首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
溶剂稳定性蛋白酶产生菌Bacillus licheniformis YP1分离自油田土样。考察了碳源、氮源、金属离子等营养因素对YP1菌株发酵产溶剂稳定性蛋白酶的影响。YP1菌株发酵产胞外蛋白酶的最佳碳源为淀粉,果糖、甘露糖和乳糖显著抑制产酶;最佳氮源为酵母膏,干酪素、酵母粉和牛肉膏促进产酶,玉米浆和尿素显著抑制产酶。Mn^2+可以显著促进酶活,Mg^2+可以促进产酶,在初步优化的培养条件下,YP1菌株的胞外蛋白酶产量达980U。  相似文献   

2.
Agro-industrial residues, a cheap source of energy have high potential in the area of fermentation for the production of enzymes. Twenty agro-industrial residues were evaluated to check the possibility of potential utilization of substrates in SSF for milk clotting enzyme protease production by Mucor circinelloides. In this study, dhal husk holds the greatest promise for cost effective production of the milk clotting enzyme. The dhal husk supported maximum milk clotting protease production, and yield was improved with the supplementation of sucrose and yeast extract as carbon and nitrogen source, respectively. Among all the physico-chemical parameters tested, the best results were obtained in a medium having moisture content of 20% at pH 7.0, when inoculated with 30% of spore suspension and incubated at 30°C for 5 days. The activity was increased further on addition of Ca2+, Cu2+, and Mg2+ ions. The purified milk-clotting protease obtained from M. circinelloides was successfully applied and compared with commercial rennet in the manufacture of a cheddar cheese.  相似文献   

3.
Bacillus subtilis microbe is commonly found in soil and produces proteases on nitrogen and carbon-containing sources and increases the fertility rate by degrading nitrogenous organic materials. The present study was aimed to develop hyper producing mutant strain of B. subtilis for the production of proteases, to improve the process variables by the response surface methodology (RSM) under central composite design (CCD) and the production of protease by the particular mutant strain in a liquid state fermentation media. The mutation of the strain was carried out using ethidium bromide. Pure B. subtilis strain was collected and screened for hyper-production of protease. The production of protease by mutant B. subtilis strain was optimized by varying temperature, inoculum size, pH and incubation time under liquid state fermentation. The CCD model were found to be reliable with r2 of 0.999. The maximum enzyme activity of B. subtilis IBL-04 mutant with 3 mL/100 mL inoculum size, 72 h fermentation time, pH 8, and 45 °C temperature was developed with enzyme activity 631.09 U/mL, indicates 1–7-fold increase in enzyme activity than the parent strain having 82.32 U/mL activity. These characteristics render its potential use in industries for pharmaceutical and dairy formulation.  相似文献   

4.
The moderately thermophilic iron-oxidizing bacterium strain TI-1, which lacks enzyme systems involved in CO2 fixation, grows at 45°C in Fe2+ medium supplemented with yeast extract to give a maximum cell growth of 1.0 × 108 cells per ml, but does not grow in Fe2+ medium without yeast extract. To elucidate the physiology of the strain, a synthetic medium was developed. It was found that the best synthetic medium was Fe2+-6AA, containing Fe2+, salts, and the following six l-amino acids: alanine, aspartic acid, glutamic acid, arginine, serine, and histidine. In this medium, strain TI-1 showed a maximum cell growth of 10 × 108 cells/ml. The six amino acids in the Fe2+-6AA medium were used not only as a carbon source but also as a source of nitrogen. Inorganic nitrogen sources, such as ammonium ion, hydrazine, hydroxylamine, nitrite, and nitrate, were not used as a sole source of nitrogen, but rather strongly inhibited the utilization of the six amino acids at 1 mM. In the Fe2+ (10 mM)-6AA medium supplemented with 21 mM Fe3+, reduction of Fe3+ to Fe2+ that was dependent on the added amino acids was observed, suggesting another role of the amino acids in the growth of strain TI-1. Washed, intact cells of strain TI-1 had the activity to reduce Fe3+ to Fe2+.  相似文献   

5.
An organic solvent-tolerant bacterium designated as 146 capable of producing an organic solvent-stable alkaline protease was isolated from contaminated soil of a wood factory. The strain was a Gram-positive, spore-forming, nitrate-positive, rod-shaped organism capable of hydrolysing gelatine, starch, skim milk and identified asBacillus cereus. Activity of the protease was drastically increased in the presence of 1–decanol, isooctane, n-dodecane and n-tetradecane, but reduced in the presence of ethyl acetate, benzene, toluene, 1-heptanol, ethylbenzene and hexane. The bacterium was shown to require lactose as a carbon source and peptone as a nitrogen source. The optimum fermentation condition for the production of alkaline protease was in the presence of beef and yeast extract. Optimum pH was determined to be at 10.0 at incubation temperature of 37 °C for 48 h. Results from the studies suggest that 146 is a new strain of Bacillus cereus capable of producing organic solvent-tolerant alkaline protease with potential use in industries.  相似文献   

6.
A psychrophilic bacterium producing cold-active lipase upon growth at low temperature was isolated from the soil samples of Gangotri glacier and identified as Microbacterium luteolum. The bacterial strain produced maximum lipase at 15 °C, at a pH of 8.0. Beef extract served as the best organic nitrogen source and ammonium nitrate as inorganic for maximum lipase production. Castor oil served as an inducer and glucose served as an additional carbon source for production of cold-active lipase. Ferric chloride as additional mineral salt in the medium, highly influenced the lipase production with an activity of 8.01 U ml?1. The cold-active lipase was purified to 35.64-fold by DEAE-cellulose column chromatography. It showed maximum activity at 5 °C and thermostability up to 35 °C. The purified lipase was stable between pH 5 and 9 and the optimal pH for enzymatic hydrolysis was 8.0. Lipase activity was stimulated in presence of all the solvents (5%) tested except with acetonitrile. Lipase activity was inhibited in presence of Mn2+, Cu2+, and Hg2+; whereas Fe+, Na+ did not have any inhibitory effect on the enzyme activity. The purified lipase was stable in the presence of SDS; however, EDTA and dithiothreitol inhibited enzyme activity. Presence of Ca2+ along with inhibitors stabilized lipase activity. The cold active lipase thus exhibiting activity and stability at a low temperature and alkaline pH appears to be practically useful in industrial applications especially in detergent formulations.  相似文献   

7.
The production and purification of a calcium-dependent protease by Bacillus cereus BG1 were studied. The production of the protease was found to depend specifically on the calcium concentration in the culture medium. This suggests that this metal ion is essential for the induction of protease production and/or stabilisation of the enzyme after synthesis. The calcium requirement is highly specific since other metal ions (such as Mg2+ and Ba2+, which both activate the enzyme) are not able to induce protease production. The most appropriate medium for growth and protease production comprises (g L–1) starch 5, CaCl2 2, yeast extract 2, K2HPO4 0.2 and KH2PO4 0.2. The protease of BG1 strain was purified to homogeneity by ultrafiltration, heat treatment, gel filtration on Sephacryl S-200, ion exchange chromatography on DEAE-cellulose and, finally, a second gel filtration on Sephacryl S-200, with a 39-fold increase in specific activity and 23% recovery. The molecular weight was estimated to be 34 kDa on SDS-PAGE. The optimum temperature and pH of the purified enzyme were determined to be 60°C and 8.0, respectively, in 100 mM Tris-HCl buffer + 2 mM CaCl2.  相似文献   

8.
Summary It has been suggested that a calcium-dependent intracellular protease of the cyanobacterium, Anabaena sp., participates in the differentiation of heterocysts, cells that are specialized for fixation of N2. Clones of the structural gene (designated prcA) for this protease from Anabaena variabilis strain ATCC 29413 and Anabaena sp. strain PCC 7120 were identified via their expression in Escherichia coli. The prcA gene from A. variabilis was sequenced. The genes of both strains, mutated by insertion of a drug resistance cassette, were returned to these same strains of Anabaena on suicide plasmids. The method of sacB-mediated positive selection for double recombinants was used to achieve replacement of the wild-type prcA genes by the mutated forms. The resulting mutants, which lacked Ca2+-dependent protease activity, were not impaired in heterocyst formation and grew on N2 as sole nitrogen source.  相似文献   

9.
Alkaliphilic actinomycetes isolated from sediment samples of the Izmir Gulf, Turkey were studied for the production of protease activity. Strain MA1-1 was selected as a good alkaline protease producer as measured by the clear zone diameter by the hydrolysis of skim-milk and casein. The alkaline protease production from the marine alkaliphilic actinomycete MA1-1 was studied by using different carbon and nitrogen sources in medium containing glycerol, peptone, KCl, MgSO4, K2HPO4, and trace elements at 30°C for 72 h. Among the different carbon and nitrogen sources, fructose, starch, maltose, D(+) glucose, yeast extract, malt extract, beef extract and peptone provided higher production of protease. Starch was also found to be effective for growth and enzyme production with highest specific activity at 699 U mg?1. Purification was achieved by adsorption on Diaion HP 20 which resulted in a recovery rate of 68% with a specific activity of 7618 U mg?1 protein and 40-fold purification. The optimum pH and temperature of the partially purified protease were determined as pH 9.0 and 50°C, but high activity was also observed at pH 8.0–13.0 and 35–50°C. The inhibition profile exhibited by phenylmethylsulphonyl fluoride (PMSF) showed that this enzyme belongs to the serine-protease group.  相似文献   

10.
Fish powders and fish protein hydrolysates (FPH) from sardinella (Sardinella aurita) were prepared and tested as growth media for alkaline protease production by Pseudomonas aeruginosa MN7. Cultivated in fish substrate as carbon source, the strain exhibited a slightly greater protease production (about 7800 U ml–1) than that obtained with commercial peptones (about 7222 U ml–1). Furthermore, P. aeruginosa MN7 produced the same amount of protease when cultivated in medium containing only fish substrate or that containing all ingredients, indicating that the strain can obtain its carbon and nitrogen requirements directly from whole fish proteins. Moreover, it was found that extensive hydrolysis of fish proteins did not increase protease formation. Protease production in media containing only FPH prepared by Alcalase was about 70% of those obtained with MN7 protease digest of fish protein or with meat-fish powder. These results indicate that sardinella substrates are an excellent carbon and nitrogen source for the growth of P. aeruginosa MN7 and the production of protease.  相似文献   

11.
A serine alkaline protease (EC.3.4.21) was isolated, purified and characterized from culture filtrate of the thermophilic fungus Thermomyces lanuginosus Tsiklinsky. Fructose (1.5 %) and gelatin (0.5 %) proved to be the best carbon and nitrogen sources, giving a maximum enzyme yield of 9.2 U/mL. Dates waste was utilized as a sole organic source to improve enzyme productivity, and the yield was calculated to be 11.56 U/mL. This yield was expressed also as 231.2 U/g of assimilated waste. The alkaline protease produced was precipitated by iso-propanol and further purified by gel filtration through Sephadex G-100 and ion exchange column chromatography on diethyl amino ethyl (DEAE)-cellulose with a yield of 30.12 % and 13.87-fold purification. The enzyme acted optimally at pH 9 and 60 °C and had good stability at alkaline pH and high temperatures. The enzyme possessed a high degree of thermostability and retained full activity even at the end of 1 h of incubation at 60 °C. Michaelis–Menten constant (K m), maximal reaction velocity (V max) and turnover number (K cat) of the purified enzyme on gelatin as a substrate were calculated to be 4.0 mg/mL, 18.5 U/mL and 1.8 s?1, respectively. The best enzyme activators were K+, Ca2+ and Mn2, respectively, while phenylmethylsulfonyl fluoride (PMSF) was the strongest inhibitory agent, thus suggesting that the enzyme is a serine type protease. The enzyme is a glycoprotein with molecular mass of 33 kDa as determined by SDS-PAGE. It retained full activity after 15 min incubation at 60 °C in the presence of the detergent Ariel, thus indicating its suitability for application in the detergent industry.  相似文献   

12.
We screened a strain which can produce a new protease. The strain, Lactobacillus sp. no. 1, was isolated from a natural environment as an organism which could utilize gramicidin S as a sole nitrogen source. This strain was proved to produce much protease because it formed a large halo on a plate containing casein, and the protease was purified using ion exchange column chromatography. The amino-terminal amino acid sequence of the hydrolyzed products by the cleavage of gramicidin S was determined by a protein sequencer, and sizes of those products were analyzed by a mass spectrometer. The protease could cleave two peptide bonds between l-Orn-l-Leu in gramicidin S. These cleavage sites were different from other reported cleavage sites of gramicidin S by protease. The molecular weight of the protease was 42,000 by SDS-polyacrylamide gel electrophoresis. The optimum pH and temperature for the enzyme activity were 5.5 and 45°C, respectively. The enzyme activity was inhibited by EDTA, but not by phenylmethylsulfonyl fluoride (PMSF). Because the reported protease that can hydrolyze gramicidin S was a serine protease and the cleavage site was different from that of this protease from Lactobacillus sp. no. 1, we concluded that this enzyme was a new type of metal protease which can cleave both linear and cyclic peptide substrates with a unique substrate specificity.  相似文献   

13.
Alcaligenes faecalis produced extracellular protease when incubated in media containing protein substrates. Enzyme production was found to be influenced by various culture conditions. Enzyme production was growth-associated, expressed linearity with growth and reached a maximum at the end of the growth phase. Carbohydrates and inorganic nitrogen sources could not be utilized by the bacterium for its growth, and organic nitrogen appeared to be a primary determinant in protease production. Enzyme production reached its maximum level of 171.2 U/ml when the culture was incubated at 30 °C at pH 8.0. Ca2+ and Mg2+ enhanced the enzyme production. The crude enzyme powder was stable at high alkaline pH and stable upto 6 months at the storage temperature of 0–4 °C. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
During the growth of the asporogenous variant ofBacillus megaterium KM in medium containing NO3 as nitrogen source, the relative rate of extracellular protease synthesis is higher than in the presence of NH4 +. It approaches the relative rate of enzyme synthesis at the incubation of cells in nitrogen-free medium with glucose. This supports the suggestion that even amino acids which are synthesized endogenously slow down the protease production. In the postlogarithmic or stationary phase the protease production stops. The interruption of enzyme production does not appear as a result of insufficient aeration in a dense suspension, or of accumulation of amino acids or their metabolites in cells. The non-growing cells retain their ability to renew the enzyme synthesis when transferred into a fresh medium, even into a medium without nitrogen source. In the same way it is possible to “induce” the protease production, if Ca2+ is added to cells in the stationary phase when the population was grown in the Ca2+ free medium. The amount of enzyme produced at the expense of protein turnover by the non-growing populations is sufficient for the fast hydrolysis of exogenous protein in the medium and for assuring the influx of a sufficient amount of peptides into the cells. In such a case the growth of the culture is therefore very quickly renewed.  相似文献   

15.
The production of arachidonic acid was studied in the fungus Mortierella alpina using an inexpensive medium. Glucose derived from maize starch hydrolysate was the sole carbon source and defatted soybean meal and sodium nitrate were the nitrogen sources. Optimal arachidonic acid yield (1.47 g l-1) was observed at a glucose concentration of 100 g l-1. Various treatments of defatted soybean meal to extract soluble nitrogen nutrients were evaluated. Alkali extract was the most effective for arachidonic acid production. A mixture of soybean alkali-extract protein and sodium nitrate was an excellent nitrogen source for fungal growth, lipid accumulation, and arachidonic acid production. A maximum yield of 1.87 g arachidonic acid l-1 was obtained with a soybean protein concentration of 4.6 g l-1 and a sodium nitrate concentration of 2.3 g l-1. Electronic Publication  相似文献   

16.
In this study, Streptomyces sp. Al-Dhabi-49 was isolated from the soil sample of Saudi Arabian environment for the simultaneous production of lipase and protease in submerged fermentation. The process parameters were optimized to enhance enzymes production. The production of protease and lipase was found to be maximum after 5 days of incubation (139.2 ± 2.1 U/ml, 253 ± 4.4 U/ml). Proteolytic enzyme increases with the increase in pH up to 9.0 (147.2 ± 3.6 U/ml) and enzyme production depleted significantly at higher pH values. In the case of lipase, production was maximum in the culture medium containing pH 8.0 (166 ± 1.3 U/ml). The maximum production of protease was observed at 40 °C (174 ± 12.1 U/ml) by Streptomyces sp. Lipase activity was found to be optimum at the range of temperatures (30–50 °C) and maximum production was achieved at 35 °C (168 ± 7.8 U/ml). Among the evaluated carbon sources, maltose significantly influenced on protease production (218 ± 12.8 U/ml). Lipase production was maximum when Streptomyces sp. was cultured in the presence of glucose (162 ± 10.8U/ml). Among various concentrations of peptone, 1.0% (w/v) significantly enhanced protease production. The lipase production was very high in the culture medium containing malt extract as nitrogen source (86 ± 10.2 U/ml). Protease production was maximum in the presence of Ca2+ as ionic source (212 ± 3.8 U/ml) and lipase production was enhanced by the addition of Mg2+ with the fermentation medium (163.7 ± 6.2 U/ml).  相似文献   

17.
A strain of protease-producing Bacillus stearothermophilus has been isolated. Glycerol was the best carbon source for production whereas yeast extract was the best nitrogen source. The bacterium could grow up to 70°C but optimum protease production was at 60°C. Best initial pH for protease production was 5. Alkaline pH inhibited production. The enzyme was stable at 60°C for 18 h and was inhibited by EDTA, PMSF and HgCl2.The authors are with the Enzyme and Microbial Technology Group, Faculty of Science and Environmental Studies, Universiti Pertanian Malaysia, 43400 UPM Serdang, Selangor, Malaysia  相似文献   

18.
Proteases are the hydrolytic enzymes which hydrolyzes peptide bond between proteins with paramount applications in pharmaceutical and industrial sector. Therefore production of proteases with efficient characteristics of biotechnological interest from novel strain is significant. Hence, in this study, an alkaline serine protease produced by Bacillus cereus strain S8 (MTCC NO 11901) was purified and characterized. The alkaline protease was purified by ammonium sulfate precipitation (50%), ion exchange (DEAE-Cellulose) and gel filtration (Sephadex G-100) chromatographic techniques. As a result of this purification, a protein with specific activity of 300U/mg protein was obtained with purification fold 17.04 and recovery percentage of 34.6%. The molecular weight of the purified protease was determined using SDS-PAGE under non-reducing (71?kDa) and reducing conditions (35?kDa and 22?kDa). Zymogram analysis revealed that proteolytic activity was only associated with 22?kDa. These results indicate that existence of the enzyme as dimer in its native state. The molecular weight of the protease (22?kDa) was also determined by gel filtration (Sephadex G-200) chromatography and it was calculated as 21.8?kDa. The optimum activity of the protease was observed at pH 10.0 and temperature 70?°C with great stability towards pH and temperature with casein as a specific substrate. The enzyme was completely inhibited by PMSF and TLCK indicating that it is a serine protease of trypsin type. The enzyme exhibits a great stability towards organic solvents, oxidizing and bleaching agents and it is negatively influenced by Li2+ and Co2+ metal ions. The purified protein was further characterized by Matrix Assisted Laser Desorption Ionization/Mass Spectroscopy (MALDI/MS) analysis which reveals that total number of amino acids is 208 with isoelectric point 9.52.  相似文献   

19.
A series of 24 nitrogen sources including inorganic, organic nonprotein, proteins and complex natural media were examined to determine their stimulatory effects on the production of a toxic proteolytic complex in Beauveria bassiana in submerged cultures. It was found that this effect is enhanced by the sources in the order presented. The best sources are maize meal, yeast extract, and beef extract. The production optimum on these sources occurs on the third day of fermentation. The composition of the protease complex may be influenced by the type of nitrogen source.  相似文献   

20.
Summary A chemostat culture system was investigated in order to produce protease by Aspergillus species effectively in the presence of 10% NaCl which was added to avid bacterial contamination. A salt tolerant fungus Aspegillus oryzae NISL 1913 produced protease even in the presence of 10% NaCl. The protease production by this strain was accelerated by proteins. Isolated soy protein or defatted soybean fluor (DSF) was used as a nitrogen source and an inducer of protease production, and starch was used as a carbon source. Continuous protease production was performed in a carbon-limited chemostat culture (dilution rate = 0.02). The maximum activity reached 2200 protease units (PU)/ml of the culture broth (130 PU/mg dry weight) with DSF as a nitrogen source. The culture could be continued for more than 50 days without any bacterial contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号