首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many children with autistic spectrum disorders have unusual reactions to certain sensory stimuli. These reactions vary along a hyper- to hypo-responsivity continuum. For example, some children overreact to weak sensory input, but others do not respond negatively to even strong stimuli. It is typically assumed that this deviant responsivity is linked to sensitivity, although the particular stage of sensory processing affected is not known. Psychophysical vibrotactile thresholds of six male children (age: 8–12) who were diagnosed to have autistic spectrum disorders and six normal male children (age: 7–11) were measured by using a two-alternative forced-choice task. The tactile stimuli were sinusoidal displacements and they were applied on the terminal phalanx of the left middle finger of each subject. By using a forward-masking paradigm, 40- and 250-Hz thresholds of the Pacinian tactile channel and 40-Hz threshold of the Non-Pacinian I tactile channel were determined. There was no significant difference between the thresholds of autistic and normal children, and the autistic children had the same detection and masking mechanisms as the normal children. The sensory responsivity of each subject was tested by clinical questionnaires, which showed again no difference between the two subject groups. Furthermore, no significant correlations could be found between the questionnaire data and the psychophysical thresholds. However, there was a high correlation between the data from the tactile and emotional subsets of the questionnaires. These results support the hypothesis that the hyper- and hypo-responsivity to touch, which is sometimes observed in autistic spectrum disorders, is not a perceptual sensory problem, but may probably be emotional in origin.  相似文献   

2.
The aim of the present study was to determine and compare plasma and erythrocyte concentrations of magnesium in 12 autistic children (10 boys, 2 girls), 17 children with other autistic spectrum disorders (14 boys, 3 girls), 5 girls with classic Rett syndrome, and 14 normal children (7 boys, 7 girls) of the same age. No differences in intracellular Mg were found between controls and pathological subjects; however, autistic children and children with other autistic spectrum disorders had significantly lower plasma concentrations of Mg than normal subjects (p=0.013 and p=0.02, respectively). Although our study population was small, we conclude that children with autistic spectrum disorders require special dietary management. If these cases are diagnosed at an early stage, they can be helped through diet.  相似文献   

3.
Correlations between personality traits and a wide range of sensory thresholds were examined. Participants (N = 124) completed a personality inventory (NEO-FFI) and underwent assessment of olfactory, trigeminal, tactile and gustatory detection thresholds, as well as examination of trigeminal and tactile pain thresholds. Significantly enhanced odor sensitivity in socially agreeable people, significantly enhanced trigeminal sensitivity in neurotic subjects, and a tendency for enhanced pain tolerance in highly conscientious participants was revealed. It is postulated that varied sensory processing may influence an individual''s perception of the environment; particularly their perception of socially relevant or potentially dangerous stimuli and thus, varied with personality.  相似文献   

4.
In a group of patients suffering from reflex sympathetic dystrophies, the skin potential and EMG responses induced by electrical stimuli applied to the skin were recorded in the four limbs in order to study somato-sympathetic and somato-motor reflexes. In most patients, the amplitude, delay and shape of the cutaneous responses as well as the pattern of the EMG responses were different from those observed in normal subjects. In particular, it was possible to correlate the pattern of the cutaneous and muscular responses with the severity of the disease. The cutaneous sensory thresholds to electrical stimuli (tactile, tingling and pain threshold) showed different values in the dystrophic and in the contralateral limb. In all patients, a block of the sympathetic chain ipsilateral to the dystrophic limb was performed with local anesthetics. 1 h after the block, the cutaneous responses disappeared not only in the blocked limb but also in the contralateral limb. 48 h after the block, muscular and cutaneous responses as well as sensory thresholds showed a pattern similar to that observed in normal subjects. These findings show that the sympathetic block provides a resetting of the sensory thresholds and reflexes.  相似文献   

5.
The effects of heat-induced pain on absolute thresholds, sensation magnitudes and amplitude-difference thresholds were measured at 10 and 100 Hz. Consistent with previous results, heat-induced pain elevated the absolute thresholds by approximately 8.0 dB and lessened the magnitudes of tactile sensations during pain as compared to the non-painful condition. In contrast to these effects, the discriminability of change in the intensity of the vibrotactile stimuli was unaffected by the presence of pain indicating that the effect of pain on tactile sensations is more likely due to sensory rather than cognitive processes (i.e., attention) and that the mechanisms underlying tactile sensitivity as compared to discriminability are different.  相似文献   

6.
The effects of heat-induced pain on absolute thresholds, sensation magnitudes and amplitude-difference thresholds were measured at 10 and 100 Hz. Consistent with previous results, heat-induced pain elevated the absolute thresholds by approximately 8.0 dB and lessened the magnitudes of tactile sensations during pain as compared to the non-painful condition. In contrast to these effects, the discriminability of change in the intensity of the vibrotactile stimuli was unaffected by the presence of pain indicating that the effect of pain on tactile sensations is more likely due to sensory rather than cognitive processes (i.e., attention) and that the mechanisms underlying tactile sensitivity as compared to discriminability are different.  相似文献   

7.
It has not been established whether the smallest perceptible change in the intensity of vibrotactile stimuli depends on the somatosensory channel mediating the sensation. This study investigated intensity difference thresholds for vibration using contact conditions (different frequencies, magnitudes, contact areas, body locations) selected so that perception would be mediated by more than one psychophysical channel. It was hypothesized that difference thresholds mediated by the non-Pacinian I (NPI) channel and the Pacinian (P) channel would differ. Using two different contactors (1-mm diameter contactor with 1-mm gap to a fixed surround; 10-mm diameter contactor with 2-mm gap to the surround) vibration was applied to the thenar eminence and the volar forearm at two frequencies (10 and 125?Hz). The up-down-transformed-response method with a three-down-one-up rule provided absolute thresholds and also difference thresholds at various levels above the absolute thresholds of 12 subjects (i.e., sensation levels, SLs) selected to activate preferentially either single channels or multiple channels. Median difference thresholds varied from 0.20 (thenar eminence with 125-Hz vibration at 10?dB SL) to 0.58 (thenar eminence with 10-Hz vibration at 20?dB SL). Median difference thresholds tended to be lower for the P channel than the NPI channel. The NPII channel may have reduced difference thresholds with the smaller contactor at 125?Hz. It is concluded that there are large and systematic variations in difference thresholds associated with the frequency, the magnitude, the area of contact, and the location of contact with vibrotactile stimuli that cannot be explained without increased understanding of the perception of supra-threshold vibrotactile stimuli.  相似文献   

8.
During the discriminant analysis of the bioelectric brain activity, we found that there is a separate subgroup of children with autistic spectrum disorders that is close to the group of schizophrenia spectrum disorders but does not coincide with it. Differences between the experimental groups indicate the significance of impairments in the left frontal-temporal region, i.e., in the area responsible for speech development. When comparing the group of children with autistic spectrum disorders with other groups, we observed the significance of high-frequency rhythms.  相似文献   

9.
The tactile and thermal sensitivity of diverse regions of the human body have been documented extensively, with one exception being the scalp. Additionally, sensory changes may accompany the hair loss from the scalp in androgen-related alopecia (ARA), but formal quantitative sensory testing (QST) has not been reported in respect of this. Therefore, light touch detection thresholds were obtained at nine scalp sites and one forehead site, using Semmes-Weinstein filaments (Von Frey hairs), and for warming and cooling from skin baseline temperature, using 28 and 256 mm(2) thermodes. Affective, thermal, and nociceptive sensations experienced at thermal detection threshold were quantified. Thirty-two male participants were recruited, 10 of whom had normal hair coverage, 12 of whom had shaved scalp but with potentially normal hair coverage, and 10 of whom exhibited ARA to some extent. The scalp was relatively insensitive to tactile and thermal stimulation at all tested sites, especially so along the midline and near the apex of the skull. Threshold level warm stimuli were rated less pleasant, the less sensitive the test site. After correction for age-related changes in sensitivity, bald scalp sites were found more sensitive to cooling than the same sites when shaved, consistent with prior informal reports of increased sensitivity for some scalp sensations in ARA. QST on hair-covered sites was subject to methodological issues that render such testing non-ideal, such as bias in measurement of resting skin temperatures, and the near impossibility of delivering filament stimuli to the scalp skin without disturbing neighboring hairs.  相似文献   

10.
The tactile and thermal sensitivity of diverse regions of the human body have been documented extensively, with one exception being the scalp. Additionally, sensory changes may accompany the hair loss from the scalp in androgen-related alopecia (ARA), but formal quantitative sensory testing (QST) has not been reported in respect of this. Therefore, light touch detection thresholds were obtained at nine scalp sites and one forehead site, using Semmes–Weinstein filaments (Von Frey hairs), and for warming and cooling from skin baseline temperature, using 28 and 256?mm2 thermodes. Affective, thermal, and nociceptive sensations experienced at thermal detection threshold were quantified. Thirty-two male participants were recruited, 10 of whom had normal hair coverage, 12 of whom had shaved scalp but with potentially normal hair coverage, and 10 of whom exhibited ARA to some extent. The scalp was relatively insensitive to tactile and thermal stimulation at all tested sites, especially so along the midline and near the apex of the skull. Threshold level warm stimuli were rated less pleasant, the less sensitive the test site. After correction for age-related changes in sensitivity, bald scalp sites were found more sensitive to cooling than the same sites when shaved, consistent with prior informal reports of increased sensitivity for some scalp sensations in ARA. QST on hair-covered sites was subject to methodological issues that render such testing non-ideal, such as bias in measurement of resting skin temperatures, and the near impossibility of delivering filament stimuli to the scalp skin without disturbing neighboring hairs.  相似文献   

11.
Objective and easy measurement of sensory processing is extremely difficult in nonverbal or vulnerable pediatric patients. We developed a new methodology to quantitatively assess children''s cortical processing of light touch, speech sounds and the multisensory processing of the 2 stimuli, without requiring active subject participation or causing children discomfort. To accomplish this we developed a dual channel, time and strength calibrated air puff stimulator that allows both tactile stimulation and sham control. We combined this with the use of event-related potential methodology to allow for high temporal resolution of signals from the primary and secondary somatosensory cortices as well as higher order processing. This methodology also allowed us to measure a multisensory response to auditory-tactile stimulation.  相似文献   

12.
Skin potential and EMG responses induced in normal man by electrical stimuli applied to the skin were recorded in the four limbs in order to study somato-sympathetic and somato-motor reflexes. Different patterns of responses were observed in different conditions: alarm, habituation, sensitization and arousal. During alarm, sensitization and arousal, the responses were present in the four limbs; during habituation, the responses were only present in the stimulated and in the contralateral limb. Three sensory thresholds to cutaneous electrical stimulation were identified in habituated subjects: tactile, tingling and pain. Cutaneous and EMG responses appeared at tingling threshold. A relationship between skin potential level and skin potential response was observed.  相似文献   

13.
Abstract

We investigated the gating effect of passive and active movement on the vibrotactile detection thresholds of the Pacinian (P) psychophysical channel and forward masking. Previous work on gating mostly used electrocutaneous stimulation and did not allow focusing on tactile submodalities. Ten healthy adults participated in our study. Passive movement was achieved by swinging a platform, on which the participant’s stimulated hand was attached, manually by a trained operator. The root-mean-square value of the movement speed was kept in a narrow range (slow: 10–20?cm/s, fast: 50–60?cm/s). Active movement was performed by the participant him-/herself using the same apparatus. The tactile stimuli consisted of 250-Hz sinusoidal mechanical vibrations, which were generated by a shaker mounted on the movement platform and applied to the middle fingertip. In the forward-masking experiments, a high-level masking stimulus preceded the test stimulus. Each movement condition was tested separately in a two-interval forced-choice detection task. Both passive and active movement caused a robust gating effect, that is, elevation of thresholds, in the fast speed range. Statistically significant change of thresholds was not found in slow movement conditions. Passive movement yielded higher thresholds than those measured during active movement, but this could not be confirmed statistically. On the other hand, the effect of forward masking was approximately constant as the movement condition varied. These results imply that gating depends on both peripheral and central factors in the P channel. Active movement may have some facilitatory role and produce less gating. Additionally, the results support the hypothesis regarding a critical speed for gating, which may be relevant for daily situations involving vibrations transmitted through grasped objects and for manual exploration.  相似文献   

14.
Event-related potentials (ERPs) to visual and somatosensory stimuli, generated during an oddball task, were obtained in a group of autistic children and 3 control groups (normal, attention-deficit, and dyslectic children, respectively). The task included the presentation of standard, deviant, and novel stimuli and had a (between-group) passive vs. active (counting) condition. Research questions were whether (a) autistic children differ from other children with respect to the processing of visual and/or somatosensory stimuli, as measured in the amplitude of the N1, mismatch activity, and P3, (b) autistic children specifically have problems in the processing in distal (visual) stimuli, compared to the processing of proximal (somatosensory) stimuli, and (c) autistic children have an atypical lateralization pattern of ERP activity. Only in the autistic group a task effect on the visual P2N2 (mismatch activity) and larger P3s to novels than to deviants were found, in both the visual and the somatosensory modality. There also was a smaller occipital P3 to visual standard stimuli in the passive condition in the autistic group than in 2 control groups. We concluded that autistics (a) differ from several other groups of children with respect to the visual P2N2 and the visual and somatosensory P3, (b) show abnormalities in the processing of both proximal and distal stimuli, and (c) show no indication of abnormal lateralization of ERPs.  相似文献   

15.
The etiology of autism spectrum disorders (ASD) is not well known but oxidative stress has been suggested to play a pathological role. We report here that the serum levels of Sonic hedgehog (SHH) protein and brain-derived neurotrophic factor (BDNF) might be linked to oxidative stress in ASD. By using the whole blood or polymorphonuclear leukocytes, we demonstrated that autistic children produced a significantly higher level of oxygen free radicals (OFR). In addition, we found significantly higher levels of serum SHH protein in children with mild as well as severe form of autism. We also found that the serum level of BDNF was significantly reduced in autistic children with mild form of the disorder but not with severe form of the disorder. Our findings are the first to report a correlation between SHH, BDNF and OFR in autistic children, suggesting a pathological role of oxidative stress and SHH in autism spectrum disorders.  相似文献   

16.
Autism spectrum disorders have been proposed to arise from impairments in the probabilistic integration of prior knowledge with sensory inputs. Circular inference is one such possible impairment, in which excitation-to-inhibition imbalances in the cerebral cortex cause the reverberation and amplification of prior beliefs and sensory information. Recent empirical work has associated circular inference with the clinical dimensions of schizophrenia. Inhibition impairments have also been observed in autism, suggesting that signal reverberation might be present in that condition as well. In this study, we collected data from 21 participants with self-reported diagnoses of autism spectrum disorders and 155 participants with a broad range of autistic traits in an online probabilistic decision-making task (the fisher task). We used previously established Bayesian models to investigate possible associations between autistic traits or autism and circular inference. There was no correlation between prior or likelihood reverberation and autistic traits across the whole sample. Similarly, no differences in any of the circular inference model parameters were found between autistic participants and those with no diagnosis. Furthermore, participants incorporated information from both priors and likelihoods in their decisions, with no relationship between their weights and psychiatric traits, contrary to what common theories for both autism and schizophrenia would suggest. These findings suggest that there is no increased signal reverberation in autism, despite the known presence of excitation-to-inhibition imbalances. They can be used to further contrast and refine the Bayesian theories of schizophrenia and autism, revealing a divergence in the computational mechanisms underlying the two conditions.  相似文献   

17.
18.
Autistic persons are known to have serious abnormalities in speech prosody. The present study attempted to ascertain whether autistic persons could discriminate and/or recognize prosodic contrasts in auditory stimuli. A group of 11 adult autistic subjects with normal IQ and an age-matched group of normal subjects were studied electrophysiologically and behaviorally during presentations of prosodic and phonemic stimuli. The cognitive P3 potential was recorded in response to rare (20%)/frequent (80%) presentations of phonemic stimuli, ‘ba/pa’, linguistic-prosodic stimuli, ‘Bob’. (statement)/‘Bob?’ (question), and emotional-prosodic stimuli, ‘Bob’ (happy)/‘Bob’ (happy)/’Bob’ (angry). Behaviorally, auditory discrimination was tested by requiring a button-press response to each presentation of the rare target stimulus and cognitive association was tested by requiring a match between the verbalized stimulus and an appropriate picture/word.Contrary to our hypothesis, the autistic subjects generally showed normal P3 responses to all stimuli and performed at a normal level in all behavioral tests. However, a significant autistic P3 response to the phoneme ‘pa’ was not demonstrated. This surprising result was reexamined and shown to reflect an unusually large autistic response to ‘pa’ as the frequent stimulus in the first recording block, this initial hyper-reactivity prevented a ‘frequent/rare’ differential when ‘pa’ was presented as the rare stimulus in a later recording block. In the P3 latency window, both the autistic and control groups showed the largest amplitude responses to emotional-prosodic stimuli; neither the N1 nor P2 showed these stimulus effects. Thus, ‘emotional sounds’ appear to be particularly effective in activating the neural substrate of the P3 generator system.Overall, these data indicate remarkably normal P3 and behavioral processing of prosodic stimuli by the high-functioning autistic subjects of this study.  相似文献   

19.
Psychophysical thresholds for the detection of a 300-Hz burst of vibration applied to the thenar eminence were measured for stimuli applied to the skin through 1.5 cm2 and through 0.05 cm2 contactors. Thresholds were approximately 13 dB lower when the area of the contactor was 1.5 cm2 than when it was 0.05 cm2. The difference between the thresholds measured with the large and small contactors was significantly reduced when only the lowest thresholds obtained in the testing sessions were considered. This result supports the hypothesis that one component of spatial summation in the P channel is probability summation. In addition, threshold measurements within a session were less variable when measured with the 1.5 cm2 contactor. We conclude that spatial summation in the P channel is a joint function of two processes that occur as the areal extent of the stimulus increases: probability summation in which the probability of exceeding the psychophysical detection threshold increases as the number of receptors of varying sensitivities increases, and neural integration in which neural activity originating from separate receptors is combined within the central nervous system rendering the channel more sensitive to the stimulus.  相似文献   

20.
Many people affected by fragile X syndrome(FXS)and autism spectrum disorders have sensory processing deficits,such as hypersensitivity to auditory,tactile,and v...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号