首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 423 毫秒
1.
Abstract: Platelet-activating factor (PAF) may be a neuromodulator involved in neural cell differentiation, cerebral inflammation, and ischemia. The PAF receptor is a member of the G protein-coupled receptor superfamily. In the present study, we sought to define the specific G protein(s) that mediate PAF-stimulated phosphoinositide (PI) metabolism in an immortalized hippocampal cell line, HN33.11. PAF increased the production of 3H-labeled inositol phosphates (IPs) with EC50 values of 1.2–1.5 n M . The effect of PAF on 3H-IPs formation was completely blocked by the PAF antagonist BN 50739 at a concentration of 300 n M . Pertussis toxin pretreatment attenuated PAF-stimulated 3H-IPs production by 20–30% ( p < 0.05). Consistent with a role for Gi1/2 in this response, antiserum against Gαi1/2 blocked the response to a similar degree. Pretreatment of permeabilized cells with Gαq/11 antiserum attenuated the response by 70% ( p < 0.05), suggesting a role for Gq/11 in mediating the PAF response in this cell line. Stimulation with PAF increased [α-32P]-GTP binding to both Gαq and Gαi1/2 proteins. Moreover, specific [3H]PAF binding sites coprecipitated with Gαq and Gαi1/2 proteins. The results suggest that PAF-stimulated PI metabolism in HN33.11 cells is mediated by both Gq and Gi1/2 proteins.  相似文献   

2.
《Life sciences》1995,58(5):PL81-PL86
Thieno-triazolodiazepines WEB 2086 and BN 50739 have been described as the potent PAF receptor antagonists. Binding of radiolabeled [3H]WEB 2086 has been widely employed to characterize PAF receptors in different cells. In a search for a PAF receptor in isolated rat hepatocytes, we discovered that the binding of [3H]WEB to rat hepatocytes was highly specific but had a relatively low affinity with a Kd of 113 nM and Bmax of 0.65 pmol/106 cells in freshly isolated cell suspension and Kd of 1.65 μM and Bmax of 2.0 pmol/plate in cultured hepatocytes. No consistent specific binding of [3H]PAF itself was found in the same cell preparations. The binding of [3H]flunitrazepam in the presence of the peripheral type of benzodiazepine receptor antagonist Ro 5-4864 was saturated and exhibited a Ki of 3.8 nM and Bmax of 3.5 pmol/plate. The central type of benzodiazepine receptor antagonist clonazepam also competed for the [3H]flunitrazepam binding, however with a much lower affinity. Various antagonists inhibited the binding of [3H]WEB 2086 with a rank order BN 50739⪢Ro 5-4864≥clonazepam. Interestingly, bicuculline, a specific antagonist of GABA(A) recognition sites, also significantly reduced the binding of [3H]WEB 2086. The binding of [3H]flunitrazepam was inhibited with a rank potency BN 50739⪢WEB 2086. Taken together, these findings suggest that the specific binding of PAF receptor antagonists WEB 2086 and BN 50739 in rat hepatocytes does not involve PAF receptors and occurs via peripheral benzodiazepine and, possibly GABA(A) receptor sites.  相似文献   

3.
The effect of a new PAF antagonist BN 50739 was studied on PAF-induced [3H]-serotonin release from washed rabbit platelets in vitro and on PAF-induced hypotension in vivo. BN 50739 competitively inhibited PAF-induced [3H]-serotonin release from the platelets in a dose-dependent manner. In the presence of 4, 10 and 50 nM of BN 50739, the concentration of PAF inducing 50% maximal [3H]-serotonin release from the platelets (EC50) increased from 2.15 nM to 5.10, 45.10 and 900 nM, respectively. The IC50 of BN 50739 for PAF (10 nM) induced [3H]-serotonin release was 3.67 nM. Under the same experimental condition, the IC50s of BN 50726, BN 50730, BN 50741, WEB 2086, SRI 63-441 and BN 52021 were 5.40, 4.61, 6.88, 5.98, 40.90 nM and 14.90 microM, respectively. PAF-induced hypotension in conscious rats was also inhibited dose-dependently by i.p. pretreatment of BN 50739 (3 and 10 mg/kg). PAF-induced hypotension was diminished both in magnitude and duration in rats pretreated with BN 50739. These data taken together indicate that BN 50739 is a most potent PAF antagonist in vitro and in vivo.  相似文献   

4.
Abstract: Previous studies have established that dopamine (DA) can stimulate phosphoinositide (PI) metabolism in the CNS and in the periphery. The present study summarizes our attempt to find a cell line that expresses this dopaminergic system. We describe that the stable clonal HN33.11 cell line, established by fusion of mouse hippocampal cells with neuroblastoma cells (N18TG2) that originate from A/J mouse, natively expresses the D1 DA receptor system that couples to PI hydrolysis. In this cell line, 500 µM DA or SKF38393 produced 43 and 75% increases in inositol phosphate (IP) accumulations, respectively. In contrast, noradrenaline or 5-hydroxytryptamine did not affect IP accumulations. The formation of IP that was stimulated by DA or SKF38393 was selectively blocked by the D1 DA receptor antagonist SCH23390 with IC50 values of 13 and 16 µM. This response was not mediated by the D1A DA receptor and was cyclic AMP-independent, as HN33.11 cells did not express this receptor, and DA or SKF38393 was unable to stimulate the formation of cyclic AMP. In Ca2+-free/100 µM EGTA medium, basal IP level was reduced by 31.5%, but SKF38393-stimulated PI hydrolysis was not affected. SKF38393-stimulated IP accumulation was also not affected by pertussis toxin (PTX) treatment (200 ng/ml), suggesting that this dopaminergic response is mediated by PTX-insensitive G proteins. Co-immunoprecipitation studies indicated that in membranes of HN33.11 cells, D1-like binding sites are coupled to Gαq protein. Blockade of SKF38393-induced PI hydrolysis with antiserum against phospholipase C (PLC) isozymes, performed in permeabilized cells, as well as co-immunoprecipitation studies implicate PLCβ3 and PLCβ4 in this dopaminergically mediated PI hydrolysis cascade. The results indicate that HN33.11 cells express a D1-like DA receptor that couples to PLCβ3/4 via Gαq protein. These cells may therefore be a useful model system for investigating this receptor system.  相似文献   

5.
In the present paper we analyzed c-fos and zif/268 expression in rat primary astroglial cell cultures after treatment with Platelet-activating Factor (PAF) and its 2-O-methyl-analogue, 1-O-octadecyl-2-O-methoxy-glycero-3-phosphocholine (ET-18-OCH3). Both compounds, at a dose (2 μM) that did not produce toxic effects on astroglial cells, induced a rapid and transient increase of c-fos and zif/268 mRNA level. Pretreatment of astroglial cells with the PAF antagonist BN50730 (5 μM) 10 min prior to the addition of alkyl-phospholipids almost completely prevented the activation of the immediate early genes. On the contrary triazolam, another PAF inhibitor, did not block PAF induced gene expression when added to the medium at 5 μM concentration. ET-18-OCH3 effect on gene expression is blocked by the same antagonist (BN50730) which is effective in inhibiting PAF effect on astrocytes, suggesting that both substances act through the same binding site.Results obtained support the view that astroglial cells are a cellular target for this lipid mediator, and, like macrophages, respond to its methoxy-analogue.  相似文献   

6.
IN THIS STUDY IT IS REPORTED THAT: (1) the levels of blood platelet-activating factor and serum tumour necrosis factor significantly increased after coronary ligation and reperfusion, compared with sham-ligated controls, in an anaesthetized rat model; (2) compared with vehicle controls, pretreatment with the PAF antagonist BN 50739 (10 mg/kg, i.v.) produced significant decreases in infarct size (from 29.6 +/- 4.0% to 22.4 +/- 2.1%, p < 0.05 after 3 h ligation, and from 28.5 +/- 9.5% to 10.5 +/- 4.5%, p < 0.01 after 4 h reperfusion) and the level of serum TNF (from 10.4 +/- 7.7 U/ml to 3.9 +/- 4.8 U/ml, p < 0.05); and (3) a significan positive correlation was found between the level of blood PAF or serum TNF and infarct size. The present results indicate that PAF and TNF may be important mediators involved in myocardial ischaemia and reperfusion injury, and that PAF antagonists may exert a protective effect on ischaemic or reperfused myocardium by inhibiting the interaction of PAF and TNF.  相似文献   

7.
12(R)-hydroxyeicosatetraenoic acid (HETE) shows biphasic increase in cytosolic free calcium concentration ([Ca2+]i) in rabbit and human neutrophils; the initial transient phase and the continuous falling phase. 12(S)-HETE was less potent in both species. BN50739, a platelet-activating factor (PAF) receptor antagonist, inhibited both phases of 12(R)-HETE-induced [Ca2+]i rise but did not affect leukotriene B4 (LTB4)-induced [Ca2+]i rise. N-tosyl-L-phenylalanine chloromethyl ketone (TPCK), a PAF synthesis inhibitor, and manoalide, a phospholipase A2 inhibitor, reduced 12(R)-HETE-induced [Ca2+]i rise. These blockers inhibited the continuous phase of [Ca2+]i rise induced by N-formyl-methionyl-leucyl-phenylalanine (FMLP) with little effect on the initial phase. It had no significant effect on LTB4-induced [Ca2+]i rise. SC-41930, a LTB4-receptor antagonist, did not block 12-HETE-induced [Ca2+]i rise. In 12(R)-HETE-, FMLP- and LTB4-stimulated cells, accumulations of cell-associated PAF and released PAF were detected but not in unstimulated cells. BN50739 did not affect the accumulation of cell-associated PAF and release of PAF in 12(R)-HETE-stimulated cells. These results suggest that 12(R)-HETE-induced and partially, FMLP-induced, but not LTB4-induced [Ca2+]i rise are mediated by PAF, which is produced and released by stimulation of the cells by 12(R)-HETE and FMLP, respectively.  相似文献   

8.
Platelet-activating factor (PAF) is a potent mediator of anaphylaxis and shock. In addition, evidence for PAF participation in gastric, intestinal and heart post-ischemic phase has been recently demonstrated. Ginkgo biloba extracts improve cerebral metabolism and protect brain against hypoxic damage in various models of cerebral ischemia. Potent and specific antagonists of PAF have been found in Ginkgo biloba and termed Ginkgolides: BN 52020, BN 52021, BN 52022, BN 52024. We therefore undertook the investigation of the role of Ginkgolides in cerebral ischemia obtained by bilateral ligature of the common carotid for 10 min and 6 h of recirculation in male Mongolian adult gerbils. Given preventively (one week treatment 10 mg/kg/day orally) or at the time of clamping, BN 52021 and related Ginkgolides dose-dependently antagonize morbidity assessed by the stroke-index. Similarly the mitochondrial respiration evaluated by the respiratory control ratio is significantly improved. In both determinations, the range of activity: BN 52021 greater than, BN 52020 greater than BN 52022 greater than BN 52024 shows that the effect of Ginkgolides in cerebral ischemia are correlated with their PAF antagonistic properties. Given curatively, 1 h after declamping, BN 52021 is able to reverse the cerebral impairment trend. Kadsurenone and brotizolam, two other chemically unrelated PAF antagonists led to similar recovery. Therefore PAF appears to play an important role in the post-ischemic phase after bilateral carotid ligation in Mongolian gerbils.  相似文献   

9.
Abstract: The Pulsinelli-Brierley four-vessel occlusion model was used to study the consequences of hyperglycemic ischemia and reperfusion. Rats were subjected to either 30 min of normo- or hyperglycemic ischemia or 30 min of normo- or hyperglycemic ischemia followed by 60 min of reperfusion. In some animals, 2 mg/kg BN 50739, a platelet-activating factor receptor antagonist, was administered intraarterially either before or after the ischemic insult. The changes in mitochondrial membrane free fatty acid levels, phosphatidylcholine fatty acyl composition, and thiobarbituric acid-reactive material (TBAR) content plus the mitochondrial respiratory control ratio (RCR) were monitored. When the platelet-activating factor antagonist was present during normoglycemia, (a) the mitochondrial free fatty acid release both during and after ischemia was slowed, (b) reacylation of phosphatidylcholine following ischemia was promoted, and (c) TBAR accumulation during and following ischemia was decreased. The detrimental effects of hyperglycemia were muted when BN 50739 was present during ischemia. The RCR was preserved and phosphatidylcholine hydrolysis during ischemia was decreased. TBAR levels were consistently higher in hyperglycemic brain mitochondria both during and after ischemia. The RCR correlated directly with mitochondrial phosphatidylcholine polyunsaturated fatty acid content during ischemia and reperfusion. BN 50739 protection of mitochondrial membranes in brain may be influenced by tissue pH.  相似文献   

10.
Apoptosis and activation of Erkl/2 and Akt in astrocytes postischemia   总被引:4,自引:0,他引:4  
We have shown previously that in vitro ischemia could induce apoptosis in primary culture of astrocytes. In this paper we demonstrate that astrocytes in culture could undergo apoptosis during in vitro incubation postischemia. We also measured the changes of phosphorylated Erk1/2 (p-Erk1/2) and phosphorylated Akt (p-Akt) in order to determine whether these two pathways play a role in apoptosis. After 4 h in vitro ischemic incubation of cultured astrocytes, a limited amount of nuclear condensation was demonstrated by Hoechst 33342 staining. When ischemic incubation was halted and the cultures transferred to standard normoxic incubation (postischemia) conditions, DNA fragmentation and apoptosis were demonstrated by TUNEL and DNA laddering analysis. TUNEL-positive astrocytes began to appear at 6 h postischemia and increased in number from 12 h postischemia. Western blot analysis showed that both p-Erk1/2 and p-Akt were elevated in astrocytes subjected to 4 h of ischemia. Elevated p-Erk1/2 levels were sustained during the postischemia incubation for 12 h and decreased significantly afterward, but did not return to the levels in the control cultures that did not experience ischemic insult. In contrast, the p-Akt level continued to increase at 6 and 12 h postischemia before declining significantly. The changes in p-Erk1/2 and p-Akt correlated well with the appearance of apoptotic astrocytes in the culture.  相似文献   

11.
Abstract: Recent evidence suggests that platelet-activating factor plays a role in ischemia-induced neural injury. The Pulsinelli-Brierley four-vessel occlusion model was used to study the effect of a synthetic platelet-activating factor antagonist, BN 50739, and its solvents, either dimethyl sulfoxide or hydroxypropyl-β-cyclodextrin, on cerebral ischemia-reperfusion. Rats were subjected to either 30 min of ischemia or 30 min of ischemia followed by 60 min of recirculation. Changes in the brain mitochondrial free fatty acid pool size, fatty acyl composition of phospholipids, and respiratory function were monitored. When the BN 50739 (2 mg of BN 50739/kg of body weight i.v.) was administered at the onset of recirculation, it significantly reversed the ischemia-induced accumulation of mitochondrial free fatty acids and loss of polyunsaturated fatty acyl chains from phosphatidylcholine and phosphatidylethanolamine while simultaneously improving mitochondrial respiration. Dimethyl sulfoxide alone decreased the mitochondrial level of malonyldialdehyde and total free fatty acid pool size, but there was no improvement in mitochondrial respiration. Hydroxypropyl-β-cyclodextrin was reported to be pharmacologically inactive and capable of dissolving BN 50739. However, hydroxypropyl-β-cyclodextrin alone also caused a significant increase in content of cerebral mitochondrial membrane free fatty acids and hydrolysis of phosphatidylcholine in normoxic control animals. The overall effect of BN 50739 on mitochondrial structure and energy metabolism supports the hypothesis that platelet-activating factor may play a key role in ischemia-induced cerebral injury.  相似文献   

12.
The effects of the PAF receptor antagonists WEB 2086, WEB 2170, BN 50739 and BN 52021 on AA-induced platelet aggregation (PA) and TXA2 formation were investigated in comparison with the TXA2 synthetase inhibitor HOE 944 and the TXA2 receptor antagonist BM 13.177. All PAF antagonists tested were weak inhibitors of AA-induced PA and TXA2 formation (IC50 values between 80 and 2,737 mumol/l). HOE 944 was effective in concentrations 2-3 orders of magnitude lower than PAF antagonists in inhibiting TXA2 generation. These results imply that the inhibition of TXA2 formation is of minor relevance for the actions of the investigated PAF antagonists in AA-induced PA.  相似文献   

13.
To test the apoptotic potential of the nephrotoxic mycotoxin ochratoxin A (OTA), we exposed human proximal tubule-derived cells (IHKE cells) for various times to OTA concentrations close to those occurring during dietary exposure (from 2 to 100 nmol/L) and investigated caspase 3 activation, chromatin condensation, and DNA fragmentation. OTA induced a time- and concentration-dependent activation of caspase 3: concentrations as low as 5 nmol/L OTA caused a slight but significant increase in caspase 3 activity after 7 days of OTA exposure. Exposure to 10 nmol/L OTA for 72 or 24 h led to a significantly increased activity of caspase 3 in human proximal tubule-derived cells. Radical scavengers such as N-acetylcysteine had no effect on OTA-induced caspase 3 activation. Chelation of intracellular calcium with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis (acetoxymethylester) (BAPTA-AM) also showed no effect. Exposure to 30 nmol/L or more OTA led to DNA fragmentation and chromatin condensation in IHKE cells. Cultured renal epithelial MDCK-C7 and MDCK-C11 or OK cells also showed increased caspase 3 activity after OTA exposure. We conclude that exposure to low OTA concentrations can lead to direct or indirect caspase 3 activation and subsequently to apoptosis in cultured human proximal tubule cells and in other renal epithelial cell lines of different origins. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The neuroprotective effects of superoxide dismutase (SOD) against hypoxia/reperfusion (I/R) injury and of humanin (HN) against toxicity by familial amyotrophic lateral sclerosis (ALS)-related mutant SOD led us to hypothesize that HN might have a role to increase the activity of SOD, which might be involved in the protective effects of HN on neuron against Alzheimer’s disease-unrelated neurotoxicities. In the present study, we found that 4 h ischemia and 24 h reperfusion induced a significant increase in lactate dehydrogenase (LDH) release, malondialdehyde (MDA) formation and the number of karyopyknotic nuclei (4′,6-diamidino-2-phenylindole dihydrochloride nuclear dyeing) and a decrease in the number of Calcein-AM-positive living cells and cell viability. Pretreatment of the cells with HN led to a significant decrease in LDH release, MDA formation and the number of karyopyknotic nuclei, and an increase in the number of Calcein-AM-positive living cells and cell viability in neurons treated with I/R. We also found a significant decrease in SOD activity in neurons treated with I/R only, while pre-treatment with HN before I/R induced a significant increase in the activity of SOD as compared with the I/R group. Our findings implied that HN protects cortical neurons from I/R injury by the increased SOD activity and that the protective effect of HN on neurons against I/R is concentration-dependent.  相似文献   

15.
The effects of the platelet-activating factor antagonist BN 50739 and a free radical scavenger dimethyl sulfoxide on the accumulation of free fatty acids in post-ischemic canine brain are reported. Following 14 min of complete normothermic ischemia and 60 min of reperfusion, the total brain FFAs were approximately 150% higher than in the control group (p<0.05). Perfusion with the platelet-activating factor antagonist BN50739 in its diluent dimethyl sulfoxide during 60 min of post-ischemic reoxygenation resulted in a 61.8% (p<0.01) reduction in the total brain free fatty acid accumulation. Palmitic, stearic, oleic, linoleic, and arachidonic acids decreased by 53.8%, 63.5%, 69.0%, 47.4%, and 57.2%, respectively. Although dimethyl sulfoxide alone caused stearic and arachidonic acids to return to the normal concentration range, BN 50739 had a significant influence on recovery of palmitic, oleic, and linoleic acids and was previously shown to provide significant therapeutic protection against damage to brain mitochondria following an ischemic episode. Because free fatty acid accumulation is one of the early phenomena in cerebral ischemia, this study provides evidence to support the hypothesis that both platelet-activating factor and free radicals are involved in initiating cerebral ischemic injury.  相似文献   

16.
HN and LN are two phenotypic variants of the U937 monocytic cell line which differ in their basal NAD content; they respond in an opposite way to oxidative stress in the presence of the poly(ADP-ribosyl)polymerase (PARP) inhibitors 3-aminobenzamide (3ABA) and nicotinamide (NA): the inhibitors protect HN cells from stress-induced apoptosis, while they enhance it on LN cells (Coppola et al., 1995, Exp. Cell Res. 221,462-469). These opposite effects are due to two overlapping and contrasting phenomena occurring in LN cells, as shown by the bi-modal response of stressed LN cells to increasing 3ABA doses. Indeed H2O2-induced apoptosis is enhanced only at high 3ABA concentrations (i.e., sufficient to inhibit also mono-ADP-ribosylations); lower 3ABA concentrations, which specifically inhibit PARP, also protect LN U937 from stress-induced apoptosis. Unlike HN U937, H2O2-induced apoptosis in LN cells is accompanied by cell blebbing. High 3ABA doses strongly enhance blebbing, leading to cellular fragmentation. Blebbing could be blocked by interfering with actin polymerization with cytochalasin B and D: this eliminated the increase in apoptosis due to 3ABA, suggesting that it is indeed the consequence of excess blebbing. This is supported by the unusual finding that in U937 LN stressed in the presence of 3ABA or NA, blebbing, usually a late event in apoptosis, may even precede its onset.  相似文献   

17.
Abstract: Production and metabolism of platelet-activating factor (PAF) in the fetal rat brain under normal and under ischemic stress conditions were examined. Endogenous PAF levels, determined by a bioassay using PAF-stimulated platelet release of [3H]serotonin, averaged 2.32 ± 2.14 pg/mg in control brains and was reduced to 1.10 ± 1.06 pg/mg after 20 min of maternal-fetal blood flow occlusion. [3H]PAF administered intracranially into the fetuses in utero was removed in a biphasic, time-dependent manner: a rapid component with an estimated elimination rate constant of 0.067 min?1 and t1/2 of 10 min and a slower component with an elimination rate of 0.017 min?1 and t1/2 of 41 min. In fetal brains subjected to ischemia a delayed elimination of [3H]PAF was noticed in the slow component (t1/2 = 59 min), indicating a possible difference between the clearance of exogenous and endogenous PAF. The disappearance of [3H]PAF was accompanied by an increase in the radioactivity associated with lyso-PAF that reached a plateau after 2.5 min, possibly indicating the degradation of the fast component. A steady increase in the alkyl-acyl-glycerophosphorylcholine radioactivity commenced after 5 min and continued up to 30 min. The endogenous production of PAF and the rapid degradation due to maternal-fetal blood flow occlusion indicate an additional target for therapeutic intervention in the pathology of intrauterine ischemia. Addition of the calcium ionophore A23187 stimulated in vitro formation of PAF and lyso-PAF from [3H]-choline-labeled fetal brain phospholipids, suggesting that intracellular calcium may play a major stimulatory role in PAF production. Degradation of polyphosphoinositides by a phospholipase C may constitute a major target for PAF generated either by decapitation or after blood flow occlusion, as evident from the protective effect of the in vivo administered BN52021 PAF antagonist.  相似文献   

18.
Trypsin released from the surface of intact human skin fibroblasts β-N-acetylglucosaminidase. The amount of trypsin removable β-N-acetylglucosaminidase in 4 control and 14 mucopolysaccharidosis cell lines was equivalent to 1.5% (range 0.5–4.3%) of the intracellular activity. Cell surface-associated β-N-acetylglucosaminidase was absent in mucolipidosis II and III fibroblasts that form lysosomal enzymes defective in binding to the cell surface receptors of fibroblasts and in β-N-acetylglucosaminidase deficient fibroblasts (Sandhoff's disease). Indirect immunofiuorescence with monospecific antisera allowed the demonstration of β-N-acetylglucosaminidase, α-N-acetylglucosaminidase, α-mannosidase and β-glucuronidase on the cell surface of fibroblasts, whereas these enzymes were absent on the cell surface of mucolipidosis II and III fibroblasts. Simultaneous staining for β-glucuronidase and β-N-acetylglucosaminidase showed presence of both enzymes in almost identical areas of the same cell. Cross-reacting material was present on the cell surface of fibroblasts with a deficiency of β-N-acetylglycosaminidase, α-N-acetylglucosaminidase (mucopolysaccharidosis III B), α-mannosidase (mannosidosis) and β-glucuronidase (mucopolysaccharidosis VII). The demonstration of lysosomal enzymes on the cell surface is in agreement with the hypothesis that in fibroblasts transport of lysosomal enzymes to the lysosomal apparatus involves cycling of lysosomal enzymes via the cell surface.  相似文献   

19.
The pro-inflammatory lipid mediator platelet activating factor (PAF: 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) accumulates in ischemia, epilepsy, and human immunodeficiency virus-1-associated dementia and is implicated in neuronal loss. The present study was undertaken to establish a role for its G-protein coupled receptor in regulating neurotoxicity. PC12 cells do not express PAF receptor mRNA as demonstrated by northern analysis and RT-PCR. In the absence of the G-protein coupled receptor, PAF (0.1-1 micro m) triggered chromatin condensation, DNA strand breaks, oligonucleosomal fragmentation, and nuclear disintegration characteristic of apoptosis. Lyso-PAF (0.001-1 micro m), the immediate metabolite of PAF, did not elicit apoptotic death. Concentrations of PAF or lyso-PAF that exceeded critical micelle concentration had physicochemical effects on plasma membrane resulting in necrosis. Apoptosis but not necrosis was inhibited by the PAF antagonist BN52021 (1-100 micro m) but not CV3988 (0.2-20 micro m). Ectopic PAF receptor expression protected PC12 transfectants from ligand-induced apoptosis. PAF receptor-mediated protection was inhibited by CV3988 (1 micro m). These data provide empirical evidence that: (i) PAF can initiate apoptosis independently of its G-protein coupled receptor; (ii) PAF signaling initiated by its G-protein coupled receptor is cytoprotective to PC12 cells; (iii) the pro- and anti-apoptotic effects of PAF on PC12 cells can be pharmacologically distinguished using two different PAF antagonists.  相似文献   

20.
It is known that phorbol esters can protect IL-2-dependent lymphocytes against apoptosis induced by IL-2 withdrawal. However, the mechanism of this effect remains unclear. In this article we show that apoptosis induced by IL-2 withdrawal in the CTLL-2 cell line correlates with a decrease in intracellular pH (pHi). Supplementing the incubation medium with phorbol esters during IL-2 deprivation protects CTLL-2 cells against both apoptosis and intracellular acidification. Interestingly, IL-4 also supports short-term cell survival and maintenance of normal pHi. The protein kinase inhibitor staurosporine prevents the protective effects of IL-2, PMA, and IL-4 on apoptosis and intracellular acidification. In contrast, inhibition of the Na+/H+ antiporter by 5-N-ethyl-N-isopropyl amiloride reverts the protective effects of PMA and IL-4, but only weakly affects IL-2-mediated suppression of apoptosis. Taken together, these results indicate that intracellular acidification may be an important event during apoptosis induced by IL-2 deprivation in the CTLL-2 cell line. Moreover, they suggest a key role for protein kinase C activation both in the maintenance of pHi and in the suppression of apoptosis, through mechanisms which rely on the activation of the Na+/H+ antiporter to a different extent, depending on the rescuing factor employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号