首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Somatostatin subtype-4 receptors (sst4) inhibit L-type calcium channel currents (ICa) in retinal ganglion cells (RGCs). Here we identify the signaling pathways involved in sst4 stimulation leading to suppression of ICa in RGCs. Whole cell patch clamp recordings were made on isolated immunopanned RGCs using barium as a charge carrier to isolate ICa. Application of the selective sst4 agonist, L-803 (10 nM), reduced ICa by 41.2%. Pretreatment of cells with pertussis toxin (Gi/o inhibitor) did not prevent the action of L-803, which reduced ICa by 34.7%. To determine the involvement of Gβγ subunits after sst4 activation, depolarizing pre-pulse facilitation paradigms were used to remove voltage-dependent inhibition of calcium channels. Pre-pulse facilitation did not reverse the inhibitory effects of L-803 on ICa (8.4 vs. 8.8% reductions, ctrl vs. L-803); however, pharmacologic inhibition of Gβγ reduced ICa suppression by L-803 (23.0%, P < 0.05). Inhibition of PKC (GF109203X; GFX) showed a concentration-dependent effect in preventing the action of L-803 on ICa (1 μM GFX, 34.3%; 5 μM GFX, 14.6%, P < 0.05). When both PKC and Gβγ were inhibited, the effects of L-803 on ICa were blocked (1.8%, P < 0.05). These results suggest that sst4 stimulation modulates RGC calcium channels via Gβγ and PKC activation. Since reducing intracellular Ca2+ is known to be neuroprotective in RGCs, modulating these sst4 signaling pathways may provide insights to the discovery of unique therapeutic targets to reduce intracellular Ca2+ levels in RGCs.  相似文献   

2.
Hepcidin regulates iron metabolism by down-regulating ferroportin-1 (Fpn1). We demonstrated that hepcidin is complexed to the blood transport protein, α2-macroglobulin (α2M) (Peslova, G., Petrak, J., Kuzelova, K., Hrdy, I., Halada, P., Kuchel, P. W., Soe-Lin, S., Ponka, P., Sutak, R., Becker, E., Huang, M. L., Suryo Rahmanto, Y., Richardson, D. R., and Vyoral, D. (2009) Blood 113, 6225–6236). However, nothing is known about the mechanism of hepcidin binding to α2M or the effects of the α2M·hepcidin complex in vivo. We show that decreased Fpn1 expression can be mediated by hepcidin bound to native α2M and also, for the first time, hepcidin bound to methylamine-activated α2M (α2M-MA). Passage of high molecular weight α2M·hepcidin or α2M-MA·hepcidin complexes (≈725 kDa) through a Sephadex G-25 size exclusion column retained their ability to decrease Fpn1 expression. Further studies using ultrafiltration indicated that hepcidin binding to α2M and α2M-MA was labile, resulting in some release from the protein, and this may explain its urinary excretion. To determine whether α2M-MA·hepcidin is delivered to cells via the α2M receptor (Lrp1), we assessed α2M uptake and Fpn1 expression in Lrp1−/− and Lrp1+/+ cells. Interestingly, α2M·hepcidin or α2M-MA·hepcidin demonstrated similar activities at decreasing Fpn1 expression in Lrp1−/− and Lrp1+/+ cells, indicating that Lrp1 is not essential for Fpn1 regulation. In vivo, hepcidin bound to α2M or α2M-MA did not affect plasma clearance of α2M/α2M-MA. However, serum iron levels were reduced to a significantly greater extent in mice treated with α2M·hepcidin or α2M-MA·hepcidin relative to unbound hepcidin. This effect could be mediated by the ability of α2M or α2M-MA to retard kidney filtration of bound hepcidin, increasing its half-life. A model is proposed that suggests that unlike proteases, which are irreversibly bound to activated α2M, hepcidin remains labile and available to down-regulate Fpn1.  相似文献   

3.
The swamp eel, Monopterus albus, can survive in high concentrations of ammonia (>75 mmol l−1) and accumulate ammonia to high concentrations in its brain (∼4.5 µmol g−1). Na+/K+-ATPase (Nka) is an essential transporter in brain cells, and since NH4 + can substitute for K+ to activate Nka, we hypothesized that the brain of M. albus expressed multiple forms of Nka α-subunits, some of which might have high K+ specificity. Thus, this study aimed to clone and sequence the nka α-subunits from the brain of M. albus, and to determine the effects of ammonia exposure on their mRNA expression and overall protein abundance. The effectiveness of NH4 + to activate brain Nka from M. albus and Mus musculus was also examined by comparing their Na+/K+-ATPase and Na+/NH4 +-ATPase activities over a range of K+/NH4 + concentrations. The full length cDNA coding sequences of three nkaα (nkaα1, nkaα3a and nkaα3b) were identified in the brain of M. albus, but nkaα2 expression was undetectable. Exposure to 50 mmol l−1 NH4Cl for 1 day or 6 days resulted in significant decreases in the mRNA expression of nkaα1, nkaα3a and nkaα3b. The overall Nka protein abundance also decreased significantly after 6 days of ammonia exposure. For M. albus, brain Na+/NH4 +-ATPase activities were significantly lower than the Na+/K+-ATPase activities assayed at various NH4 +/K+ concentrations. Furthermore, the effectiveness of NH4 + to activate Nka from the brain of M. albus was significantly lower than that from the brain of M. musculus, which is ammonia-sensitive. Hence, the (1) lack of nkaα2 expression, (2) high K+ specificity of K+ binding sites of Nkaα1, Nkaα3a and Nkaα3b, and (3) down-regulation of mRNA expression of all three nkaα isoforms and the overall Nka protein abundance in response to ammonia exposure might be some of the contributing factors to the high brain ammonia tolerance in M. albus.  相似文献   

4.
Obesity is characterized by adipocyte hyperplasia and hypertrophy. We previously showed that PKCδ expression is dysregulated in obesity (Carter, G., Apostolatos, A., Patel, R., Mathur, A., Cooper, D., Murr, M., and Patel, N. A. (2013) ISRN Obes. 2013, 161345). Using 3T3L1 preadipocytes, we studied adipogenesis in vitro and showed that expression of PKCδ splice variants, PKCδI and PKCδII, have different expression patterns during adipogenesis (Patel, R., Apostolatos, A., Carter, G., Ajmo, J., Gali, M., Cooper, D. R., You, M., Bisht, K. S., and Patel, N. A. (2013) J. Biol. Chem. 288, 26834–26846). Here, we evaluated the role of PKCδI splice variant during adipogenesis. Our results indicate that PKCδI expression level is high in preadipocytes and decreasing PKCδI accelerated terminal differentiation. Our results indicate that PKCδI is required for mitotic clonal expansion of preadipocytes. We next evaluated the splice factor regulating the expression of PKCδI during 3T3L1 adipogenesis. Our results show TRA2B increased PKCδI expression. To investigate the molecular mechanism, we cloned a heterologous splicing PKCδ minigene and showed that inclusion of PKCδ exon 9 is increased by TRA2B. Using mutagenesis and a RNA-immunoprecipitation assay, we evaluated the binding of Tra2β on PKCδI exon 9 and show that its association is required for PKCδI splicing. These results provide a better understanding of the role of PKCδI in adipogenesis. Determination of this molecular mechanism of alternative splicing presents a novel therapeutic target in the management of obesity and its co-morbidities.  相似文献   

5.
The chemotherapeutic agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA) is a potent inducer of type I IFNs and other cytokines. This ability is essential for its chemotherapeutic benefit in a mouse cancer model and suggests that it might also be useful as an antiviral agent. However, the mechanism underlying DMXAA-induced type I IFNs, including the host proteins involved, remains unclear. Recently, it was reported that the antioxidant N-acetylcysteine (NAC) decreased DMXAA-induced TNF-α and IL-6, suggesting that oxidative stress may play a role. The goal of this study was to identify host proteins involved in DMXAA-dependent signaling and determine how antioxidants modulate this response. We found that expression of IFN-β in response to DMXAA in mouse macrophages requires the mitochondrial and endoplasmic reticulum resident protein STING. Addition of the antioxidant diphenylene iodonium (DPI) diminished DMXAA-induced IFN-β, but this decrease was independent of both the NADPH oxidase, Nox2, and de novo generation of reactive oxygen species. Additionally, IFN-β up-regulation by DMXAA was inhibited by agents that target the mitochondrial electron transport chain and, conversely, loss of mitochondrial membrane potential correlated with diminished innate immune signaling in response to DMXAA. Up-regulation of Ifnb1 gene expression mediated by cyclic dinucleotides was also impaired by DPI, whereas up-regulation of Ifnb1 mRNA due to cytosolic double-stranded DNA was not. Although both stimuli signal through STING, cyclic dinucleotides interact directly with STING, suggesting that recognition of DMXAA by STING may also be mediated by direct interaction.  相似文献   

6.
The intestinal nematode parasite Trichuris muris dwells in the caecum and proximal colon driving an acute resolving intestinal inflammation dominated by the presence of macrophages. Notably, these macrophages are characterised by their expression of RELMα during the resolution phase of the infection. The RELMα+ macrophage phenotype associates with the presence of alternatively activated macrophages and work in other model systems has demonstrated that the balance of classically and alternatively activated macrophages is critically important in enabling the resolution of inflammation. Moreover, in the context of type 2 immunity, RELMα+ alternatively activated macrophages are associated with the activation of macrophages via the IL4Rα. Despite a breadth of inflammatory pathologies associated with the large intestine, including those that accompany parasitic infection, it is not known how colonic macrophages are activated towards an alternatively activated phenotype. Here, we address this important knowledge gap by using Trichuris muris infection, in combination with transgenic mice (IL4Rαfl/fl.CX3CR1Cre) and IL4Rα-deficient/wild-type mixed bone marrow chimaeras. We make the unexpected finding that education of colonic macrophages towards a RELMα+, alternatively activated macrophage phenotype during T. muris infection does not require IL4Rα expression on macrophages. Further, this independence is maintained even when the mice are treated with an anti-IFNγ antibody during infection to create a strongly polarised Th2 environment. In contrast to RELMα, PD-L2 expression on macrophages post infection was dependent on IL4Rα signalling in the macrophages. These novel data sets are important, revealing a surprising cell-intrinsic IL4R alpha independence of the colonic RELMα+ alternatively activated macrophage during Trichuris muris infection.  相似文献   

7.
Autoreactive CD4+ T-cells are considered to play a major role in the pathogenesis of multiple sclerosis. In experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, exogenous and endogenous type I interferons restrict disease severity. Recombinant interferon-β is used for treatment of multiple sclerosis, and some untreated multiple sclerosis patients have increased expression levels of type I interferon-inducible genes in immune cells. The role of endogenous type I interferons in multiple sclerosis is controversial: some studies found an association of high expression levels of interferon-β-inducible genes with an increased expression of interleukin-10 and a milder disease course in untreated multiple sclerosis patients, whereas other studies reported an association with a poor response to treatment with interferon-β. In the present study, we found that untreated multiple sclerosis patients with an increased expression of interferon-β-inducible genes in peripheral blood mononuclear cells and interferon-β-treated multiple sclerosis patients had decreased CD4+ T-cell reactivity to the autoantigen myelin basic protein ex vivo. Interferon-β-treated multiple sclerosis patients had increased IL10 and IL27 gene expression levels in monocytes in vivo. In vitro, neutralization of interleukin-10 and monocyte depletion increased CD4+ T-cell reactivity to myelin basic protein while interleukin-10, in the presence or absence of monocytes, inhibited CD4+ T-cell reactivity to myelin basic protein. Our findings suggest that spontaneous expression of interferon-β-inducible genes in peripheral blood mononuclear cells from untreated multiple sclerosis patients and treatment with interferon-β are associated with reduced myelin basic protein-induced T-cell responses. Reduced myelin basic protein-induced CD4+ T-cell autoreactivity in interferon-β-treated multiple sclerosis patients may be mediated by monocyte-derived interleukin-10.  相似文献   

8.
9.

Background

β2-Microglobulin (β2M) is the light chain of major histocompatibility class I (MHC I) that binds non-covalently with the α heavy chain. Both proteins attach to the antigen peptide, presenting a complex to the T cell to be destroyed via the immune mechanism.

Methodology/Principal Findings

In this study, a cDNA sequence encoding β2M in the Asian seabass (Lates calcarifer) was identified and analyzed using in silico approaches to predict and characterize its functional domain. The β2M cDNA contains an open reading frame (ORF) of 351 bases with a coding capacity of 116 amino acids. A large portion of the protein consists of the IG constant domain (IGc1), similar to β2M sequences from other species studied thus far. Alignment of the IGc1 domains of β2M from L. calcarifer and other species shows a high degree of overall conservation. Seven amino acids were found to be conserved across taxa whereas conservation between L. calcarifer and other fish species was restricted to 14 amino acids at identical conserved positions.

Conclusion/Significance

As the L. calcarifer β2M protein analyzed in this study contains a functional domain similar to that of β2M proteins in other species, it can be postulated that the β2M proteins from L. calcarifer and other organisms are derived from a common ancestor and thus have a similar immune function. Interestingly, fish β2M genes could also be classified according to the ecological habitat of the species, i.e. whether it is from a freshwater, marine or euryhaline environment.  相似文献   

10.
11.
Microbial sensing plays essential roles in the innate immune response to pathogens. In particular, NLRP3 forms a multiprotein inflammasome complex responsible for the maturation of interleukin (IL)-1β. Our aim was to delineate the role of the NLRP3 inflammasome in macrophages, and the contribution of IL-1β to the host defense against Citrobacter rodentium acute infection in mice. Nlrp3−/− and background C57BL/6 (WT) mice were infected by orogastric gavage, received IL-1β (0.5 µg/mouse; ip) on 0, 2, and 4 days post-infection (DPI), and assessed on 6 and 10 DPI. Infected Nlrp3−/− mice developed severe colitis; IL-1β treatments reduced colonization, abrogated dissemination of bacteria to mesenteric lymph nodes, and protected epithelial integrity of infected Nlrp3−/− mice. In contrast, IL-1β treatments of WT mice had an opposite effect with increased penetration of bacteria and barrier disruption. Microscopy showed reduced damage in Nlrp3−/− mice, and increased severity of disease in WT mice with IL-1β treatments, in particular on 10 DPI. Secretion of some pro-inflammatory plasma cytokines was dissipated in Nlrp3−/− compared to WT mice. IL-1β treatments elevated macrophage infiltration into infected crypts in Nlrp3−/− mice, suggesting that IL-1β may improve macrophage function, as exogenous administration of IL-1β increased phagocytosis of C. rodentium by peritoneal Nlrp3−/− macrophages in vitro. As well, the exogenous administration of IL-1β to WT peritoneal macrophages damaged the epithelial barrier of C. rodentium-infected polarized CMT-93 cells. Treatment of Nlrp3−/− mice with IL-1β seems to confer protection against C. rodentium infection by reducing colonization, protecting epithelial integrity, and improving macrophage activity, while extraneous IL-1β appeared to be detrimental to WT mice. Together, these findings highlight the importance of balanced cytokine responses as IL-1β improved bacterial clearance in Nlrp3−/− mice but increased tissue damage when given to WT mice.  相似文献   

12.
13.
Background The impact of STAT-3 expression on the apoptosis of human hepatomas cell SMMC-7721 line induced by X-ray and carbon ion irradiations was investigated. Methods Human hepatoma SMMC-7721 cells were irradiated with a carbon ion beam and X-ray. Cell survival was determined by a standard colony-forming assay. STAT-3 protein expression was analysed by Western Immunoblots. Cell cycle and apoptosis were performed by flow cytometry. Results The viability of SMMC-7721 cells decreased with increasing dose of the carbon ion beam, and the high-LET carbon ion beam led to the cells getting arrested at G2/M phase. Western Blot analyses show that STAT-3 expression increased with increasing radiation dose. The carbon ion irradiation induced cell apoptosis and significantly promoted the expression of STAT-3 gene compared with the X-ray irradiation. The apoptosis rate is correlated with the expression of STAT-3 in human hepatoma SMMC-7721 cells after exposure to different doses of X-ray and heavy ion beam. Conclusions Heavy ion irradiation increases the expression of STAT-3 gene, makes SMMC-7721 cells arrested at G2/M phase and increases cell apoptosis in comparison with that induced by low-LET X-ray. The STAT-3 expression may be regarded as a protected reaction when the cancerous cells suffer a strong stimulus such as high-LET irradiation. The interaction of STAT-3 expression and other cytokines in human hepatoma and the relationship between STAT-3 and radiation-induced apoptosis remain to be clarified in the future.  相似文献   

14.
15.
We used a gene knockout approach to elucidate the specific roles played by the Jun-N-terminal kinase (JNK) and NF-κB pathways downstream of TNF-α in the context of α(2) type I collagen gene (COL1A2) expression. In JNK1−/−-JNK2−/− (JNK−/−) fibroblasts, TNF-α inhibited basal COL1A2 expression but had no effect on TGF-β-driven gene transactivation unless jnk1 was introduced ectopically. Conversely, in NF-κB essential modulator−/− (NEMO−/−) fibroblasts, lack of NF-κB activation did not influence the antagonism exerted by TNF-α against TGF-β but prevented repression of basal COL1A2 gene expression. Similar regulatory mechanisms take place in dermal fibroblasts, as evidenced using transfected dominant-negative forms of MKK4 and IKK-α, critical kinases upstream of the JNK and NF-κB pathways, respectively. These results represent the first demonstration of an alternate usage of distinct signaling pathways by TNF-α to inhibit the expression of a given gene, COL1A2, depending on its activation state.  相似文献   

16.
Li J  Liu R  Lam KS  Jin LW  Duan Y 《Biophysical journal》2011,100(4):1076-1082
Deposition of amyloid fibrils, consisting primarily of Aβ40 and Aβ42 peptides, in the extracellular space in the brain is a major characteristic of Alzheimer''s disease (AD). We recently developed new (to our knowledge) drug candidates for AD that inhibit the fibril formation of Aβ peptides and eliminate their neurotoxicity. We performed all-atom molecular-dynamics simulations on the Aβ42 monomer at its α-helical conformation and a pentamer fibril fragment of Aβ42 peptide with or without LRL and fluorene series compounds to investigate the mechanism of inhibition. The results show that the active drug candidates, LRL22 (EC50 = 0.734 μM) and K162 (EC50 = 0.080 μM), stabilize hydrophobic core I of Aβ42 peptide (residues 17–21) to its α-helical conformation by interacting specifically in this region. The nonactive drug candidates, LRL27 (EC50 > 10 μM) and K182 (EC50 > 5 μM), have little to no similar effect. This explains the different behavior of the drug candidates in experiments. Of more importance, this phenomenon indicates that hydrophobic core I of the Aβ42 peptide plays a major mechanistic role in the formation of amyloid fibrils, and paves the way for the development of new drugs against AD.  相似文献   

17.
Nerve growth factor (NGF) is generated from a precursor, proNGF, that is proteolytically processed. NGF preferentially binds a trophic tyrosine kinase receptor, TrkA, while proNGF binds a neurotrophin receptor (NTR), p75NTR, that can have neurotoxic activity. Previously, we along with others showed that the soluble protein α2-macroglobulin (α2M) is neurotoxic. Toxicity is due in part to α2M binding to NGF and inhibiting trophic activity, presumably by preventing NGF binding to TrkA. However, the mechanisms remained unclear. Here, we show ex vivo and in vivo three mechanisms for α2M neurotoxicity. First, unexpectedly the α2M-NGF complexes do bind TrkA receptors but do not induce TrkA dimerization or activation, resulting in deficient trophic support. Second, α2M makes stable complexes with proNGF, conveying resistance to proteolysis that results in more proNGF and less NGF. Third, α2M-proNGF complexes bind p75NTR and are more potent agonists than free proNGF, inducing tumor necrosis factor alpha (TNF-α) production. Hence, α2M regulates proNGF/p75NTR positively and mature NGF/TrkA negatively, causing neuronal death ex vivo. These three mechanisms are operative in vivo, and α2M causes neurodegeneration in a p75NTR- and proNGF-dependent manner. α2M could be exploited as a therapeutic target, or as a modifier of neurotrophin signals.  相似文献   

18.
Decay-associated fluorescence spectra of the green alga Scenedesmus obliquus have been measured by single-photon timing with picosecond resolution in various states of light adaptation. The data have been analyzed by applying a global data analysis procedure. The amplitudes of the decay-associated spectra allow a determination of the relative antenna sizes of the photosystems. We arrive at the following conclusions: (a) The fluorescence kinetics of algal cells with open PS II centers (F0 level) have to be described by a sum of three exponential components. These decay components are attributed to photosystem (PS) I (τ ≈ 85 ps, λmaxem ≈ 695-700 nm), open PS II α-centers (τ ≈ 300 ps, λmaxem = 685 nm), and open PS II β-centers (τ ≈ 600 ps, λmaxem = 685 nm). A fourth component of very low amplitude (τ ≈ 2.2-2.3 ns, λmaxem = 685 nm) derives from dead chlorophyll. (b) At the Fmax level of fluorescence there are also three decay components. They originate from PS I with properties identical to those at the F0 level, from closed PS II α-centers (τ ≈ 2.2 ns, λmaxem = 685 nm) and from closed PS β-centers (τ ≈ 1.2 ns, λmaxem = 685 nm). (c) The major effect of light-induced state transitions on the fluorescence kinetics involves a change in the relative antenna size of α- and β-units brought about by the reversible migration of light-harvesting complexes between α-centers and β-centers. (d) A transition to state II does not measurably increase the direct absorption cross-section (antenna size) of PS I. Our data can be rationalized in terms of a model of the antenna organization that relates the effects of state transitions and light-harvesting complex phosphorylation with the concepts of PS II α,β-heterogeneity. We discuss why our results are in disagreement with those of a recent lifetime study of Chlorella by M. Hodges and I. Moya (1986, Biochim. Biophys. Acta., 849:193-202).  相似文献   

19.
Cell protection against different noxious stimuli like oxidative stress or chemical toxins plays a central role in the treatment of many diseases. The inducible heme oxygenase isoform, heme oxygenase-1 (HO-1), is known to protect cells against a variety of harmful conditions including apoptosis. Because a number of medium strong electrophiles from a series of α-X-substituted 2’,3,4,4’-tetramethoxychalcones (α-X-TMCs, X = H, F, Cl, Br, I, CN, Me, p-NO2-C6H4, Ph, p-OMe-C6H4, NO2, CF3, COOEt, COOH) had proven to activate Nrf2 resulting in HO-1 induction and inhibit NF-κB downstream target genes, their protective effect against staurosporine induced apoptosis and reactive oxygen species (ROS) production was investigated. RAW264.7 macrophages treated with 19 different chalcones (15 α-X-TMCs, chalcone, 2’-hydroxychalcone, calythropsin and 2’-hydroxy-3,4,4’-trimethoxychalcone) prior to staurosporine treatment were analyzed for apoptosis and ROS production, as well as HO-1 protein expression and enzyme activity. Additionally, Nrf2 and NF-κB activity was assessed. We found that amongst all tested chalcones only E-α-(4-methoxyphenyl)-2’,3,4,4''-tetramethoxychalcone (E-α-p-OMe-C6H4-TMC) demonstrated a distinct, statistically significant antiapoptotic effect in a dose dependent manner, showing no toxic effects, while its double bond isomer Z-α-p-OMe-C6H4-TMC displayed no significant activity. Also, E-α-p-OMe-C6H4-TMC induced HO-1 protein expression and increased HO-1 activity, whilst inhibition of HO-1 by SnPP-IX abolished its antiapoptotic effect. The only weakly electrophilic chalcone E-α-p-OMe-C6H4-TMC reduced the staurosporine triggered formation of ROS, while inducing the translocation of Nrf2 into the nucleus. Furthermore, staurosporine induced NF-κB activity was attenuated following E-α-p-OMe-C6H4-TMC treatment. Overall, E-α-p-OMe-C6H4-TMC demonstrated its effective cytoprotective potential via a non-toxic induction of HO-1 in RAW264.7 macrophages. The observed cytoprotective effect may partly be related to both, the activation of the Nrf2- and inhibition of the NF-κB pathway.  相似文献   

20.
We report the first activation study of the β-class carbonic anhydrase (CA, EC 4.2.1.1) encoded in the genome of the protozoan pathogen Trichomonas vaginalis, TvaCA1. Among 24 amino acid and amine activators investigated, derivatives incorporating a second carboxylic moiety, such as L-Asp, L- and D-Glu, were devoid of activating effects up to concentrations of 50 µM within the assay system, whereas the corresponding compounds with a CONH2 moiety, i.e. L-Gln and L-Asn showed modest activating effects, with activation constants in the range of 26.9 − 32.5 µM. Moderate activation was observed with L- and D-DOPA, histamine, dopamine, serotonin, (2-Aminoethyl)pyridine/piperazine and morpholine (KA‘s ranging between 8.3 and 14.5 µM), while the best activators were L-and D-Trp, L-and D-Tyr and 4-amino-Phe, which showed KA‘s ranging between 3.0 and 5.1 µM. Understanding in detail the activation mechanism of β-CAs may be relevant for the design of enzyme activity modulators with potential clinical significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号