of Pseudomonas aeruginosa strain K (ATCC 25102) degraded propionylcholine, acetylthiocholine, acetylcholine and acetyl-beta-methylcholine at a high rate and butyrylcholine and succinylcholine at very low rates. The localization of the enzyme in the periplasmic space was indicated by a similar rate of acetylcholine degradation by intact cells or their extracts, by release of cholinesterase together with alkaline phosphatase into the culture medium during cell growth in a low phosphate-containing medium, by liberation of cholinesterase and alkaline phosphatase during lysozyme-induced conversion of cells to spheroplasts and by freezing and thawing. Threatment of cells with diazo-7-amino-1,3-naphthalenedisulphonic acid, which inactivates surface-located enzymes, abolished most of the cholinesterase and 5'-nucleotidase activities. 相似文献
13.
Raja Noor Zaliha Raja Abd Rahman Lee Poh Geok Mahiran Basri Abu Bakar Salleh 《Enzyme and microbial technology》2006,39(7):1484-1491
The organic solvent-tolerant strain K protease was purified to homogeneity by ammonium sulphate precipitation and anion exchange chromatography with 124-fold increase in specific activity. The molecular mass of the purified enzyme as revealed by SDS-PAGE electrophoresis is 51,000 Da. The strain K protease was an alkaline metalloprotease with an optimum pH and temperature of 10 and 70 °C, respectively. The enzyme showed stability and activation in the presence of organic solvents with log Pa/w values equal or more than 4.0. After 14 days of incubation, the purified protease was activated 1.11, 1.82, 1.50, 1.75 and 1.80 times in 1-decanol, isooctane, decane, dodecane and hexadecane, respectively. 相似文献
14.
Abstract Pyoverdine, the yellow-green fluorescent pigment produced by Pseudomonas aeruginosa , is a highly efficient siderophore. Pyoverdine-deficient ( pvd ) mutants of P. aeruginosa PAO isolated after mutagenesis were non-fluorescent and unable to grow in the presence of 2.8 mM ethylenediamine-di-( o -hydroxyphenylacetate) (EDDHA). Addition of purified pyoverdine to media containing EDDHA restored growth of pvd mutants. 6 pvd mutations were mapped between catA and mtu -9002 (at 65–70 min on the chromosome map) by R68.45-mediated conjugation. 2 slightly leaky pvd mutations were localised between argC and strA (at 35 min) by transduction. Thus, we have identified at least 2 genes or gene clusters required for pyoverdine production in P. aeruginosa . 相似文献
15.
Ulhas Patil Narendra Mokashe Ambalal Chaudhari 《Preparative biochemistry & biotechnology》2016,46(1):56-64
Proteases are now recognized as the most indispensable industrial biocatalyst owing to their diverse microbial sources and innovative applications. In the present investigation, a thermostable, organic solvent-tolerant, alkaline serine protease from Bacillus circulans MTCC 7942, was purified and characterized. The protease was purified to 37-fold by a three-step purification scheme with 39% recovery. The optimum pH and temperature for protease was 10 and 60°C, respectively. The apparent molecular mass of the purified enzyme was 43 kD as revealed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The Km and Vmax values using casein-substrate were 3.1 mg/mL and 1.8 µmol/min, respectively. The protease remained stable in the presence of organic solvents with higher (>3.2) log P value (cyclohexane, n-octane, n-hexadecane, n-decane, and n-dodecane), as compared to organic solvents with lower (<3.2) log P value (acetone, butanol, benzene, chloroform, toluene). Remarkably, the protease showed profound stability even in the presence of organic solvents with less log P values (glycerol, dimethyl sulfate [DMSO], p-xylene), indicating the possibility of nonaqueous enzymatic applications. Also, protease activity was improved in the presence of metal ions (Ca2+, Mg2+, Mn2+); enhanced by biosurfactants; hardly affected by bleaching agents, oxidizing agents, and chemical surfactants; and stable in commercial detergents. In addition, a protease–detergent formulation effectively washed out egg and blood stains as compared to detergent alone. The protease was suitable for various commercial applications like processing of gelatinous film and as a compatible additive to detergent formulation with its operative utility in hard water. 相似文献
16.
Malihe Masomian Raja Noor Zaliha Raja Abd Rahman Abu Bakar Salleh Mahiran Basri 《Process Biochemistry》2013,48(1):169-175
A thermostable and organic solvent-tolerant lipase produced by Aneurinibacillus thermoaerophilus strain HZ was purified and characterised. The lipase was purified to apparent homogeneity with two steps: anion exchange chromatography on Q-Sepharose and gel filtration on Sephadex-G75. A final specific activity of 43.5 U/mg was obtained with an overall recovery of 19.7% and 15.6 purification fold. The molecular mass of the HZ lipase was estimated to be 50 kDa. The optimum pH for the activity of the purified HZ lipase was 7.0. The stability showed a broad range of pH values between pH 4.0 and 9.0 at 30 °C. The purified HZ lipase exhibited an optimum temperature of 65 °C with a half-life of 3 h and 10 min at 65 °C. The activity of the purified HZ lipase was stimulated in the presence of Ca2+. Organic solvents such as dimethyl sulfoxide (DMSO), methanol, n-tetradecane and n-hexadecane enhanced the lipase activity. Studies on the effect of oil showed that the lipase preferred natural oil, such as sunflower oil, over synthetic substrates. 相似文献
17.
Khan S Misra AK Tripathi CK Mishra BN Bihari V 《Indian journal of experimental biology》2006,44(2):151-156
Optimization of the fermentation medium for maximum alkaline protease production was carried out with a new strain of Pseudomonas aeruginosa (B-2). Replacing the protein source/inducer (albumin in place of casein) brought about significant increase in yield after 48 hr of inoculation. Three most effective medium constituents identified by initial screening method of Plackett-Burman were albumin, (NH4)2SO4 and glucose. Central Composite Design (CCD) and Response Surface Methodology (RSM) were used in the design of the experiment and in the analysis of the results. Optimum levels of the effective medium constituents were albumin (6.586%); (NH4)2SO4, 0.164%; and glucose, 6.72%. The alkaline protease production increased from 533460 to 793492 Ul(-1). 相似文献
18.
P. Sudhakar Babu A. N. Vaidya A. S. Bal Rajesh Kapur Asha Juwarkar P. Khanna 《Biotechnology letters》1996,18(3):263-268
Summary Batch kinetic studies were carried out on rhamnolipid biosurfactant production from synthetic medium, industrial wastes viz. distillery and whey waste as substrates. The results indicated that the specific growth rates ( max) and specific product formation rates (V max) from both the wastes are comparatively better than the synthetic medium, revealing that both the industrial wastes (distillery and whey) can be successfully utilized as substrates for biosurfactant production. 相似文献
19.
W. Rachadech A. Navacharoen W. Ruangsit T. Pongtharangkul A. S. Vangnai 《Microbiology》2010,79(5):620-629
Bacillus licheniformis 3C5, isolated as mesophilic bacterium, exhibited tolerance towards a wide range of non-polar and polar organic solvents at 45°C. It produced an extracellular organic solvent-stable protease with an apparent molecular mass of approximately 32 kDa. The inhibitory effect of PMSF and EDTA suggested it is likely to be an alkaline serine protease. The protease was active over a broad range of temperatures (45–70°C) and pH (8–10) range with an optimum activity at pH 10 and 65°C. It was comparatively stable in the presence of a relatively high concentration (35% (v/v)) of organic solvents and various types of detergents even at a relatively high temperature (45°C). The protease production by B. licheniformis 3C5 was growth-dependent. The optimization of carbon and nitrogen sources for cell growth and protease production revealed that yeast extract was an important medium component to support both cell growth and the protease production. The overall properties of the protease produced by B. licheniformis 3C5 suggested that this thermo-stable, solvent-stable, detergent-stable alkaline protease is a promising potential biocatalyst for industrial and environmental applications. 相似文献
20.
Bacillus licheniformis 3C5, isolated as mesophilic bacterium, exhibited tolerance towards a wide range of non-polar and polar organic solvents at 45 degrees C. It produced an extracellular organic solvent-stable protease with an apparent molecular mass of approximately 32 kDa. The inhibitory effect of PMSF and EDTA suggested it is likely to be an alkaline serine protease. The protease was active over abroad range of temperatures (45-70 degrees C) and pH (8-10) range with an optimum activity at pH 10 and 65 degrees C. It was comparatively stable in the presence ofa relatively high concentration (35% (v/v)) of organic solvents and various types of detergents even at a relatively high temperature (45 degrees C). The protease production by B. licheniformis 3C5 was growth-dependent. The optimization of carbon and nitrogen sources for cell growth and protease production revealed that yeast extract was an important medium component to support both cell growth and the protease production. The overall properties of the protease produced by B. licheniformis 3C5 suggested that this thermo-stable, solvent-stable, detergent-stable alkaline protease is a promising potential biocatalyst for industrial and environmental applications. 相似文献