首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Curcumin, traditionally used as food and medicinal purposes, has recently been reported to have protective efficacy against hypoxia. Hypoxia is one of the important reactive factors in tumor metastasis, which is a key problem in clinical thyroid cancer therapy. In present study, we investigate the anti-metastatic effect of curcumin on the K1 papillary thyroid cancer cells as well as its potential mechanisms. The results show that curcumin effectively inhibits hypoxia-induced reactive oxygen species (ROS) upregulation and significantly decreases the mRNA and protein expression levels of hypoxia-inducible factor-1α (HIF-1α) in K1 cells. Curcumin also decreases the DNA binding ability of HIF-1α to hypoxia response element (HRE). Furthermore, curcumin enhances E-cadherin expression, inhibits metalloproteinase-9 (MMP-9) enzyme activity, and weakens K1 cells migration under hypoxic conditions. In summary, these results indicate that curcumin possesses a potent anti-metastatic effect and might be an effective tumoristatic agent for the treatment of aggressive papillary thyroid cancers.  相似文献   

2.

Background

11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activates glucocorticoid locally in liver and fat tissues to aggravate metabolic syndrome. 11β-HSD1 selective inhibitor can be used to treat metabolic syndrome. Curcumin and its derivatives as selective inhibitors of 11β-HSD1 have not been reported.

Methodology

Curcumin and its 12 derivatives were tested for their potencies of inhibitory effects on human and rat 11β-HSD1 with selectivity against 11β-HSD2. 200 mg/kg curcumin was gavaged to adult male Sprague-Dawley rats with high-fat-diet-induced metabolic syndrome for 2 months.

Results and Conclusions

Curcumin exhibited inhibitory potency against human and rat 11β-HSD1 in intact cells with IC50 values of 2.29 and 5.79 µM, respectively, with selectivity against 11β-HSD2 (IC50, 14.56 and 11.92 µM). Curcumin was a competitive inhibitor of human and rat 11β-HSD1. Curcumin reduced serum glucose, cholesterol, triglyceride, low density lipoprotein levels in high-fat-diet-induced obese rats. Four curcumin derivatives had much higher potencies for Inhibition of 11β-HSD1. One of them is (1E,4E)-1,5-bis(thiophen-2-yl) penta-1,4-dien-3-one (compound 6), which had IC50 values of 93 and 184 nM for human and rat 11β-HSD1, respectively. Compound 6 did not inhibit human and rat kidney 11β-HSD2 at 100 µM. In conclusion, curcumin is effective for the treatment of metabolic syndrome and four novel curcumin derivatives had high potencies for inhibition of human 11β-HSD1 with selectivity against 11β-HSD2.  相似文献   

3.
Helicobacter pylori infection is one of the most common infections worldwide and is associated with gastric diseases. Virulence factors such as VacA and CagA have been shown to increase the risk of these diseases. Studies have suggested a causal role of CagA EPIYA-C in gastric carcinogenesis and this factor has been shown to be geographically diverse. We investigated the number of CagA EPIYA motifs and the vacA i genotypes in H. pylori strains from asymptomatic children. We included samples from 40 infected children (18 females and 22 males), extracted DNA directly from the gastric mucus/juice (obtained using the string procedure) and analysed the DNA using polymerase chain reaction and DNA sequencing. The vacA i1 genotype was present in 30 (75%) samples, the i2 allele was present in nine (22.5%) samples and both alleles were present in one (2.5%) sample. The cagA-positive samples showed distinct patterns in the 3’ variable region of cagA and 18 of the 30 (60%) strains contained 1 EPIYA-C motif, whereas 12 (40%) strains contained two EPIYA-C motifs. We confirmed that the studied population was colonised early by the most virulent H. pylori strains, as demonstrated by the high frequency of the vacA i1 allele and the high number of EPIYA-C motifs. Therefore, asymptomatic children from an urban community in Fortaleza in northeastern Brazil are frequently colonised with the most virulent H. pylori strains.  相似文献   

4.
The epithelial sodium channel is a multimeric protein formed by three homologous subunits: α, β, and γ; each subunit contains only two transmembrane domains. The level of expression of each of the subunits is markedly different in various Na+ absorbing epithelia raising the possibility that channels with different subunit composition can function in vivo. We have examined the functional properties of channels formed by the association of α with β and of α with γ in the Xenopus oocyte expression system using two-microelectrode voltage clamp and patch-clamp techniques. We found that αβ channels differ from αγ channels in the following functional properties: (a) αβ channels expressed larger Na+ than Li+ currents (INa+/ILi+ 1.2) whereas αγ channels expressed smaller Na+ than Li+ currents (INa+/ILi+ 0.55); (b) the Michaelis Menten constants (K m) of activation of current by increasing concentrations of external Na+ and Li+ of αβ channels were larger (K m > 180 mM) than those of αγ channels (K m of 35 and 50 mM, respectively); (c) single channel conductances of αβ channels (5.1 pS for Na+ and 4.2 pS for Li+) were smaller than those of αγ channels (6.5 pS for Na+ and 10.8 pS for Li+); (d) the half-inhibition constant (K i) of amiloride was 20-fold larger for αβ channels than for αγ channels whereas the K i of guanidinium was equal for both αβ and αγ. To identify the domains in the channel subunits involved in amiloride binding, we constructed several chimeras that contained the amino terminus of the γ subunit and the carboxy terminus of the β subunit. A stretch of 15 amino acids, immediately before the second transmembrane domain of the β subunit, was identified as the domain conferring lower amiloride affinity to the αβ channels. We provide evidence for the existence of two distinct binding sites for the amiloride molecule: one for the guanidium moiety and another for the pyrazine ring. At least two subunits α with β or γ contribute to these binding sites. Finally, we show that the most likely stoichiometry of αβ and αγ channels is 1α:1β and 1α:1γ, respectively.  相似文献   

5.
6.
Rift Valley fever virus (RVFV) is an arbovirus that is classified as a select agent, an emerging infectious virus, and an agricultural pathogen. Understanding RVFV-host interactions is imperative to the design of novel therapeutics. Here, we report that an infection by the MP-12 strain of RVFV induces phosphorylation of the p65 component of the NFκB cascade. We demonstrate that phosphorylation of p65 (serine 536) involves phosphorylation of IκBα and occurs through the classical NFκB cascade. A unique, low molecular weight complex of the IKK-β subunit can be observed in MP-12-infected cells, which we have labeled IKK-β2. The IKK-β2 complex retains kinase activity and phosphorylates an IκBα substrate. Inhibition of the IKK complex using inhibitors impairs viral replication, thus alluding to the requirement of an active IKK complex to the viral life cycle. Curcumin strongly down-regulates levels of extracellular infectious virus. Our data demonstrated that curcumin binds to and inhibits kinase activity of the IKK-β2 complex in infected cells. Curcumin partially exerts its inhibitory influence on RVFV replication by interfering with IKK-β2-mediated phosphorylation of the viral protein NSs and by altering the cell cycle of treated cells. Curcumin also demonstrated efficacy against ZH501, the fully virulent version of RVFV. Curcumin treatment down-regulated viral replication in the liver of infected animals. Our data point to the possibility that RVFV infection may result in the generation of novel versions of host components (such as IKK-β2) that, by virtue of altered protein interaction and function, qualify as unique therapeutic targets.  相似文献   

7.
Large conductance Ca2+-activated potassium channels (BK) are targets for research that explores therapeutic means to various diseases, owing to the roles of the channels in mediating multiple physiological processes in various cells and tissues. We investigated the pharmacological effects of curcumin, a compound isolated from the herb Curcuma longa, on BK channels. As recorded by whole-cell patch-clamp, curcumin increased BK (α) and BK (α+β1) currents in transfected HEK293 cells as well as the current density of BK in A7r5 smooth muscle cells in a dose-dependent manner. By incubating with curcumin for 24 hours, the current density of exogenous BK (α) in HEK293 cells and the endogenous BK in A7r5 cells were both enhanced notably, though the steady-state activation of the channels did not shift significantly, except for BK (α+β1). Curcumin up-regulated the BK protein expression without changing its mRNA level in A7r5 cells. The surface expression and the half-life of BK channels were also increased by curcumin in HEK293 cells. These effects of curcumin were abolished by MG-132, a proteasome inhibitor. Curcumin also increased ERK 1/2 phosphorylation, while inhibiting ERK by U0126 attenuated the curcumin-induced up-regulation of BK protein expression. We also observed that the curcumin-induced relaxation in the isolated rat aortic rings was significantly attenuated by paxilline, a BK channel specific blocker. These results show that curcumin enhances the activity of the BK channels by interacting with BK directly as well as enhancing BK protein expression through inhibiting proteasomal degradation and activating ERK signaling pathway. The findings suggest that curcumin is a potential BK channel activator and provide novel insight into its complicated pharmacological effects and the underlying mechanisms.  相似文献   

8.
9.
Translocation of the Helicobacter pylori (Hp) cytotoxin-associated gene A (CagA) effector protein via the cag-Type IV Secretion System (T4SS) into host cells is a major risk factor for severe gastric diseases, including gastric cancer. However, the mechanism of translocation and the requirements from the host cell for that event are not well understood. The T4SS consists of inner- and outer membrane-spanning Cag protein complexes and a surface-located pilus. Previously an arginine-glycine-aspartate (RGD)-dependent typical integrin/ligand type interaction of CagL with α5β1 integrin was reported to be essential for CagA translocation. Here we report a specific binding of the T4SS-pilus-associated components CagY and the effector protein CagA to the host cell β1 Integrin receptor. Surface plasmon resonance measurements revealed that CagA binding to α5β1 integrin is rather strong (dissociation constant, KD of 0.15 nM), in comparison to the reported RGD-dependent integrin/fibronectin interaction (KD of 15 nM). For CagA translocation the extracellular part of the β1 integrin subunit is necessary, but not its cytoplasmic domain, nor downstream signalling via integrin-linked kinase. A set of β1 integrin-specific monoclonal antibodies directed against various defined β1 integrin epitopes, such as the PSI, the I-like, the EGF or the β-tail domain, were unable to interfere with CagA translocation. However, a specific antibody (9EG7), which stabilises the open active conformation of β1 integrin heterodimers, efficiently blocked CagA translocation. Our data support a novel model in which the cag-T4SS exploits the β1 integrin receptor by an RGD-independent interaction that involves a conformational switch from the open (extended) to the closed (bent) conformation, to initiate effector protein translocation.  相似文献   

10.
Curcumin, a selective phosphorylase kinase inhibitor, is a naturally occurring phytochemical present in turmeric. Curcumin has been confirmed to have anti-inflammatory properties in addition to the ability to decrease the expression of pro-inflammatory cytokines in keratinocytes. The interleukin-23 (IL-23)/IL-17A cytokine axis plays a critical role in the pathogenesis of psoriasis. Here, we report that topical use of a curcumin gel formulation strongly inhibited imiquimod (IMQ)-induced psoriasis-like inflammation, the development of which was based on the IL-23/IL-17A axis. IMQ-induced epidermal hyperplasia and inflammation in BALB/c mouse ear was significantly inhibited following curcumin treatment. Real-time PCR showed that mRNA levels of IL-17A, IL-17F, IL-22, IL-1β, IL-6 and TNF-α cytokines were decreased significantly by curcumin in ear skin, an effect similar to that of clobetasol. In addition, we found that curcumin may enhance the proliferation of epidermis γδ T cells but inhibit dermal γδ T cell proliferation. We inferred that curcumin was capable of impacting the IL-23/IL-17A axis by inhibiting IL-1β/IL-6 and then indirectly down-regulating IL-17A/IL-22 production. In conclusion, curcumin can relieve the IMQ-induced psoriasis-like inflammation in a mouse model, similar to the effects of clobetasol. Therefore, we have every reason to expect that curcumin will be used in the treatment of psoriasis in the future.  相似文献   

11.
12.
Tubulointerstitial fibrosis (TIF) is the final common pathway in the end-stage renal disease. Epithelial-to-mesenchymal transition (EMT) is considered a major contributor to the TIF by increasing the number of myofibroblasts. Curcumin, a polyphenolic compound derived from rhizomes of Curcuma, has been shown to possess potent anti-fibrotic properties but the mechanism remains elusive. We found that curcumin inhibited the EMT as assessed by reduced expression of α-SMA and PAI-1, and increased E-cadherin in TGF-β1 treated proximal tubular epithelial cell HK-2 cells. Both of the conventional TGF-β1/Smad pathway and non-Smad pathway were investigated. Curcumin reduced TGF-β receptor type I (TβR-I) and TGF-β receptor type II (TβR II), but had no effect on phosphorylation of Smad2 and Smad3. On the other hand, in non-Smad pathway curcumin reduced TGF-β1-induced ERK phosphorylation and PPARγ phosphorylation, and promoted nuclear translocation of PPARγ. Further, the effect of curcumin on α-SMA, PAI-1, E-cadherin, TβR I and TβR II were reversed by ERK inhibitor U0126 or PPARγ inhibitor BADGE, or PPARγ shRNA. Blocking PPARγ signaling pathway by inhibitor BADGE or shRNA had no effect on the phosphorylation of ERK whereas the suppression of ERK signaling pathway inhibited the phosphorylation of PPARγ. We conclude that curcumin counteracted TGF-β1-induced EMT in renal tubular epithelial cells via ERK-dependent and then PPARγ-dependent pathway.  相似文献   

13.
5-Fluorouracil (5-FU) is the first rationally designed antimetabolite, which achieves its therapeutic efficacy through inhibition of the enzyme thymidylate synthase (TS), which is essential for the synthesis and repair of DNA. However, prolonged exposure to 5-FU induces TS overexpression, which leads to 5-FU resistance in cancer cells. Several studies have identified curcumin as a potent chemosensitizer against chemoresistance induced by various chemotherapeutic drugs. In this study, we report for the first time, with mechanism-based evidences, that curcumin can effectively chemosensitize breast cancer cells to 5-FU, thereby reducing the toxicity and drug resistance. We found that 10 μM 5-FU and 10 μM curcumin induces a synergistic cytotoxic effect in different breast cancer cells, independent of their receptor status, through the enhancement of apoptosis. Curcumin was found to sensitize the breast cancer cells to 5-FU through TS-dependent downregulation of nuclear factor-κB (NF-κB), and this observation was confirmed by silencing TS and inactivating NF-κB, both of which reduced the chemosensitizing efficacy of curcumin. Silencing of TS suppressed 5-FU-induced NF-κB activation, whereas inactivation of NF-κB did not affect 5-FU-induced TS upregulation, confirming that TS is upstream of NF-κB and regulates the activation of NF-κB in 5-FU-induced signaling pathway. Although Akt/PI3kinase and mitogen-activated protein kinase pathways are activated by 5-FU and downregulated by curcumin, they do not have any role in regulating the synergism. As curcumin is a pharmacologically safe and cost-effective compound, its use in combination with 5-FU may improve the therapeutic index of 5-FU, if corroborated by in vivo studies and clinical trials.  相似文献   

14.
Amyloid β (Aβ) fibrillar deposits in the brain are a hallmark of Alzheimer disease (AD). Curcumin, a common ingredient of Asian spices, is known to disrupt Aβ fibril formation and to reduce AD pathology in mouse models. Understanding the structural changes induced by curcumin can potentially lead to AD pharmaceutical agents with inherent bio-compatibility. Here, we use solid-state NMR spectroscopy to investigate the structural modifications of amyloid β(1–42) (Aβ42) aggregates induced by curcumin. We find that curcumin induces major structural changes in the Asp-23–Lys-28 salt bridge region and near the C terminus. Electron microscopy shows that the Aβ42 fibrils are disrupted by curcumin. Surprisingly, some of these alterations are similar to those reported for Zn2+ ions, another agent known to disrupt the fibrils and alter Aβ42 toxicity. Our results suggest the existence of a structurally related family of quasi-fibrillar conformers of Aβ42, which is stabilized both by curcumin and by Zn2+.  相似文献   

15.
16.
17.
Gephyrin and collybistin are key components of GABAA receptor (GABAAR) clustering. Nonetheless, resolving the molecular interactions between the plethora of GABAAR subunits and these clustering proteins is a significant challenge. We report a direct interaction of GABAAR α2 and α3 subunit intracellular M3–M4 domain (but not α1, α4, α5, α6, β1–3, or γ1–3) with gephyrin. Curiously, GABAAR α2, but not α3, binds to both gephyrin and collybistin using overlapping sites. The reciprocal binding sites on gephyrin for collybistin and GABAAR α2 also overlap at the start of the gephyrin E domain. This suggests that although GABAAR α3 interacts with gephyrin, GABAAR α2, collybistin, and gephyrin form a trimeric complex. In support of this proposal, tri-hybrid interactions between GABAAR α2 and collybistin or GABAAR α2 and gephyrin are strengthened in the presence of gephyrin or collybistin, respectively. Collybistin and gephyrin also compete for binding to GABAAR α2 in co-immunoprecipitation experiments and co-localize in transfected cells in both intracellular and submembrane aggregates. Interestingly, GABAAR α2 is capable of “activating ” collybistin isoforms harboring the regulatory SH3 domain, enabling targeting of gephyrin to the submembrane aggregates. The GABAAR α2-collybistin interaction was disrupted by a pathogenic mutation in the collybistin SH3 domain (p.G55A) that causes X-linked intellectual disability and seizures by disrupting GABAAR and gephyrin clustering. Because immunohistochemistry in retina revealed a preferential co-localization of collybistin with α2 subunit containing GABAARs, but not GlyRs or other GABAAR subtypes, we propose that the collybistin-gephyrin complex has an intimate role in the clustering of GABAARs containing the α2 subunit.  相似文献   

18.
Eicosapenta peptide repeats (EPRs) occur exclusively in flowering plant genomes and exhibit very high amino acid residue conservation across occurrence. DNA and amino acid sequence searches yielded no indications about the function due to absence of similarity to known sequences. Tertiary structure of an EPR protein coded by rice (Oryza sativa japonica) cDNA (GI: 32984786) was determined based on ab initio methodology in order to draw clues on functional significance of EPRs. The resultant structure comprised of seven α-helices and thirteen anti-parallel β-sheets. Surface-mapping of conserved residues onto the structure deduced that (i) regions equivalent to β α4- the primary function of EPR protein could be Ca2+ binding, and (iii) the putative EPR Ca2+ binding domain is structurally similar to calcium-binding domains of plant lectins. Additionally, the phylogenetic analysis showed an evolving taxa-specific distribution of EPR proteins observed in some GNA-like lectins.  相似文献   

19.
FtsQBL is a transmembrane protein complex in the divisome of Escherichia coli that plays a critical role in regulating cell division. Although extensive efforts have been made to investigate the interactions between the three involved proteins, FtsQ, FtsB, and FtsL, the detailed interaction mechanism is still poorly understood. In this study, we used hydrogen-deuterium exchange mass spectrometry to investigate these full-length proteins and their complexes. We also dissected the structural dynamic changes and the related binding interfaces within the complexes. Our data revealed that FtsB and FtsL interact at both the periplasmic and transmembrane regions to form a stable complex. Furthermore, the periplasmic region of FtsB underwent significant conformational changes. With the help of computational modeling, our results suggest that FtsBL complexation may bring the respective constriction control domains (CCDs) in close proximity. We show that when FtsBL adopts a coiled-coil structure, the CCDs are fixed at a vertical position relative to the membrane surface; thus, this conformational change may be essential for FtsBL’s interaction with other divisome proteins. In the FtsQBL complex, intriguingly, we show only FtsB interacts with FtsQ at its C-terminal region, which stiffens a large area of the β-domain of FtsQ. Consistent with this, we found the connection between the α- and β-domains in FtsQ is also strengthened in the complex. Overall, the present study provides important experimental evidence detailing the local interactions between the full-length FtsB, FtsL, and FtsQ protein, as well as valuable insights into the roles of FtsQBL complexation in regulating divisome activity.  相似文献   

20.
Curcumin has been shown to mitigate cancer phenotypes such as invasive migration, proliferation, and survival by disrupting numerous signaling pathways. Our previous studies showed that curcumin inhibits integrin β4 (ITG β4)-dependent migration by blocking interaction of this integrin with growth factor receptors in lipid rafts. In the current study, we investigated the possibility that curcumin inhibits ITG β4 palmitoylation, a post-translational modification required for its lipid raft localization and signaling activity. We found that the levels of ITG β4 palmitoylation correlated with the invasive potential of breast cancer cells, and that curcumin effectively reduced the levels of ITG β4 palmitoylation in invasive breast cancer cells. Through studies of ITG β4 palmitoylation kinetics, we concluded curcumin suppressed palmitoylation independent of growth factor-induced phosphorylation of key ITG β4 Ser and Tyr residues. Rather, curcumin blocked autoacylation of the palmitoyl acyltransferase DHHC3 that is responsible for ITG β4 palmitoylation. Moreover, these data reveal that curcumin is able to prevent the palmitoylation of a subset of proteins, but not indiscriminately bind to and block all cysteines from modifications. Our studies reveal a novel paradigm for curcumin to account for much of its biological activity, and specifically, how it is able to suppress the signaling function of ITG β4 in breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号