首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Benthic foraminiferal faunas (> 63 μm) and stable isotopes from the last 15 kyr were studied in BENGAL programme (high-resolution temporal and spatial study of the BENthic biology and Geochemistry of a north-eastern Atlantic abyssal Locality) kasten core 13078#16 from the Porcupine Abyssal Plain, NE Atlantic (48°49.91 N, 16°29.94 W, water depth 4844 m). Changes occurred in the accumulation rates, species composition, diversity, and stable isotopes during the last 15 kyr. Today, the area is strongly influenced by seasonal inputs of phytodetritus following the spring blooms in surface water primary productivity. Variations in the relative abundance of the two most abundant species, Epistominella exigua and Alabaminella weddellensis, which today show significant increases in abundance with the presence of phytodetritus on the sea-floor, are interpreted as resulting from changes in the seasonality of productivity. Seasonal productivity was higher during the Holocene than during the last deglaciation and Younger Dryas, probably coinciding with the retreat of the polar front to higher latitudes. This hypothesis is consistent with simultaneous decreases in the percentage of the polar planktic foraminifera Neogloboquadrina pachyderma (s), and increases in the percentage of Globigerina bulloides, a warmer water planktic foraminifera indicative of phytoplankton blooms and enhanced productivity. The relative abundance of the ‘phytodetritus species’ (E. exigua and A. weddellensis) covary between 14.7 and 8.1 kyr, but not between 7.8 and 1.2 kyr. Major decreases in the numbers per gram and accumulation rates of planktic and benthic foraminifera occurred at ∼ 12–8.5 kyr and at ∼ 4 kyr which correspond to decreases in the % sediment coarse fraction and published data on inorganic carbon contents suggesting that dissolution may have increased at these times. Relationships between benthic foraminiferal faunas and benthic stable isotope records suggest no simple relationship between faunal abundances and test isotope chemistry. For example, the abundances of phytodetritus species do not show strong correlations with either the δ13C values of E. exigua or the Δδ13C E. exigua − P. wuellerstorfi record, which have previously been suggested as indicative of seasonality of productivity.  相似文献   

2.
Accumulation rates of individual species (SpecAR) and relative abundances (percentages) of benthic foraminifera of an AMS 14C-dated high resolution sediment core from the Norwegian Seas (water depth: 2707 m) provide a record of the faunal fluctuations from the last glacial maximum across the Weichselian deglaciation to the Holocene. During glacial times, the total foraminifera accumulation remains at a very low level (< 100 specimens cm−2 kyr−1) and is dominated by two endofaunal species: Oridorsalis umbonatus (Reuss) and Siphotextularia rolshauseni (Phleger and Parker) and reworked specimens of the genus Elphidium. The following deglaciation period exhibits an increase of the AR of the total fauna at 14 kyr B.P. The species distribution is marked by the last appearance of S. rolshauseni and the first postglacial appearance of suspension feeding Cibicidoides wuellerstorfi (Schwager) 13 kyr B.P. The absolute maximum of benthic foraminiferal AR (2750 spec cm−2 kyr−1 occurred near 9 kyr B.P. at the end of the deglaciation. This maximum also marks the re-appearance of the agglutinating species Cribrostomoides subglobosus (Sars). The post-glacial interval is characterized by a twofold reduction of the total accumulation of benthic foraminifera. The species distribution shows two new species: Ammobaculites agglutinans (d'Orbigny, at 6 kyr B.P.) and Epistominella exigua (Brady, at 3.5 kyr B.P.). The total AR indicates benthic activity during glacial times was at a low level. It was significantly higher during the Holocene with an abrupt increase of benthic foraminiferal abundance from 10 to 9 kyr B.P. The Stepwise re-invasion into the postglacial deep-sea environment maybe related to specific habitat preference.  相似文献   

3.
Environmental conditions and productivity changes in the southeastern Okhotsk Sea have been reconstructed for the last 20 ka using planktonic and benthic foraminiferal oxygen isotope records and calcium carbonate, organic carbon and opal content data from two sediment cores. Species variability in benthic foraminiferal and diatom assemblages provides additional palaeoceanographic evidence. AMS radiocarbon dating of the sediments and oxygen isotope stratigraphy serve as the basis for the age models of the cores for the last 20 14C kyr and for correlation between environmental variations in the Okhotsk Sea, and regional and global climate changes. Benthic foraminiferal assemblages in the two cores (depth 1590 and 1175 m) varied with time, so that we could recognise seven zones with different species composition. Changes in the benthic foraminiferal assemblages parallel major environmental and productivity variations. During the last glaciation, fluxes of organic matter to the sea floor showed strong seasonal variations, indicated by the presence of abundant A. weddellensis and infaunal Uvigerina spp. Benthic foraminiferal assemblages changed with warming at 12.5–11 and 10–8 14C kyr BP, when productivity blooms and high organic fluxes were coeval with global meltwater pulses 1A and 1B. Younger Dryas cooling caused a decline in productivity (11–10 kyr BP) affecting the benthic faunal community. Subsequent warming triggered intensive diatom production, opal accumulation and a strong oxygen deficiency, causing significant changes in benthic fauna assemblages from 5.26–4.4 kyr BP to present time.  相似文献   

4.
The oxygen- and carbon-isotope compositions of planktic and benthic foraminifera and calcareous nannofossils from Middle Oligocene-Early Miocene Equatorial Atlantic sediments (DSDP Site 354) indicate two important paleoceanographic changes, in the Late Oligocene (foraminiferal Zone P.21) and in the Early Miocene (foraminiferal Zone N.5). The first change, reflected by a δ18O increase of 1.45‰ inGlobigerina venezuelana, affected only intermediate pelagic and not surface, deep or bottom waters. The second change affected surface and intermediate waters, whereas deep and bottom waters showed only minor fluctuations. In the case of the former the isotope effect of the moderate ice accumulation on the Antarctic continent is amplified in the Equatorial Atlantic by changes in the circulation pattern. The latter paleoceanographic change, reflected by a significant increase in18O in both planktic and benthic forms (about 1.0‰ and 0.5‰, respectively), may have been caused by ice volume increase and temperature decrease. Both oxygen- and carbon-isotope compositions indicate a marked depth-habitat stratification for planktic foraminifera and calcareous nannofossils. Three different dwelling groups are recognized: shallowGlobigerinoides, Globoquadrina dehiscens, Globorotalia mayeri and nannofossils; intermediateGlobigerina venezuelana; and deepCatapsydrax dissimilis. The comparison of foraminifera and calcareous nannofossils suggests that the isotopic compositions of nannofossils are generally controlled by the same parameters which control the isotopic composition of shallow-dwelling foraminifera, but the former are more enriched in18O.  相似文献   

5.
We studied planktic and small benthic foraminifera from the Fuente Caldera section, southern Spain, across the Eocene–Oligocene transition. Benthic foraminifera indicate lower bathyal depths for the late Eocene and earliest Oligocene. Detailed high-resolution sampling and biostratigraphical data allowed us to date precisely layers with evidence for meteorite impact (Ni-rich spinel), which occur in the lower part of the planktic foraminiferal Globigerapsis index Biozone and in the middle part of the small benthic foraminiferal Cibicidoides truncanus (BB4) Biozone (middle Priabonian, late Eocene). Major turnovers of foraminifera occur at the Eocene/Oligocene boundary, only. The impact did not occur at a time of planktic or benthic foraminiferal extinction events, and the late Eocene meteorite impacts did thus not cause extinction of foraminifera. The most plausible cause of the Eocene/Oligocene boundary extinctions is the significant cooling, which generated glaciation in Antarctica and eliminated most of the warm and surface-dwelling foraminifera.  相似文献   

6.

Background

Fish fin is a widely used, non-lethal sample material in studies using stable isotopes to assess the ecology of fishes. However, fish fin is composed of two distinct tissues (ray and membrane) which may have different stable isotope values and are not homogeneously distributed within a fin. As such, estimates of the stable isotope values of a fish may vary according to the section of fin sampled.

Methods

To assess the magnitude of this variation, we analysed carbon (δ 13C), nitrogen (δ 15N), hydrogen (δ 2H) and oxygen (δ 18O) stable isotopes of caudal fin from juvenile, riverine stages of Atlantic salmon (Salmo salar) and brown trout (Salmo trutta). Individual fins were sub-sectioned into tip, mid and base, of which a further subset were divided into ray and membrane.

Findings

Isotope variation between fin sections, evident in all four elements, was primarily related to differences between ray and membrane. Base sections were13C depleted relative to tip (~ 1 ‰) with equivalent variation evident between ray and membrane. A similar trend was evident in δ 2H, though the degree of variation was far greater (~ 10 ‰). Base and ray sections were 18O enriched (~ 2 ‰) relative to tip and membrane, respectively. Ray and membrane sections displayed longitudinal variation in 15N mirroring that of composite fin (~ 1 ‰), indicating that variation in15N values was likely related to ontogenetic variation.

Conclusions

To account for the effects of intra-fin variability in stable isotope analyses we suggest that researchers sampling fish fin, in increasing priority, 1) also analyse muscle (or liver) tissue from a subsample of fish to calibrate their data, or 2) standardize sampling by selecting tissue only from the extreme tip of a fin, or 3) homogenize fins prior to analysis.  相似文献   

7.
《Marine Micropaleontology》2007,63(4):211-234
Two detailed records (NSF and 05NSC, Sidi Nasseur, Tunisia) across the Danian/Selandian (D/S) boundary were investigated for their micropaleontological content. Calcareous nannofossils and planktic foraminifera provided a biostratigraphic framework. The interval spans part of planktic foraminiferal Zone P2, Subzone P3a and part of Subzone P3b. This corresponds to calcareous nannoplankton Zone NP4. Using a more detailed nannofossil zonation the studied section spans part of Zone NTp6, Zone NTp7a and part of NTp7b. Quantitative ostracod and qualitative benthic foraminiferal data were used to characterize environmental changes across the D/S boundary. The two subsections have yielded a total of 50 ostracod taxa. The ostracod assemblage of the entire section belongs to the Southern Tethyan Type showing subtle but distinct changes up section. Based on statistical analysis of the quantitative ostracod data, faunal changes at a glauconitic maker bed (P3a/P3b boundary) were demonstrated. The local Reticulina proteros assemblage, with the typical species R. proteros, Oertliella vesiculosa and Cytheroptheron lekefense, is gradually replaced by the Protobuntonia nakkadii assemblage, with the typical species Cristaeleberis arabii, Xestoleberis tunisiensis, Cytheropteron sp. and P. nakkadii, across the glauconitic bed. The benthic foraminifera also demonstrated distinct changes at this marker bed. The changes in ostracods and foraminifera are related to changes in paleoproductivity and an overall relative sea-level fall.The lithological and faunal changes at the P3a/P3b zone boundary within the Sidi Nasseur sections seem to correspond to the D/S boundary in the type region in Danmark and are characterized by a significant hiatus, yielding this section not suitable as a GSSP candidate for this boundary.  相似文献   

8.
Although it is well known that the Paleocene/Eocene thermal maximum (PETM) coincided with a major benthic foraminiferal extinction event, the detailed pattern of the faunal turnover has not yet been clarified. Our high-resolution benthic foraminiferal and carbon isotope analyses at the low latitude Pacific Ocean Shatsky Rise have revealed the following record of major faunal transitions: (1) An initial turnover which involved the benthic foraminiferal extinction event (BFE). The BFE, marked by a sharp transition from Pre-extinction fauna to Disaster fauna represented by small-sized Bolivina gracilis, expresses the onset of the PETM and the abrupt extinction of about 30% of taxa. This faunal transition lasted about 45-74 kyr after the initiation of the PETM and was followed by: (2) the appearance of Opportunistic fauna represented by Quadrimorphina profunda, which existed for about 74-91 kyr after the initiation of the PETM. These two faunas, which appeared after the extinction event, are characterized by low diversity and dwarfism, possibly due to lowered oxygen condition and decreased surface productivity. The second pronounced turnover involved the gradual recovery from Opportunistic Fauna to the establishment of Recovery fauna, which coincided with the recovery about 83-91 kyr after its initiation.  相似文献   

9.
High-resolution biostratigraphic and quantitative studies of subtropical Pacific planktonic foraminiferal assemblages (Ocean Drilling Program, Leg 198 Shatsky Rise, Sites 1209 and 1210) are performed to analyse the faunal changes associated with the Paleocene–Eocene Thermal Maximum (PETM) at about 55.5 Ma. At Shatsky Rise, the onset of the PETM is marked by the abrupt onset of a negative carbon isotope excursion close to the contact between carbonate-rich ooze and overlying clay-rich ooze and corresponds to a level of poor foraminiferal preservation as a result of carbonate dissolution. Lithology, planktonic foraminiferal distribution and abundances, calcareous plankton and benthic events, and the negative carbon isotope excursion allow precise correlation of the two Shatsky Rise records. Results from quantitative analyses show that Morozovella dominates the assemblages and that its maximum relative abundance is coincident with the lowest δ13C values, whereas subbotinids are absent in the interval of maximum abundance of Morozovella. The excursion taxa (Acarinina africana, Acarinina sibaiyaensis, and Morozovella allisonensis) first appear at the base of the event. Comparison between the absolute abundances of whole specimens and fragments of genera demonstrate that the increase in absolute abundance of Morozovella and the decrease of Subbotina are not an artifact of selective dissolution. Moreover, the shell fragmentation data reveal Subbotina to be the more dissolution-susceptible taxon. The upward decrease in abundance of Morozovella species and the concomitant increase in test size of Morozovella velascoensis are not controlled by dissolution. These changes could be attributed to the species' response to low nutrient supply in the surface waters and to concomitant changes in the physical and chemical properties of the seawater, including increased surface stratification and salinity.Comparison of the planktonic foraminiferal changes at Shatsky Rise to those from other PETM records (Sites 865 and 690) highlights significant similarities, such as the decline of Subbotina at the onset of the event, and discrepancies, including the difference in abundance of the excursion taxa. The observed planktonic foraminifera species response suggests a warm–oligotrophic scenario with a high degree of complexity in the ocean structure.  相似文献   

10.
Nautilus is often used as an analogue for the ecology and behavior of extinct externally shelled cephalopods. Nautilus shell grows quickly, has internal growth banding, and is widely believed to precipitate aragonite in oxygen isotope equilibrium with seawater. Pieces of shell from a wild-caught Nautilus macromphalus from New Caledonia and from a Nautilus belauensis reared in an aquarium were cast in epoxy, polished, and then imaged. Growth bands were visible in the outer prismatic layer of both shells. The thicknesses of the bands are consistent with previously reported daily growth rates measured in aquarium reared individuals. In situ analysis of oxygen isotope ratios using secondary ion mass spectrometry (SIMS) with 10 μm beam-spot size reveals inter- and intra-band δ18O variation. In the wild-caught sample, a traverse crosscutting 45 growth bands yielded δ18O values ranging 2.5‰, from +0.9 to -1.6 ‰ (VPDB), a range that is larger than that observed in many serial sampling of entire shells by conventional methods. The maximum range within a single band (~32 μm) was 1.5‰, and 27 out of 41 bands had a range larger than instrumental precision (±2 SD = 0.6‰). The results from the wild individual suggest depth migration is recorded by the shell, but are not consistent with a simple sinusoidal, diurnal depth change pattern. To create the observed range of δ18O, however, this Nautilus must have traversed a temperature gradient of at least ~12°C, corresponding to approximately 400 m depth change. Isotopic variation was also measured in the aquarium-reared sample, but the pattern within and between bands likely reflects evaporative enrichment arising from a weekly cycle of refill and replacement of the aquarium water. Overall, this work suggests that depth migration behavior in ancient nektonic mollusks could be elucidated by SIMS analysis across individual growth bands.  相似文献   

11.
The Ilerdian is a well-established Tethyan marine stage, which corresponds to an important phase in the evolution of larger foraminifera not represented in the type-area of the classical Northwest-European stages. This biostratigraphic restudy of its parastratotype in the Campo Section (northeastern Spain) based on planktic foraminifera, calcareous nannofossils, dinoflagellate cysts and the distribution of the stable isotopes ∂13C and ∂18O is an attempt to correlate the Paleocene/Eocene boundary based on a characteristic carbon isotope excursion (CIE) marking the onset of the Initial Eocene Thermal Maximum (IETM) and the Ilerdian stage. The base of this ∂13C excursion has been chosen as the criterion for the recent proposal of the Global Stratotype Section and Point (GSSP) of the base of the Eocene (= base of the Ypresian) in the Dababiya Section (Egypt) to which an age of 54.9 Ma has been attributed. This level is also characterized by a marked extinction among the deep-water benthic foraminifera (Benthic Foraminifera Extinction Event, BFEE), a flood of representatives of the planktic foraminiferal genus Acarinina and the acme of dinoflagellate cysts of the genus Apectodinium. In the Campo Section, detailed biozonations (planktic foraminifera, calcareous nannofossils, dinoflagellate cysts) are recognized in the Lower and Middle Ilerdian. The correlation with the Ypresian stratotype is based on dinoflagellate cysts and calcareous nannofossils. The base of the Ilerdian is poor in planktic microfossils and its precise correlation with the redefined Paleocene/Eocene boundary remains uncertain.  相似文献   

12.
Stable isotope analysis (SIA) is an important tool for investigation of animal dietary habits for determination of feeding niche. Ideally, fresh samples should be used for isotopic analysis, but logistics frequently demands preservation of organisms for analysis at a later time. The goal of this study was to establish the best methodology for preserving forest litter-dwelling crickets for later SIA analysis without altering results. We collected two cricket species, Phoremia sp. and Mellopsis doucasae, from which we prepared 70 samples per species, divided among seven treatments: (i) freshly processed (control); preserved in fuel ethanol for (ii) 15 and (iii) 60 days; preserved in commercial ethanol for (iv) 15 and (v) 60 days; fresh material frozen for (vi) 15 and (vii) 60 days. After oven drying, samples were analyzed for δ 15N, δ 13C values, N(%), C(%) and C/N atomic values using continuous flow isotope ratio mass spectrometry. All preservation methods tested, significantly impacted δ 13C and δ 15N and C/N atomic values. Chemical preservatives caused δ 13C enrichment as great as 1.5‰, and δ 15N enrichment as great as 0.9‰; the one exception was M. doucasae stored in ethanol for 15 days, which had δ 15N depletion up to 1.8‰. Freezing depleted δ 13C and δ 15N by up to 0.7 and 2.2‰, respectively. C/N atomic values decreased when stored in ethanol, and increased when frozen for 60 days for both cricket species. Our results indicate that all preservation methods tested in this study altered at least one of the tested isotope values when compared to fresh material (controls). We conclude that only freshly processed material provides adequate SIA results for litter-dwelling crickets.  相似文献   

13.
The δ PDB13C values have been determined for the cellular constituents and metabolic intermediates of autotrophically grown Chromatium vinosum. The isotopic composition of the HCO3- in the medium and the carbon isotopic composition of the bacterial cells change with the growth of the culture. The δ PDB13C value of the HCO3- in the media changes from an initial value of −6.6‰ to +8.1‰ after 10 days of bacterial growth and the δ PDB13C value of the bacterial cells change from −37.5‰ to −29.2‰ in the same period. The amount of carbon isotope fractionation during the synthesis of hexoses by the photoassimilation of CO2 has a range of −15.5‰ at time zero to −22.0‰ after 10 days. This range of fractionation compares to the range of carbon isotope fractionation for the synthesis of sugars from CO2 by ribulose 1,5-diphosphate carboxylase and the Calvin cycle.  相似文献   

14.
Abundance patterns of planktic and benthic foraminifera from a tropical Atlantic drill site (Ocean Drilling Program Site 1259, Demerara Rise, Suriname margin) display a pronounced 400 kyr cyclicity, uninterrupted throughout our  87.8–92 Ma record, between two clearly distinguishable assemblages: (1) a pelagic foraminifer fauna, which represents a deep oxygen minimum zone, and (2) another assemblage representing a shallow oxygen minimum zone where the foraminifer fauna is dominated by a higher diversity population of mostly small clavate and biserial species common in epicontinental seas. The cyclic changes in the long eccentricity band (400 kyr) between these two assemblages are proposed to reflect changes in the mean latitudinal position of the Intertropical Convergence Zone (ITCZ). Associated fluctuations in precipitation and trade wind strength may have influenced the upwelling regime at Demerara Rise leading to the observed cyclicity of planktic foraminiferal assemblages. The severe Turonian to Coniacian paleoclimatic and paleoceanographic changes in the Atlantic Ocean (e.g., gateway opening, cooling, and glaciation), however, seem to have no influence on the composition of tropical planktic foraminiferal faunas. There is no apparent relationship between foraminifer abundances and a major deflection in the stable isotope record interpreted elsewhere as a sign of the growth and decay of a large polar ice sheet.  相似文献   

15.
In October 2010, the vertical distribution, biodiversity and maturity stages of Chaetognatha species were investigated at four stations located off Walvis Bay, Namibia. Seventeen species were detected and classified as pelagic, shallow-mesopelagic, deep-mesopelagic and bathypelagic species based upon the weighted mean depth derived from their average vertical distribution. High abundances of Chaetognatha were found in the upper 100 m at all stations of the Walvis Bay transect with a maximum value of 20837 ind. 1000 m−3 at the outer shelf station near the surface. The community was dominated by species of the Serratodentata group. Furthermore, the distribution of Chaetognatha did not seem to be influenced by low oxygen concentrations. Stable isotope ratios of carbon and nitrogen in Chaetognatha were determined for seven different areas located off northern Namibia. The values of δ15N ranged from 6.05 ‰ to 11.39 ‰, while the δ13C values varied between −23.89 ‰ and −17.03 ‰. The highest values for δ15N were observed at the Walvis Bay shelf break station. The lowest δ13C values were found at the Rocky Point offshore station, which was statistically different from all other areas. Stable isotopes of carbon and nitrogen were determined for four taxa (Sagitta minima, Planctonis group, Sagitta enflata, Sagitta decipiens). In this case, the δ15N values ranged from 6.17 ‰ to 10.38 ‰, whereas the δ13C values varied from −22.70 ‰ to −21.56 ‰. The lowest δ15N values were found for S. minima. The C- and N-content revealed maximum C-values for S. decipiens and maximum N-values for the Planctonis group. The C:N ratio of Chaetognatha ranged between 5.25 and 6.20. Overall, Chaetognatha are a diverse group in the pelagic food web of the Benguela Upwelling System and act as competitors of fish larvae and jelly fish by preying on copepods.  相似文献   

16.
Oxygen and carbon isotopes of foraminifera were analyzed in core PC4, water depth 1366 m, off northern Japan, near the east side of the Tsugaru Strait (130 m depth) between the open northwestern Pacific Ocean and the Japan Sea. At present, the site is at the confluence of the Tsugaru Warm Current which flows eastwards out of the Sea of Japan through the Tsugaru Strait, the subarctic Oyashio Current and the subtropic Kuroshio Current. During the Last Glacial Maximum (LGM), the Oyashio Current penetrated further to the South and outflow from the Japan Sea was restricted by glacio-eustatic sea level lowering.The isotopic values of the planktic foraminifer Neogloboquadrina pachyderma (sinistral) and the benthic foraminifer Uvigerina akitaensis reflect rapid millennial-scale paleoceanographic changes between 34 and 6 ka. Hydrographic changes during deglaciation were related to events at high northern latitudes, but Holocene hydrographic changes were dominated by local effects, such as the development of the outflow of the Tsugaru Warm Current. High values of planktic δ18O during the LGM reflect the southward advance of the Oyashio Current. These values decreased by 0.3‰ from 19.4 to 18.9 ka, then increased by 0.5‰ at 18 ka, with highest values between 17.5 and 15 ka. The δ18O oscillations between 19.4 and 15 ka may reflect millennial-scale warm–cold oscillations during Heinrich event 1. Planktic microfossil data indicate that cold Oyashio waters flowed from the northwestern Pacific into the Japan Sea via the Tsugaru Strait between 17 and 16 ka, consistent with the occurrence of the highest planktic δ18O values in core PC4. Planktic δ18O values rapidly decreased by 0.9‰ at 15 ka, possibly reflecting the effects of both a rapid increase in fresh water flux and rising temperatures in the subarctic North Pacific. During the Younger Dryas, cold event planktic δ18O values increased by 0.5‰, followed by a gradual decrease by 1‰ from the early to middle Holocene, reflecting a gradual increase in eastward outflow via the Tsugaru Strait with sea level rise. Both planktic and benthic foraminiferal δ13C values oscillated between 34 and 10 ka, at relatively large amplitudes (about 0.5‰), then remained relatively stable during the last 10 kyr. Several negative planktic and benthic ( − 0.7‰) δ13C excursions were present in sediment dated between the precipitation of secondary carbonates during episodic methane release possibly associated with methane release from continental margin sediments.  相似文献   

17.
Marker events to define the stratotype for the base of the Lutetian Stage are poorly defined. To elucidate such markers and characterize palaeoenvironmental turnovers, we conducted an integrated study of the Ypresian–Lutetian (Y–L; early-middle Eocene) transition at the continuous Agost section (southeastern Spain). This 115-m-thick section, which consists of hemipelagic marls intercalated with hemipelagic limestones and turbidity sandstones, spans from planktic foraminiferal Zones P9 to P12 (E7 to E10) and calcareous nannofossil Zones CP11 to CP14a (NP13 to NP16). We report quantitative analyses of planktic and benthic foraminifera and characterization of trace fossil assemblages that are integrated with mineralogical analyses.Relative to benthic forms, planktic foraminifera constitute more than 80% of the foraminiferal assemblage. We found that the most abundant planktic species belong to the genera Acarinina, Morozovella, Subbotina, and Pseudohastigerina. Benthic foraminiferal assemblages are strongly dominated by calcareous taxa, with bolivinids being the most abundant group. Trace fossils showed the succession Nereites–Zoophycos–Cruziana ichnofacies throughout the Agost section. In addition to changes in palaeobathymetry, we deduced that quantity and quality of organic matter flux influenced by turbidity currents are the main factors controlling benthic assemblages. We distinguished several mineralogical boundaries at the Agost section, each associated with lithological facies changes suggesting a change in provenance rather than changes in weathering conditions. We made three observations that indicate an increase in sea water temperatures or a possible hyperthermal event related to the first occurrence (FO) of hantkeninids (i.e., the P9/P10 boundary): 1) a distinct peak in abundance of the benthic foraminifera Aragonia aragonensis; 2) the low-diversity of benthic foraminiferal assemblages; and 3) the occurrence of the planktic foraminifera Clavigerinella eocenica and Clavigerinella jarvisi. Benthic foraminiferal and trace fossil assemblages also suggest an associated relative fall of sea level from upper-middle bathyal to sublittoral depths. These characteristic indicators point to this boundary as a promising feature for defining the Global Stratotype Section and Point (GSSP) for the base of the Lutetian Stage. However, complementary magnetobiostratigraphic studies carried out at the Agost section point to the FO of calcareous nannofossil Blackites inflatus (base of CP12b), which occurred 3–5 Myr before the P9/P10 boundary, as the most suitable primary marker event. Whatever the marker event chosen, all the successive events recognized at the Agost section allow a complete characterization of the Y–L transition, and thus this section may be a suitable candidate to locate the GSSP for the Ypresian/Lutetian boundary.  相似文献   

18.
Over the past forty years, stable isotope analysis of bone (and tooth) collagen and hydroxyapatite has become a mainstay of archaeological and paleoanthropological reconstructions of paleodiet and paleoenvironment. Despite this method''s frequent use across anthropological subdisciplines (and beyond), the present work represents the first attempt at gauging the effects of inter-laboratory variability engendered by differences in a) sample preparation, and b) analysis (instrumentation, working standards, and data calibration). Replicate analyses of a 14C-dated ancient human bone by twenty-one archaeological and paleoecological stable isotope laboratories revealed significant inter-laboratory isotopic variation for both collagen and carbonate. For bone collagen, we found a sizeable range of 1.8‰ for δ13Ccol and 1.9‰ for δ15Ncol among laboratories, but an interpretatively insignificant average pairwise difference of 0.2‰ and 0.4‰ for δ13Ccol and δ15Ncol respectively. For bone hydroxyapatite the observed range increased to a troublingly large 3.5‰ for δ13Cap and 6.7‰ for δ18Oap, with average pairwise differences of 0.6‰ for δ13Cap and a disquieting 2.0‰ for δ18Oap. In order to assess the effects of preparation versus analysis on isotopic variability among laboratories, a subset of the samples prepared by the participating laboratories were analyzed a second time on the same instrument. Based on this duplicate analysis, it was determined that roughly half of the isotopic variability among laboratories could be attributed to differences in sample preparation, with the other half resulting from differences in analysis (instrumentation, working standards, and data calibration). These findings have serious implications for choices made in the preparation and extraction of target biomolecules, the comparison of results obtained from different laboratories, and the interpretation of small differences in bone collagen and hydroxyapatite isotope values. To address the issues arising from inter-laboratory comparisons, we devise a novel measure we term the Minimum Meaningful Difference (MMD), and demonstrate its application.  相似文献   

19.
Carbon isotope fractionation by structurally and catalytically distinct ribulose-1,5-bisphosphate carboxylases from one eucaryotic and four procaryotic organisms has been measured under nitrogen. The average fractionation for 40 experiments was −34.1 ‰ with respect to the δ13C of the dissolved CO2 used, although average fractionations for each enzyme varied slightly: spinach carboxylase, −36.5 ‰; Hydrogenomonas eutropha, −38.7 ‰; Agmenellum quadruplicatum, −32.2 ‰; Rhodospirillum rubrum, −32.1 ‰; Rhodopseudomonas sphaeroides peak I carboxylase, −31.4 ‰; and R. sphaeroides peak II carboxylase, −28.3 ‰. The carbon isotope fractionation value was largely independent of method of enzyme preparation, purity, or reaction temperature, but in the case of spinach ribulose-1,5-bisphosphate carboxylase fractionation, changing the metal cofactor used for enzyme activation had a distinct effect on the fractionation value. The fractionation value of −36.5 ‰ with Mg2+ as activator shifted to −29.9 ‰ with Ni2+ as activator and to −41.7 ‰ with Mn2+ as activator. These dramatic metal effects on carbon isotope fractionation may be useful in examining the catalytic site of the enzyme.  相似文献   

20.
The trophic ecology of epibenthic mesopredators is not well understood in terms of prey partitioning with sympatric elasmobranchs or their effects on prey communities, yet the importance of omnivores in community trophic dynamics is being increasingly realised. This study used stable isotope analysis of 15N and 13C to model diet composition of wild southern stingrays Dasyatis americana and compare trophic niche space to nurse sharks Ginglymostoma cirratum and Caribbean reef sharks Carcharhinus perezi on Glovers Reef Atoll, Belize. Bayesian stable isotope mixing models were used to investigate prey choice as well as viable Diet-Tissue Discrimination Factors for use with stingrays. Stingray δ15N values showed the greatest variation and a positive relationship with size, with an isotopic niche width approximately twice that of sympatric species. Shark species exhibited comparatively restricted δ15N values and greater δ13C variation, with very little overlap of stingray niche space. Mixing models suggest bivalves and annelids are proportionally more important prey in the stingray diet than crustaceans and teleosts at Glovers Reef, in contrast to all but one published diet study using stomach contents from other locations. Incorporating gut contents information from the literature, we suggest diet-tissue discrimination factors values of Δ15N ≊ 2.7‰ and Δ13C ≊ 0.9‰ for stingrays in the absence of validation experiments. The wide trophic niche and lower trophic level exhibited by stingrays compared to sympatric sharks supports their putative role as important base stabilisers in benthic systems, with the potential to absorb trophic perturbations through numerous opportunistic prey interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号